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Abstract: Drones are increasingly used for a wide range of applications including mapping, monitor-
ing, detection, tracking and videography. Drone software and flight mission programs are, however,
still largely marketed for “urban” use such as property photography, roof inspections or 3D mapping.
As a result, much of the flight mission software is reliant upon an internet connection and has built-in
cloud-based services to allow for the mosaicking of imagery as a direct part of the image collection
process. Another growing use for drones is in conservation, where drones are monitoring species
and habitat change. Naturally, much of this work is undertaken in areas without internet connection.
Working remotely increases field costs, and time in the field is often aligned with specific ecological
seasons. As a result, pilots in these scenarios often have only one chance to collect appropriate
data and an opportunity missed can mean failure to meet research aims and contract deliverables.
We provide a simple but highly practical piece of code allowing drone pilots to quickly plot the
geographical position of captured photographs and assess the likelihood of the successful production
of an orthomosaic. Most importantly, this process can be performed in the field with no reliance
on an internet connection, and as a result can highlight any missing sections of imagery that may
need recollecting, before the opportunity is missed. Code is written in R, a familiar software to many
ecologists, and provided on a GitHub repository for download. We recommend this data quality
check be integrated into a pilot’s standard image capture process for the dependable production of
mosaics and general quality assurance of drone collected imagery.
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1. Introduction

The utilisation of drones in a vast range of industries is rapidly increasing, alongside
constant developments in drone technology. Many of these uses remain marketed for
the “urban” world, where drones are used for industries such as urban design, insurance,
forensics, and real estate, together with a huge market for hobbyist drone pilots [1–5].
These predominant uses of drones mean much of the accompanying flight mission software
is reliant upon an internet connection to facilitate data collection and processing [6,7].
However, digital disadvantage in rural and remote areas means internet connectivity is
limited in many continents, including Australia, Africa and South America [8–10].

Another increasing use of drones is their application in ecological monitoring. These
applications include the monitoring of vegetation, locating of animals, or counting of large
species aggregations [11–13]. The use of drones in natural environments lends itself to
unique difficulties and requirements for the drone user. In undertaking an ecological
monitoring survey, there are often no clear pre-existing boundaries that a pilot may need to
cover in a drone flight. Further, boundaries can change or move quickly when surveying
animals, and the development of survey areas is therefore often estimated on the fly. The
estimation of aerial coverage based on on-ground distance calculations is difficult and
as a result, complete coverage of a survey area in drone imagery may not be obtained.
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Currently, there is no simple, free and/or open source way of evaluating flight quality and
determining the geographical position of collected photographs while in the field.

Missing or wayward images can be a big problem when monitoring requires the
creation of an orthomosaic (a georeferenced image derived from the mosaicking of many
individual images) [14]. Orthomosaics are often crucial inputs into ecological monitoring
as they allow for high-resolution mapping of study sites [15]. The creation of a successful
orthomosaic (a complete and clear orthomosaic without gaps) requires the collection of
consistently spaced images, captured along transect lines at a very high overlap (upwards
of 75%). The collection of this imagery can take many hours in the field and can be prone to
error due to software failures, incorrect camera settings, poor lighting, battery changes, GPS
failures and weather conditions such as wind [16,17]. In the case where sections of flight
paths are missed, the orthomosaic will not correctly align neighbouring images, resulting
in a highly blurred or patchy final mosaic. Even if images are obtained, if they are not of
sufficient quality (e.g., highly blurred), processing software is unable to locate tie points
in neighbouring images, also resulting in blurred or missing portions of mosaics. Some
drone flight mission programs such as Drone Deploy [18] and Pix4D Capture [19] have
automated the process of developing orthomosaics by directly uploading imagery to the
cloud for instant processing of the imagery. This allows for reasonably quick viewing
of the placement of images in geographic space, but requires an internet connection and
processing of the final mosaic can take several hours or days, making it difficult to evaluate
collection quality. Other open source software such as WEB Open Drone Map is available
at a cost and works offline [20], but as it is mosaicking software it requires large amounts of
random access memory (RAM), a limitation when working on field-based computers or
laptops. Further, many processing software licences are locked to a single computer and
so the user must wait to return to the office, or attempt remote connection to then realise
some images were not captured. As such, when working in the field without internet,
quick viewing of the geographic placement of collected drone imagery is currently not
possible, making it difficult to predict the success of later orthomosaic production in a
disconnected environment.

Importantly, for many ecological drone surveys there is a very limited window in
which surveys can be conducted as they are focused around a breeding, climatic, migration
event, or season. The temporal aspect to the data collection is therefore highly important
and repeat surveys are not possible once the opportunity has passed [21–24]. Where repeat
surveys are possible, failure to collect enough suitable images for a complete orthomosaic
can result in more days spent in the field or the rescheduling of field trips, increasing field
costs. Failure to deliver an orthomosaic can result in failure to provide accurate, or any,
monitoring data, making in-field checks highly useful.

We aimed to develop a totally offline, field friendly system of plotting drone image
location in geographical space and quantifying potential image blur. This system will work
for most brands or model of drone, regardless of the flight mission software used. It allows
the user to identify missing or blurry images in a short time, providing the opportunity for
users to re-fly a mission while still on site, ensuring total coverage of an area of interest and
the successful future production of an orthomosaic. This quality testing can prevent failed
data collection, save the user much time and money in avoiding the need to re-visit field
sites, and ensure delivery on ecological research contracts.

2. Materials and Methods

We collected drone imagery to build high-resolution maps to track changes in vegeta-
tion and flooding in the Chobe Region, northern Botswana. Images were collected with the
use of Pix4D capture [19], flying at a height of ~100 m, speed of ~5 m/s and along transects
with a front and side overlap of 75% with a DJI Phantom Advanced quadcopter. Images
were transferred from the drone secure digital (SD) card and onto a laptop.

The complete image set was used to represent a successful drone flight for the purpose
of creating an orthomosaic, labelled “complete”. We duplicated this set of imagery and re-
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moved 25% of images by deleting files, and used this image set to represent an unsuccessful
drone flight, assigning them to a separate folder hereto referred to as “incomplete”.

In the software package R [25], we used the exifr package [26] to extract the exchange-
able image file format (exif) data of each image allowing for the geographic coordinates
hard coded into each image to be extracted. We then plotted the image coordinates, al-
lowing the user to ensure images were collected at even spaces across the area. Further,
image coordinates were exported as a .csv file, allowing for the plotting of image location
coordinates in a geographic information system over satellite imagery or other layers. This
is an additional step that allows the user to easily visualise coverage of the area of interest.

As a further check of dataset quality, we called on the package magick [27] to rank the
images (or a subset of images) based on intensity change among pixels of the greyscale
image. Images with less edges, such as blurry images or smooth surfaces, have low image
variance, while sharp images with many detailed edges return higher image variance [27],
a useful technique for many advanced image processing purposes. Rather than define an
arbitrary cut-off, the code outputs the 10 images with the lowest variance for the pilot to
review and assess their suitability for generating a mosaic. As the example dataset had
minimal blurring, we used the magick package [27] to introduce blur in 7% of the images,
mimicking potential blur in drone datasets. We then re-ran the algorithm to test the code’s
ability to detect blurred images in a dataset.

We provide the code on GitHub https://github.com/RoxFrancis/Offline_drone_
imagery_assessment (accessed on 3 November 2022) and encourage users to make this
quality check a standard procedure for the collection of drone imagery in remote locations.

Orthomosaics presented for visual purposes in the results were produced using
Pix4DMapper software [28].

3. Results

When plotted, the full set of imagery collected (432 images) showed largely consistent
balanced spacing between images captured, and covered the whole area of interest (Figure 1).
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Figure 1. GPS locations of drone imagery collected adjacent to the Chobe River, Botswana were
extracted and plotted in R for easy inspection of approximate spacing between images, before being
exported as a .csv file and plotted over satellite imagery, ensuring total coverage of the area of interest
in the complete dataset.

There were a few points where the image was missed or captured late, shown by the
grouped points, but the image spacing is largely uniform. As a result, a high-resolution
orthomosaic could be produced covering the intended area (noting large expanses of water
will normally drop from the orthomosaic process due to few tie points) (Figure 2).

In contrast, the mosaic created from the “incomplete” imagery set (322 images) did
not cover the entire area of interest, with inconsistent spacing between images (Figure 3).
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Figure 3. GPS locations of a subset of drone imagery collected adjacent to the Chobe River, Botswana,
were extracted and plotted in R for easy inspection of approximate spacing between images (left),
before being exported as a .csv file and plotted over satellite imagery (right), highlighting gaps in the
coverage of the area of interest in the “incomplete” dataset.

This missing data could occur due to software or hardware malfunction, or human
error. As a result of the missing images, it did not produce an acceptable mosaic (Figure 4)
and would not be useful for further analysis.
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The image dataset had minimal blurring, so instead of blurred images, the output
of the variance analysis consisted of large smooth surfaces, such as water (Figure 5). All
artificially blurred images which we introduced to test the effectiveness of the algorithm
were detected in the top 10 blurred images (Figure 5).
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Figure 5. Images ranked with the lowest variance from a sample of 10% of the incomplete dataset.
Image (a) represents the image with the lowest variance of the sample (variance = 14) showing open
water, next to its artificially blurred counterpart (b), (c) represents the second ranked (variance = 26.5)
showing texture on the water surface, next to its artificially blurred counterpart (d), (e) is the ninth
ranked (variance = 154) showing water and land, next to its artificially blurred counterpart (f) and
finally (g) is the 10th ranked (variance = 161) showing the smooth ground surface but more texture in
the trees, next to its artificially blurred counterpart (h).

4. Discussion and Conclusions

Flying drones in remote locations poses a unique set of challenges for successful
image collection, particularly locations without internet connectivity. For many remote
locations, the uploading of imagery to a cloud or server for orthomosaic production is
not possible. Pilots therefore risk returning from the field only to find their imagery



Drones 2022, 6, 395 6 of 8

was not successfully or entirely collected. Our methods provide a completely offline,
open source and free solution for the checking of drone imagery while in the field, that
works for most drone brands, models and flight mission software, preventing missed data
collection opportunities.

The collection of suitable imagery for the creation of a mosaic is dependant on many factors,
such as height, speed and most importantly, transect overlap. This work does not intend to
describe ideal drone survey techniques which have been described elsewhere [29–31], but rather
to find any mishaps in the collection of the imagery that may have occurred outside of the users
control, and provide the opportunity for repeated data collection when necessary. Our method
provides a peace of mind check up on the imagery, and can guide a user as to whether they will
have a complete and useable dataset.

It is important to note that a complete dataset, that plots with even spaces between
images, and covers the entire area of interest, will still not produce a successful orthomosaic
if the overlap between transects is not sufficient. Importantly, “sufficient” overlap is project
dependant, and will depend greatly on camera and flight statistics, research goals and image
background [32]. Further, a complete dataset with sufficient overlap can be useless if each
image collected is highly blurred, too light or dark, or the camera gimbal is not correctly
calibrated and orientated [17]. Visual inspection of individual images will quickly identify
such problems [33], and our code can help to prioritise images that might need attention
due to blurring. Investigating images by rank of lowest variance is more time efficient than
randomly checking images, which may be unlikely to chance upon potential blur.

Similar industry-specific advances in the processing of drone imagery are arising, such
as the repeated temporal alignment of agricultural plots to explore plant development [34]
and the development of end to end software packages with multi-sensor functions [35].
Such works highlight the constant improvements in not only drone technology but pre-and
post-processing software, which will continue to facilitate the use of drones in more and
more industries.

Within this work, we provide two example datasets to highlight to a user the vi-
sual differences between a successful and unsuccessful flight mission, and resultant
orthmosaics (https://figshare.com/articles/media/Complete_and_Incomplete_Image_
Collections/20479215, accessed on 3 November 2022). The “complete” dataset produced
the best orthomosaic (Figure 3), and any errors in the orthomosaic produced from the
“incomplete” dataset (Figure 4) are due to the missing images, as all other processing
options remained the same. The image blur quantification and ranking returned crisp
images of smooth surfaces (Figure 5), so is not a concern for production of an orthomosaic
from this dataset. The code was effective at finding the artificially blurred images, proving
its usefulness on other users’ datasets.

While our code does require the movement of images from the drone to a laptop
computer—the benefit of this work is that it is applicable to most brands and models of
drones, controllers, flight mission software, photogrammetry software, storage medium or
computer. It requires only a few minutes to extract the exif data (depending on the number
of images) using exifr [26], making it suitable for checking in the field. The few cases where
this piece of code will not work however, is when exif data are not saved within the images
collected, but are rather saved in an external image geolocation text file.

We have found that the time checking data quality immediately after the mission is
time well spent. A particularly useful application of this code is when an area of interest is
to be estimated in the field. Many ecological applications require the in-field determination
of a boundary, such as covering the extent of bird colonies which have regularly changing
boundaries [11,36].

Future improvements on this work could include automated detection for image
brightness boundaries. Such work would be largely project specific and dependant on
the area and object of interest. For example, when working with a dark coloured species
on a dark background such as water it might be beneficial to have lower limits on image
brightness. The inverse of this scenario could be counting white birds on sand or ice [37],

https://figshare.com/articles/media/Complete_and_Incomplete_Image_Collections/20479215
https://figshare.com/articles/media/Complete_and_Incomplete_Image_Collections/20479215
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where over-exposure is more likely to be an issue, and upper limits on brightness could
be specified. Further, automated detection of missing images is a potential addition to
the code. Such work would require distance calculations between neighbouring image
locations, but these could be elevated by edge photographs which have no neighbouring
image. Such edge images could be removed from the calculations when working with
square or rectangular flight missions, but irregular areas (such as those often covered in
ecological surveys) would complicate the identification of “edge” images.

The successful creation of orthomosaics is important for the monitoring and analysis
of ecological trends [38]. This simple in-field quality assurance check of collected drone
imagery can help to ensure successful mosaic creation, contributing to the success of
research projects, and delivery on ecological contracts.
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