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Abstract: Remote-sensing processes based on unmanned aerial vehicles (UAV) have opened up new
possibilities to both map and extract individual plant parameters. This is mainly due to the high
spatial data resolution and acquisition flexibility of UAVs. Among the possible plant-related metrics
is the leaf area index (LAI), which has already been successfully estimated in agronomy and forestry
studies using the traditional normalized difference vegetation index from multispectral data or using
hyperspectral data. However, the LAI has not been estimated in chestnut trees, and few studies
have explored the use of multiple vegetation indices to improve LAI estimation from aerial imagery
acquired by UAVs. This study uses multispectral UAV-based data from a chestnut grove to estimate
the LAI for each tree by combining vegetation indices computed from different segments of the
electromagnetic spectrum with geometrical parameters. Machine-learning techniques were evaluated
to predict LAI with robust algorithms that consider dimensionality reduction, avoiding over-fitting,
and reduce bias and excess variability. The best achieved coefficient of determination (R2) value of
85%, which shows that the biophysical and geometrical parameters can explain the LAI variability.
This result proves that LAI estimation is improved when using multiple variables instead of a single
vegetation index. Furthermore, another significant contribution is a simple, reliable, and precise
model that relies on only two variables to estimate the LAI in individual chestnut trees.

Keywords: precision agriculture; LAI; unmanned aerial vehicles; dendrometric parameter extraction;
vegetation indices; prediction model; individual tree detection

1. Introduction

The leaf area index (LAI) is the most common parameter used to assess the conditions
and development of plants. It can be generally defined as the ratio of total leaf surface area
to ground surface area [1]. This crop-related parameter can be used to assess the nutrient
supply and biomass [2] as well as to estimate several biological and physical processes [3]
and is strongly correlated with the canopy structure [4]. Optical canopy instruments with a
hemispherical view, linear photosynthetically active radiation (PAR) sensors, and digital
hemispherical photography are among the most-used tools to retrieve accurate in situ
indirect LAI measurements [5].

In turn, traditional direct LAI measurements made to trees in chestnut groves are
destructive and time-consuming. Thus, the use of such ground-based instruments has
obtained wide admission [6]. However, indirect LAI measurements, despite providing fast
and less complex LAI estimations, are conducted below the canopy and in each tree. This
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level of detail depends on the measurement type. Therefore, this indirect process is still
regarded as being laborious and time-consuming. Moreover, sometimes the whole chestnut
grove is not covered, and the process becomes increasingly challenging when conducted
over a longer span of time.

Remote sensing platforms can be used to acquire vegetation data with both high
spatial and temporal resolution. That data can then be user to estimate several crop-related
parameters [7]. Remote-sensed data and geographical information systems (GIS) are key
in precision agriculture (PA) applications [8], as they not only provide decision support
to farmers but also enable the retrieval or estimation of crop-related parameters in a fast,
reliable, cost-effective and less-laborious manner [9].

Regarding LAI estimation from remote-sensed data, this is widely explored from
different sensing platforms and sensors, using both direct and indirect LAI measurement
approaches for validating remote-sensed acquisitions [10]. Different LAI models have been
proposed in the literature for several satellite imagery platforms [11] and different crops,
based on vegetation indices: vineyards and row crops [12,13], wheat and maize [13,14],
mangrove forests [15], and for other species [13,16–18].

Some of these studies were based on empirical models using linear regression [12,18,19]
or machine-learning approaches [20,21]. More recently, small-sized unmanned aerial vehicles
(UAVs) brought the capability to acquire remote-sensed data from different sensors with
high spatial resolution and good temporal flexibility [22]. Studies were performed using
UAV-based imagery to correlate the LAI in vineyards [10,23–26], olives [27], wheat [28],
maize [29,30], mangrove forests [15], and rice [31,32].

Similarly to other tree species, chestnut trees (Castanea sativa Mill.) can be affected by
several biotic and abiotic phytosanitary issues that may influence the tree development
and chestnut yield [33]. These issues inckude chestnut ink disease (Phytophthora cinnamomi
Rands) [34], chestnut blight (Cryphonectria parasitica (Murr.) Barr.) [35], nutritional deficien-
cies [36], and the chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu) [37,38]. Thus, it is
important to monitor chestnut groves to assess the tree condition, thereby, preserving the
health status and yield.

LAI equations for chestnut trees were already proposed [39]; they are based on the leaf
length and width and provide almost perfect agreement. These equations were tested in
different chestnut genotypes (for other trees, see Demirsoy et al. [40]). Within this context,
LAI proved to be useful to assess a variety of thinning treatments at different periods [41–43],
to monitor the effects of different plantation types and distinct climatic conditions [44,45],
to monitor differences in chestnut coppaces (for timber production) at different plantation
styles [46], to assess changes in abandoned chestnut groves [47], and to assess magnesium
deficiencies [36].

While remote sensing platforms can be considered to provide data for decision support
tools in chestnut groves, there is a surprisingly low number of studies addressing this
when compared with other orchard trees [9]. Researchers have presented studies in which
aerial imagery is used. For example, using manned aircraft to acquire small format aerial
photography to assess chestnut ink disease and chestnut blight [48–52] as well as the general
phytosanitary status of the chestnut trees [53]. Airborne low-density LIDAR data was used
to estimate biomass [54]. Satellite data was used to assess canopy thinning responses using
time-series vegetation indices from Landsat-8 and Sentinel-2 data [55].

Moreover, satellite imagery is also the basis to classify chestnut stands within a het-
erogeneous land plot [56] using high-resolution multispectral satellite data (WorldView 2
and 3). Regarding the use of UAVs, studies encompassing chestnut trees include the use of
orthorectified UAV-based data to monitor the decline of chestnut trees [57,58], the automatic
monitoring of chestnut trees and the estimation of tree geometrical parameters [59] for the
multi-temporal analysis of chestnut stands, the estimation of pruning wood biomass, the
extraction of the tree height and crown diameter from different UAV flight parameters [60],
the estimation of phytosanitary issues [61], and the mapping of chestnut blight severity [62].
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The main objective of this study is to evaluate the use of several individual tree
parameters retrieved from aerial data acquired using an UAV to estimate the LAI in a
chestnut grove. For this purpose, geometric parameters—the tree height, tree crown area
and crown diameter—were extracted for each tree along with the mean value of several
vegetation indices commonly used for PA applications [63]. A chestnut grove in the north of
Portugal (a region with high chestnut production [64]) was used. Another goal is to assess
the performance of each parameter driven from the UAV-based data for LAI estimation in
different periods and when used individually or combined. The resulting analysis can be
used as a new approach for LAI estimation and is a novel application to UAV-based remote
sensing in chestnut trees monitoring.

2. Materials and Methods
2.1. Study Area Characterization and Field Measurements

The chestnut grove used in this study is located in northeastern Portugal (Figure 1,
41◦22–42.8 N, 7◦35–01.4 W, altitude 760 m). It is composed of by 46 chestnut trees, within a
total of 52 trees (other six almond and peach trees). Regarding this study, field measure-
ments were taken in the 2018 growing season.

Chestnut trees

Other trees

Boundary

Legend

Figure 1. Studied plot, with the location of the evaluated chestnut trees according to its approximate
tree crown diameter. Color-infrared 2018 othophoto mosaic from Portugal mainland (0.25 m spatial
resolution), obtained from the National Geographic Information System (SNIG).

Several measurements and observations were made to allow for a better understanding
and characterization of these chestnut trees. Dendrometric measurements were conducted
in July 2018. The tree crown diameter and tree height were used within this study’s scope.
To measure H, a laser rangefinder (TruPulse 200, Laser Technology, Inc., Centennial, CO,
USA) was used, with precision of ±20 cm (sufficient accuracy for measurements in this type
of trees).

The same tool was used to obtain each tree canopy diameter. Two diameter measure-
ments were taken for each tree. Moreover, the LAI was measured using the LAI-2200C Plant
Canopy Analyzer (LI-COR Biosciences, Lincoln, NE, USA) using a view cap of 90◦. For
each tree, one measurement was taken outside the tree crown while facing direct sunlight.
Another four measurements were taken within the tree crown (around each quadrant of
the tree trunk). Individual tree LAI measurements were conducted three times: in August,
September, and October 2018.
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2.2. Multispectral Data Acquisition from Unmanned Aerial Vehicles

Multispectral imagery acquisition was performed using the Sequoia multispectral
sensor (Parrot SA, Paris, France) coupled—through a custom mount—in a Phantom 4 (DJI,
Shenzhen, China). With this setup, georeferenced 12.4 MP RGB imagery from the Phantom 4
native camera was acquired during flight missions, along with 1.2 MP single-band images
of green (550 nm ± 40 nm), red (660 nm ± 40 nm), red-edge (RE) (735 nm ± 10 nm), and near-
infrared (NIR, 790 nm ± 40 nm) bands of the multispectral sensor. Moreover, irradiance data
was acquired during flight from a sensor positioned at the top of the UAV, and reflectance
data was acquired using a calibration target. Both irradiance and reflectance data was used
during radiometric calibration (see Section 2.3).

The flight campaigns were conducted in the 2018 growing season. Flight missions were
performed to survey the chestnut grove and its surroundings. The images were acquired
with 80% longitudinal overlap and 70% lateral overlap at a flight height of 60 m. Flight
campaigns at 8 August, 25 September and 16 October 2018 were used, which corresponded
to the chestnut maturation period and were at the same time as the LAI measurements
taken in the field.

2.3. Data Processing
2.3.1. Photogrammetric Processing

The acquired UAV-based imagery was processed using Pix4Dmapper (Pix4D SA,
Lausanne, Switzerland) to compute orthorectified raster products. RGB and multispectral
data was processed into different projects. From the RGB imagery (approximately 0.03 m
spatial resolution), orthophoto mosaics, digital surface models (DSMs), and digital terrain
models (DTMs) were computed. From the multispectral data (0.06 m spatial resolution)
and after radiometric calibration, reflectance maps computed for each band were used to
compute several vegetation indices (Table 1).

These indices have been proposed in the literature to monitor variations in several
biophysical parameters (the biomass, leaf pigments, and yield) [61,65]. It is important to
be aware that data from both sensors are aligned to each other using clearly identifiable
points through ground control points by relying on natural features and artificial targets
within the survey area. The DSM and DTM are used to compute the canopy height model
(CHM). This process is conducted by subtracting DTM altitude values from the DSM.

Table 1. List of the vegetation indices used in this study.

Vegetation Index Equation Reference

Normalized Difference Vegetation Index NDVI = N−R
N+R [66]

Green Normalized Difference Vegetation Index GNDVI = N−G
N+G [67]

Green Red Vegetation Index GRVI = G−R
G+R [68]

Normalized Difference Red Edge NDRE = N−RE
N+RE [69]

Soil Adjusted Vegetation Index SAVI = N−R
N+R+L × 1 + L [70]

Renormalized Difference Vegetation Index RDVI = N−R√
N+R

[71]

Ratio Vegetation Index RVI = R
N [72]

Normalized Difference Excess Near Infrared NDExNIR = 2×Nn−Gn−Rn−REn
2×Nn+Gn+Rn+REn

[61]

Normalized Difference Excess Red Edge NDExRE = 2×REn−Gn−Rn−Nn
2×REn+Gn+Rn+Nn

[61]

G: Green; R: Red; RE: Red edge; N: NIR; L = 0.5; Gn = G/(G + R + RE + N); Rn = R/(G + R + RE + N);
REn = RE/(G + R + RE + N); and Nn = N/(G + R + RE + N).

2.3.2. Individual Tree Crown Detection and Parameter Extraction

An individual tree crown segmentation and delineation method was employed for the
tree parameter extraction. To achieve this, the method begins with pixel-wise analysis to
separate vegetation belonging to chestnut trees from other elements (soil and undergrowth
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vegetation). Then, as the usual planting space results in connected tree crowns, a tree crown
isolation procedure must be applied.

With every tree conveniently isolated, individual tree crown parameter extraction can
take place. To achieve this, we used previously proposed methods [59,61]. To segment the
chestnut tree vegetation, we used the NIR band and the CHM raster products to compute
a binary mask of the chestnut grove. As reported in Pádua et al. [61], a locally adaptive
threshold [73] was used to binarize the NIR band, and a 0.2 m threshold was applied to
the CHM. After the computation of the NIR and CHM binary masks, both were merged to
form a new mask with vegetation above the specified height.

The binary mask containing all tree vegetation was used to compute a distance trans-
form based on the Euclidean distance transform [74]. In this way, to each non-zero pixel,
a new value was assigned according to the distance to the closest zero value pixel, and
the watershed transform [75] was applied to its complement image. This results in the
previously connected tree crowns being individually separated with each cluster of pixels
enabling the extraction of several parameters. For each tree, its crown diameter, area, and
height (the maximum CHM value within the tree cluster) were extracted along with the
mean value of each vegetation index (Table 1).

2.4. Data Analysis

The R 4.2.0 environment [76] was used to implement the data analysis performed in
this study. Individual tree LAI values over time were analyzed. An exploratory comparison
analysis of variance and Tukey’s honest significance test were implemented to understand
the difference in the observed LAI values by month when using the aerial imagery extracted
parameters. LAI values were fitted and predicted by applying well-known machine-
learning approaches from the caret package, version. 6.0-93 [77]. A cross-validation
analysis was performed to evaluate the predictor quality by applying the metrics package,
ver. 0.1.4 [78].

To assess how close the estimated LAI values were to the observed LAI, the goodness-
of-fit statistics root mean square error (RMSE), coefficient of determination (R2), and mean
absolute error (MAE) were obtained. Moreover, the estimated tree height and crown
diameter were also compared with the field measurements. To recover the predicted LAI
value, an equation was developed based on fitting the multiple linear model (1) using a
leap-backward algorithm.

log(LAI) = α1 Area + α2Diameter + α3GNDVI + α4GRVI + α5Height+ (1)

α6NDExNIR + α7NDExRE + α8NDRE + α9NDVI + α10RDVI+

α11RVI + α12SAVI + ε

where ε follows the Gaussian distribution with a zero mean and σ2 as the variance;
ε ∼ Normal(0, σ2).

3. Results
3.1. Data Characterization

The highest observed LAI values were obtained at the final stage in October with
mean, minimum, and maximum values of 2.02, 0.13, and 4.21, respectively. For August and
September, the mean LAI values were around 1.5, the minimum values were 0.14, and the
maximum values were approximately 3.5. According to the coefficient of variation of LAI
that varied about 50%, and the q0.975–q0.25 amplitude, the LAI values for all periods were
not homogeneous—in particular, for August and September (Table 2).

The density distribution of the LAI variable varying from 0.10 to 4.21 m is presented
in Figure 2a. There are two peaks, around 1 and 2.5 m, thereby, indicating bi-modality.
The LAI distribution demonstrated asymmetry with a heavy tail for high values. This
bi-modality is more evident from September 2018. The spatial distribution of the LAI
values within the chestnut grove are presented in Figure 2b.
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Regarding the differences in the LAI values by month, we calculated the Tukey multi-
ple comparisons of means with a 95% family-wise confidence level. The confidence level
for the difference between September and August is (−0.41, 0.93), for October and August
is (−0.04, 0.92), and for October and September is (−0.12, 0.84). These outputs indicate
that the mean levels of the LAI values for August, September, and October are not different
since the zero value is contained within the confidence intervals.

Table 2. Leaf area index (LAI) characterization and summary based on the 46 observations made in
each period.

Period Mean SD CV q0.25 q0.75 Min Max

August 1.581 0.909 0.575 0.156 3.214 0.103 3.630
September 1.657 0.951 0.574 0.170 3.125 0.170 3.540

October 2.018 1.061 0.526 0.185 4.131 0.130 4.210
Statistics calculated related to the LAI variable, mean; SD: standard deviation; CV: coefficient of variation; q0.25
and q0.75 describe the 25th and 75th LAI percentile; Min: minimum; and Max: maximum.
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Figure 2. Leaf area index (LAI) distribution (a) and the individual tree value (b) at each measurement
period and when considering all measurements.

3.2. Tree Height and Crown Diameter Estimation

To assess the viability of using individual tree geometric parameters, the linear rela-
tionships of the tree height and crown diameter were evaluated. These results are presented
in Figure 3. The agreement between ground-truth data and the automatically estimated
values using the UAV-based data where high. The estimated height values, calculated from
the CHM, ranged 0.2 to 7.5 m with a mean value of 5 m. The linear regression presents an
R2 = 0.93 and an RMSE of 0.99 m (Figure 3a).

When referring to the ground-truth data, differences of –0.8, –1.5, and –0.6 m were
verified, respectively, for the mean, minimum, and maximum values. Moreover, the absolute
mean difference was 0.85 m. Regarding the tree crown diameter (Figure 3b), the mean value
was 5.3 m, and the estimates ranged from 0.9 to 7.8 m with an R2 = 0.91 and an RMSE of
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0.55 m. With the differences in the mean, minimum and maximum values observed in-field
at –0.3, 0.4, and –0.2 m, an absolute mean difference of 0.45 m was observed.

0.0
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Figure 3. The observed and estimated tree height (a) and crown diameter values (b) obtained from
the orthorectified raster products of the data acquired by the unmanned aerial vehicle.

3.3. Leaf Area Index: Single Variable Correlation

To evaluate the relationships between the LAI and each estimated UAV-based biophysi-
cal and geometrical parameter (used as predictors), the Pearson correlation coefficient was
calculated. All these interactions displayed significant and positive coefficients as presented
in Table 3. The highest correlation with log(LAI) was obtained by the GNDVI. This was
verified in the evaluated periods (September ans October using all values) except for August.
These linear correlations were positive and strong in September. The results also showed that
the NDExRE reported the second strongest correlation with the log(LAI). This interaction
achieved a higher value in September 2018. The same occurred with the NDVI, tree crown
area, tree height, RVI, NDExNIR, tree crown diameter, GRVI, and NDRE. RDVI interaction
achieved a higher value in October 2018, and the same occurred with the SAVI.

Non-linear correlations were also explored. Figure 4 displays the trends between LAI
and the different predictor variables along with their equations for each period. Second-
degree polynomial linear regressions by month achieved higher explained variance. Re-
garding the performance of each month, RVI obtained the best performance in August
(R2 = 0.76), followed by NDExNIR, NDVI, RDVI, and the tree crown area (R2 = 0.75). In
September, GNDVI reached R2 = 0.80, followed by NDExNIR (R2 = 0.79) and tree crown
area (R2 = 0.78). For October, the GNDVI also provided the best performance (R2 = 0.79),
followed by NDExNIR and SAVI both with R2 = 0.77. Moreover, the parameters GNDVI,
NDExNIR, NDExRE, and NDVI obtained R2 ≥ 0.73 for all months.

Table 3. Assessment of linear regressions through significant Pearson correlation coefficients
(r ∈ [−1, 1]) between the log(LAI) and the vegetation indices and geometry parameters by month.

Covariate August September October All Values

GNDVI 0.858 0.896 0.889 0.842
NDExRE 0.852 0.877 0.868 0.822

NDVI 0.856 0.875 0.863 0.820
Crown area 0.816 0.834 0.788 0.803

Height 0.819 0.769 0.773 0.784
RVI 0.862 0.870 0.825 0.780

NDExNIR 0.869 0.895 0.876 0.758
Crown diameter 0.795 0.778 0.710 0.754

RDVI 0.870 0.852 0.879 0.703
GRVI 0.799 0.831 0.805 0.700
SAVI 0.867 0.824 0.878 0.562

NDRE 0.837 0.876 0.837 0.364
NDVI: Normalized Difference Vegetation Index; GNDVI: Green Normalized Difference Vegetation Index; GRVI:
Green Red Vegetation Index; NDRE: Normalized Difference Red Edge; SAVI: Soil Adjusted Vegetation Index;
RDVI: Renormalized Difference Vegetation Index; RVI: Ratio Vegetation Index; ExNIR: Excess Near Infrared;
ExRE: Excess Red Edge; NDExNIR: Normalized Difference ExNIR; and NDExRE: Normalized Difference ExRE.
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Figure 4. Regressions between the logarithm of the leaf area index (LAI) and vegetation indices by
month. August (red), September (green), and October (blue).

3.4. Leaf Area Index Estimation Based on Regression Modeling Strategies with
Dimensionality Reduction

Regression model training was conducted to obtain LAI prediction values. Thirty
four models were implemented using the vegetation indices and geometry parameters
as predictors. Thirty percent of the data were randomly selected and removed from the
training procedures to assess the prediction accuracy with reduced bias. The goodness-of-fit
summaries are shown in Table 4 for the models with R2 > 0.80. The Relevance Vector
Machine with Polynomial Kernel (rvmPoly) is an extension of Support Vector Machine
(SVM) that considers a Bayesian treatment of a generalized linear model of identical
functional form to the SVM [79].
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The rvmPoly achieved the highest R2 value (0.833) with a 0.273 MAE and an RMSE
of 0.343. The robust Bayesian Regularized Neural Network model also reached good
performance (R2 = 0.83), the smallest MAE (0.267), and an RMSE of 0.348. This kind of
regression models converts a nonlinear regression into a “well-posed” statistical problem
in the manner of a ridge regression by applying the Bayesian regularization process [80].
The linear model with leap backward incorporates a leap step that chooses the best set
of variables in the selection model performance. This model obtained an RMSE of 0.367,
R2 = 0.824, and an MAE of 0.285.

The same value of MAE and an equivalent R2 but higher RMSE values (0.373) were
obtained by the Spike and Slab Regression model. This is a linear regression model
following a Bayesian approach considering a specific hierarchical prior distribution [81].
Several other regression models obtained an R2 ≥ 0.81 as in the case of the Cubist regression
tree technique, projection pursuit regression, booted regression tree, ridge regression,
Bayesian regression lass, elastic net, and lm with forward. The remainder models obtained
R2 ≤ 0.81.

Table 4. Accuracy metrics of the evaluated regression models (with a coefficient of determination
above 0.80).

Regression Model Type R2 RMSE MAE R2sd RMSEsd MAEsd

Relevance Vector Machines with Polynomial Kernel 0.833 0.343 0.273 0.098 0.082 0.076
Bayesian Regularized Neural Networks 0.830 0.348 0.267 0.093 0.080 0.065
Linear model with leap backward 0.824 0.367 0.285 0.097 0.109 0.088
Spike and Slab Regression 0.823 0.373 0.285 0.090 0.088 0.074
Cubist 0.818 0.366 0.281 0.112 0.083 0.059
Projection Pursuit Regression 0.815 0.354 0.276 0.110 0.083 0.059
Boosted Regression Tree 0.815 0.341 0.270 0.107 0.072 0.056
Ridge Regression 0.814 0.371 0.291 0.130 0.122 0.096
The Bayesian Regression Lasso 0.812 0.373 0.290 0.100 0.093 0.062
Elastic net 0.811 0.364 0.286 0.118 0.118 0.091
Lm with Forward 0.810 0.367 0.285 0.111 0.115 0.095
Bayesian Ridge Regression 0.809 0.369 0.284 0.110 0.087 0.064
Boosted Generalized Linear Model 0.807 0.370 0.286 0.106 0.102 0.082
The Lasso Regression 0.806 0.379 0.292 0.131 0.104 0.075
Bayesian Ridge Regression (Model Averaged) 0.805 0.372 0.288 0.128 0.096 0.077
Bayesian Generalized Linear Model 0.805 0.375 0.292 0.094 0.103 0.079
Linear Regression with Stepwise Selection 0.805 0.371 0.285 0.116 0.090 0.070

R2: coefficient of determination; RMSE: Root-mean-square deviation; MAE: Mean absolute error; and Adjusted-R2:
Adjusted coefficient of determination. The term sd indicates standard deviation of a given metric.

The predicted LAI values for those models had the highest adjusted R2 values com-
pared with their respective field observations, and a graphical representation is presented
in Figure 5. The highest R2 was obtained using Bayesian Regularized Neural Network
regression (Figure 5b) followed by the linear model with leap backward (Figure 5c), both
with R2 ≥ 0.83.

To illustrate the leap backward selection algorithm performance, the multiple linear
regression model shown in Section 2.4 was implemented. The output indicates that the
tree crown area (Area), NDExRE, and NDRE are adequate predictors. The adjusted R2 for
the reduced model was 0.85 with a residual standard error of 0.39 (p-value: <2.2 × 10−16).
On the other hand, when considering the combination of the tree crown area and GNDVI,
the adjusted R2 for the reduced model was 0.84, and its residual standard error was 0.36
(p-value: <2.2 × 10−16). The final linear equations to estimate the LAI are given in (2) and (3).

L̂AI = e−1.41+0.03Area+4.27NDExRE+2.20NDRE, R2 = 0.849 (2)

L̂AI = e−2.72+0.03Area+3.71GNDVI, R2 = 0.84 (3)
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Figure 5. Observed and predicted leaf area index (LAI) when using: (a) Relevance Vector Machines
with Polynomial Kernel, (b) Bayesian Regularized Neural Networks, and (c) the linear model with
leap backward.

With the different approaches explored in this study, it is possible to provide the
capability to obtain LAI estimations through UAV-based parameter(s). The implementation
of different approaches was conducted, and the results are presented in Figure 6. When
compared with the ground-truth (Figure 2b), the estimated LAI values and the observed
ones demonstrated high correlation values. Most LAI estimations are within the same
range of values—particularly in the results from the equations proposed based on the leap
backward selection algorithm (2) and (3), which show similar overall results (Figure 6b,c).
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Figure 6. The estimated leaf area index (LAI) for each surveyed period of the chestnut grove when
using: (a) Bayesian Regularized Neural Networks, (b) the leap backward selection algorithm model
using the tree crown area, NDExRE, and NDRE, and (c) and using the tree crown area and GNDVI.
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4. Discussion

The LAI values registered in this study (Table 2 and Figure 2), varied between 0.10
(August) and 4.21 (October). Such amplitude is justified with the fact that some trees were
planted more recently. This is also corroborated with the tree crown diameter and tree
height data (Figure 3). A similar trend was verified in Covone et al. [45], where the LAI
values ranged between 0.18 and 5.00 for one year old and 12 year old stands, respectively.
The mean LAI values in August, September, and October were, respectively, 1.58, 1.66, and
2.02 (Table 2). Similar variations were also reported in Portela et al. [36], where the authors
obtained LAI values of 2.04, 1.53, and 0.97, respectively, for healthy trees and for trees with
slight and acute leaf chlorosis symptoms.

Gondard et al. [47] found a lower mean LAI (2.1) in cultivated groves, while a higher
value was observed in abandoned groves (4.2). In chestnut coppices, Prada et al. [55] reported
mean LAI values between 1.57 and 2.78, while Cutini et al. [43] obtained mean LAI values of
5.3 and 4.7 for control and thinned chestnut coppices. The temporal differences observed in
the monitored trees were justified with the fruit set maturation process, which accounts for
the higher occupation area and changes in the tree crown and leaf fall (there were even cases
of broken tree branches due to high winds).

The UAV-based estimates of the tree crown diameter and height revealed a good
agreement with the field-measured values (Figure 3) and were in accordance with previous
works [59,60]. Thus, these parameters alongside the tree crown projected area are suitable
to be used given the high correlation. This advantage guarantees additional information
for data fusion with the vegetation indices as full explanations. According to Wu et al. [26],
the combination of UAV-based multi-sensor synchronous observation data products can
bring higher accuracy in the prediction process.

Several regression methods to estimate the LAI in chestnut trees were explored using the
different parameters derived from UAV-based data. From the UAV-based extracted metrics,
it was possible to conduct LAI estimation using a single parameter. It can be said that the best
performance was achieved by GNDVI (Table 3 and Figure 4), exceeding the performance of
the commonly used NDVI. For instance, the exploratory chestnut LAI regression previously
conducted in Pádua et al. [82] showed a positive correlation in the individual tree height,
crown area, and mean NDVI, with R2 values of 0.51, 0.64, and 0.76, respectively.

In that study, the reported results demonstrated that the mean NDVI exponentially fit
the LAI data, showing saturation in trees with higher LAI values when the NDVI values
were slightly above 0.8. Saturation effects were also observed in the plot-level LAI estima-
tion of a mangrove forest [15] but with high R2 values (0.817). In other studies, different
vegetation indices also provided good performance as in the case of the visible atmospheri-
cally resistant index (VARI) [83] in Li et al. [31] (R2 = 0.76); the enhanced vegetation index
(EVI) [84] that outperformed NDVI, OSAVI, GNDVI, EVI2, and MSAVI2 in Peng et al. [29]
(R2 = 0.877); the enhanced vegetation index 2 (EVI2) [85], which outperformed SAVI, NDVI,
and Sentinel-2 LAI [11]; and the modified chlorophyll absorption ratio index (MCARI2) [86]
in Prada et al. [55] with R2 values between 0.61 and 0.75 (RMSE between 0.20 and 0.24).

Among the three geometric parameters included in this study, the chestnut tree crown
area revealed the best performance. Moreover, when combined, vegetation indices using
red edge (NDExRE and NDRE) along with the tree crown area provided the highest
contribution (Figure 6). On the other hand, as the red edge band is not broadly available
in most sensors and as it can be easier to find sensors that can acquire the NIR and green
parts of the electromagnetic spectrum (e.g., RGB cameras modified to acquire NIR), another
equation is presented (3) based on the tree crown area and GNDVI.

For maize, Qiao et al. [30] reported that the combined use of geometrical parameters
(the canopy height, canopy coverage, and canopy volume) along with vegetation indices
(NDVI and VARI) improved the dynamic LAI estimation using partial least squares regres-
sion. For rice, in Gong et al. [32], the models relying only on a single vegetation index
presented problems when working with different phenological stages; however, when
combining them with height values, an improvement was verified as the RMSE decreased.
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Moreover, the use of multiple measurement periods aided the stability. Improvements
were verified in LAI modeling for rice [32] and maize [30] when using LAI measurements
throughout the season and UAV-based vegetation indices.

The use of different regression models (Table 4) improved the overall accuracy (Figure 5)
when compared with the single use of UAV-based parameters with a high accuracy (R2 ≈ 0.84
and an RMSE of 0.34). This was also revealed in other studies. Li et al. [31] used different
indices computed from UAV-based RGB imagery to evaluate different approaches (simple
linear regression, multiple linear regression, principal component regression, partial least
squares regression, random forest, and support vector machine) to estimate the LAI with
improvements when using machine learning. These were verified with random forest
presenting the highest performance (R2 = 0.84 and RMSE of 0.84).

Vélez et al. [24] applied k-means clustering and random forest to detect shadowed
areas in a vineyard with an R2 = 0.76 and RMSE of 0.16 for the LAI. Ilniyaz et al. [25]
estimated the LAI in pergola-trained vineyards through the use of vegetation indices to
train five machine-learning models (support vector regression, random forest, partial least
square, gradient boosting, and K-nearest neighbors) and an ensemble model that used the
five models as base learners. The ensemble model outperformed the machine learning
models with an R2 = 0.899 and an RMSE of 0.434 using multispectral indices, while lower
performance was obtained using RGB vegetation indices (R2 = 0.825 and RMSE of 0.547).

Despite the obtained results, other approaches could be explored in the future using
only UAV-based RGB imagery as the case of the analysis of projected shadows to estimate
the LAI. Such methods can be explored in flights with certain solar angles (similar to
Vélez et al. [24]). Another alternative is to use indices computed from the red, green, and
blue bands (RGB) as a cost-effective approach for LAI estimation [31], despite studies
reporting that multispectral indices have shown higher correlations than the ones computed
from RGB imagery [25]. Moreover, UAV-based LAI estimation can be used to evaluate
the temporal effects of Dryocosmus kuriphilus on chestnut tree branches and, consequently,
their growth [38] and can be used for yield estimation [29]. The use of hyperspectral
imagery [87,88] should also be considered, as it can allow the exploration of different parts
of the electromagnetic spectrum.

5. Conclusions

In this study, several regression methods to estimate the the LAI in chestnut trees were
presented following a non-destructive approach using high-resolution aerial multispectral
and geometrical data. In this way, depending on the available data (geometrical, multi-
spectral, or both), the LAI was estimated to assess different aspects of chestnut trees from
their overall health status or as a yield indicator. The monthly changes in the observed LAI
values were examined using the Tukey post hoc test.

The Tukey multiple comparisons considering a 95% confidence interval confirmed the
homogeneous dispersion of samples between months. Moreover, the geometry indicators
(the crown area, diameter, and tree height) fit the LAI values satisfactorily. On the other
hand, following the linear model with the selection leap backward, the tree crown area
indicator showed superior performance in predicting the LAI along with NDRE and
NDExRE or with GNDVI.

The findings reported in this study indicated that the second-degree polynomial
linear regressions by month fit the LAI values satisfactorily. However, this approach does
not contemplate characteristics such as multicollinearity, high variability, and bias in the
estimation procedure that could be present when modeling multiple vegetation indices
and geometric variables as predictors. The evaluated algorithms that contained robust
ensemble meta-Bayesian approaches that incorporate regularization techniques to prevent
overfitting were preferred, and they showed suitable performance. The techniques that we
used are easy to understand and can potentially be applied to other areas with agricultural
structures that are similar to chestnut tree planting.
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