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Abstract: A low-cost, yet accurate approach for stockpile volume estimation within confined storage
spaces is presented. The novel approach relies on actuating a single-point light detecting and ranging
(1D LiDAR) sensor using a micro servo motor onboard a drone. The collected LiDAR ranges are
converted to a point cloud that allows the reconstruction of 3D stockpiles, hence calculating the
volume under the reconstructed surface. The proposed approach was assessed via simulations of a
wide range of mission operating conditions while mapping two different stockpile shapes within the
Webots robotic simulator. The influences from modulating the drone flight trajectory, servo motion
waveform, flight speed, and yawing speed on the mapping performance were all investigated. For
simple rectangular trajectories, it was found that having longer trajectories that are adjacent to the
storage walls provides best reconstruction results with reasonable energy consumption. On the
other hand, for short rectangular trajectories within the storage middle space, the yawing speed at
corners must be decreased to ensure good reconstruction quality, although this can lead to relatively
high energy consumption. Comparing the volumetric error values, the average error from the
proposed 1D LiDAR system, when operating at 6◦·s−1 maximum yawing speed at the corners, was
0.8 ± 1.1%, as opposed to 1.8± 1.7%, and 0.9± 1.0% from the 2D and 3D LiDAR options, respectively.
Moreover, compared to 2D and 3D LiDARs, the proposed system requires less scanning speed for
data acquisition, is much lighter, and allows a substantial reduction in cost.

Keywords: drones; 1D LiDAR; stockpile volume estimation; confined space; aerial mapping

1. Introduction

Stockpile storages are an essential element of any manufacturing plant to enable
its continuous operation but are one of the most challenging confined spaces for robotic
inspection. In fact, such spaces typically suffer from poor lighting and visibility conditions,
lack of global positioning, uneven and slippery terrains, and sensor interference [1,2].
Missions with drones have matured in the last few decades enabling significant advantages
over other mobile robotic platforms in tasks such as underground mine inspections [3],
search and rescue missions [4], and 3D map reconstructions [5]. In particular, employing
drones has become a more effective solution for missions within geometrically constrained
environments, i.e., confined spaces. As such, their deployment for stockpile volume
estimation missions within confined storage spaces are expected to enable more efficient
and safer outcomes when compared to current field survey procedures. In fact, the “drones”
solution becomes very appealing when considering the drawbacks of current field survey
procedures including inaccurate volume estimates, time consumption, and exposure of
surveying crews to hazardous conditions, especially when measurements are taken over
unstable stockpiles or in dark and dusty environments [6,7].

Drones or, generally, unmanned air vehicles (UAVs) vary substantially in size, control
approach, and configuration. Size-wise, drones have been developed at a wide range of
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scales, including from drones at the size of the Global Hawk, passing by mini-UAV systems
(e.g., [8–10]), to micro air vehicle developments (e.g., [11–13]), and, most recently, the
so-called nano and pico air vehicles (e.g., [14–17]). Drones have also been ideal platforms
for demonstrating novel control approaches that are hard to test on manned air vehicles,
such as morphing [18–20], fluidic control [21–24], and even using novel control allocation
methods via conventional control surfaces [25–27]. Configuration-wise, Hassanalian and
Abdelkefi [28] categorized drones in terms of their mission capability into HTOL (hori-
zontal take-off and landing), VTOL (vertical take-off and landing), hybrid models (such
as tilt-wing, tilt-rotor, tilt-body, and ducted fan configurations), helicopter, heli-wing, and
unconventional types. Adding to this, the development of bioinspired flapping wing config-
urations has also attracted tremendous attention in the last two decades [29–32]. That said,
Shahmoradi et al. [33] illustrated that fixed-wing and rotary-wing drone configurations are
the most common within research and commercial applications for 3D mapping missions.
In fact, fixed-wing drones, classified within the HTOL category, are the favourite option for
surveying large areas in short periods of time. On the other hand, rotary-wing (particularly
multirotor) drones, classified within the VTOL category, offer the ability to hover as well as
fly in all directions, making them ideal for indoor missions.

Aerial surveying and mapping missions have commonly used photogrammetry or
LiDAR sensors [34–36] within a wide range of applications, such as forestry [37], agricul-
ture [38], and geoengineering [39]. Basically, in photogrammetry, 3D models are created
based on the large amounts of captured 2D images [40], whereas LiDAR sensors measure
distances using laser pulses to objects [41,42]. Clearly, aerial missions can deliver advan-
tages to mapping applications, and in what follows, the focus of the discussion will be on
studies that have used drones to map and estimate the volume of stockpiles, starting with
studies that demonstrated such application in outdoor areas [43–46]. Ajayi and Ajulo [43]
estimated a stockpile volume using both ground terrestrial laser scanning (TLS) and drone
photogrammetry approaches. Their results showed that the percentage difference between
the two methods to the actual volume was 2.94% and −2.31%, respectively. While the abso-
lute error of both approaches was close, drone photogrammetry was more time efficient
compared to TLS. A similar study by Son et al. [44] also compared TLS and drone pho-
togrammetry for estimating the volume of waste stockpiles. The waste volume computed
using the TLS approach was 41,226 m3, whereas drone photogrammetry led to volumes
ranging between 41,256 m3 to 43,042 m3, i.e., 0.1% to 4.4% more volume compared to the
TLS method. That said, the TLS approach required placing ground control points (GCPs)
at the waste heights, which is usually a difficult task that can be unsafe at times. Rohizan
et al. [45] estimated the volume of a truncated cone stockpile using drone photogrammetry
and compared it to a “conventional” method. The conventional method required manual
measurements of the dimensions of the truncated cone stockpile, including the perimeters
of the base and top and the length of the slant. Their results showed a 2.5% difference
between the two methods. As a final example, Kaamin et al. [46] demonstrated the use
of drones for image acquisition of the volumetric change of a stockpile at a landfill over
a two-month duration. However, an assessment of the accuracy of such estimation was
not possible due to the absence of information on the actual volume of the landfill. While
the studies discussed above confirmed the feasibility of deploying drones for stockpile
volume estimation missions, all of the flight missions were conducted outdoors in open
areas. Notably, when stockpiles are placed in dark and confined spaces, photogrammetry
becomes infeasible. This is besides the additional challenges introduced to the mission
due to operation in confined spaces, including drone localization [47], navigation within
GPS-denied environments [48], obstacle avoidance [49], and coverage path planning for
unknown environments [50].

Several studies have demonstrated the use of drones for indoor missions, such as
for 3D mapping of gas distribution [51], sewer systems inspection [52], fire and smoke
detection [53], and underground mines inspection and mapping [3,54]. For a comprehen-
sive discussion of such aerial missions within confined spaces, the reader is referred to
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the work by Alsayed et al. [1]. Despite the several demonstrations of the use of drones
for different applications within confined spaces, their use for indoor stockpile volume
estimation missions is relatively very limited. In fact, in a previous study [1], the feasibility
of such missions was demonstrated and LiDAR sensors were shown to be the most ade-
quate choice. In May 2022, a company named “Flyability”, specialised in aerial confined
spaces inspection, announced their new generation of drones capable of mapping stockpiles
within dusty and dark confined spaces. This capability is mainly because of the upgrade of
the drone platform with a 3D LiDAR scanner [55]. However, the new platform has lower
flight endurance, compared to their previous platform, due to the extra weight and the data
processing requirements of the newly added 3D LiDAR. Notably, there have also been some
non-aerial approaches to stockpile volume estimation within confined spaces. For example,
Manish et al. [56] presented a mapping system called stockpile monitoring and reporting
technology (SMART) for indoor applications. The system consisted of two 3D LiDAR
sensors and one RGB camera mounted on the same extended tripod. A stockpile volume
was estimated with 1% volumetric error when compared to a reference volume estimated
from TLS. However, this approach required manually moving and rotating the tripod into
several locations around the stockpile. Another example is the scanning system proposed
by Xu et al. [57] who used two 2D LiDAR scanners and a range finder sliding on a rail
mounted at the top of the storage space. The system showed less than 1% volumetric error
when compared to results from a Geo-SLAM scanner. However, its drawbacks include
being expensive in terms of infrastructure costs and the limitation of its deployment to a
single storage space, as a new system will be needed for every new stockpile storage space.

It is evident, from the previous examples, that the multi-dimensional laser scanning
technology (including LiDAR technology) is the most common surveying and mapping
tool used within aerial missions in confined spaces. In fact, LiDAR sensors are better at
penetrating smoke, darkness, and dust than visible light sensors such as cameras [58–60].
3D LiDARs are the most demonstrated sensors within 3D scanning missions, including in-
door stockpile volume estimation [56], terrain surveying [61], plant volume prediction [62],
documentation of historical monuments [63], and automatic driving [64]. However, 3D
LiDARs are generally more expensive and heavier compared to their 1D and 2D counter-
parts. This motivated several studies to investigate using cheaper and lighter 2D LiDAR
options to generate reconstructed 3D maps, e.g., [65–72]. That said, and while being able
to provide accurate estimates, 2D LiDARs still remain much more expensive and heavier
when compared to 1D LiDARs.

The motivation behind this work is to better exploit 1D LiDARs and enhance the
accuracy of their 3D reconstructed maps to similar levels of that achieved by 2D/3D
LiDARs, while staying cost competitive. We propose a simple, yet effective approach to
achieve our objective through actuating a single-point LiDAR (1D LiDAR) fitted on a small
drone in an oscillatory motion, enabling it to capture more data points, hence improving
the reconstructed 3D maps. The approach is demonstrated through stockpile volume
estimation aerial drone missions within fully confined storage spaces. The proposed
solution was evaluated within the Webots robot simulation toolset. The impact of changing
the operating conditions on the mapping and volume reconstruction quality was thoroughly
investigated, and results obtained using the proposed actuated 1D LiDAR were compared
to those obtained from 2D/3D LiDAR scanners. We show that, for applications (such
as stockpiles reconstruction, underground mines draft mapping, and greenhouse plant
growth detecting) that need strict cost control and involve mapping only, rather than
simultaneous localization and mapping (SLAM) [73], the proposed actuated 1D LiDAR is a
convenient solution. The rest of the paper is organized as follows: In Section 2, the models
needed for reconstruction are detailed, including a description of the proposed system,
waveforms adopted for actuation, point cloud reconstruction, and a proposed metric to
assess the reconstruction quality. Section 3 describes the simulation setup, explaining the
drone platform and control system, the desired trajectories, and simulation operational
parameters. Comprehensive assessments and discussions of the simulation results are
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presented in Section 4, and the concluding remarks and future work are finally presented
in Section 5.

2. Reconstruction Modelling
2.1. System Overview

A single-point LiDAR sensor, or a laser range finder, operates based on the time-of-
flight principle. Briefly, a narrow 1D laser beam of an appropriate wavelength is shot. The
laser beam, then, hits an object in the scene and returns to the sensor. Knowing the time
it takes for the beam to return, combined with the speed of light in the medium, range
measurements can be obtained. Our proposed solution to enhance the reconstruction of 3D
maps from a 1D LiDAR sensor is to actuate it about one axis using a micro servo motor
fitted on a small drone, as illustrated in Figure 1. The servo motor shaft oscillates within
±90◦ in a plane perpendicular to the drone’s forward motion. Of note is that, in what
follows, the word “drone” will be used to refer to a “quadcopter” air vehicle.
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Figure 1. A schematic illustration of the proposed actuated 1D LiDAR approach for irregular stockpile
scanning and volume estimation.

2.2. Servo Motor Motion Profile

Assuming the servo motor oscillates at its maximum speed through a rectangular
waveform, the corresponding angle positions will thus follow a triangular waveform,
as shown in Figure 2. However, this arrangement may not be practical as the motor, in
reality, cannot change its speed direction in an instantaneous fashion when it reaches the
maximum angular positions at (+π/2) and (−π/2). As such, to generate more realistic
waveforms for the servo motor motion, the following waveform variation was employed
for simulations [74,75]:

γ(t) =
γmax

sin−1 Cγ

(
sin−1[Cγ cos(2π f t)]

)
, (1)

.
γ(t) =

γmax

sin−1 Cγ

 −2πCγ sin(2π f t)√
1− C2

γ cos2(2π f t)

, (2)

where γ and
.
γ are the servo motor instantaneous angle and angular velocity, respectively;

γmax is the angle amplitude set here to π/2; Cγ is a parameter that controls the shape of the
waveform and can vary between zero (sinusoidal waveform) to unity (triangular waveform
for angle); f is the frequency; and t is the time. Figure 2 shows how the proposed variation
provides a suitable means to control the shape of the waveform for both angular velocity
and position.
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Figure 2. Angular velocity and motion profiles of the servo motor using rectangular, semi-rectangular,
and sinusoidal speed inputs. Of note is that the semi-rectangular angular velocity variation and its
corresponding semi-triangular motion waveform of the servo motor are generated using a control
parameter value of Cγ = 0.95.

2.3. 3D Point Cloud Reconstruction

The collected ranges from the 1D LiDAR along the flight path are converted to the
ground coordinate frame, G, as shown in Figure 3. This process involves defining the
LiDAR ranges, r, in the 3D coordinates system of the LiDAR coordinate frame, L, using the
servo motor angles, γ, as follows:

PL =

xL
yL
zL

 = r

 cos(γ)
0

− sin(γ)

, (3)

where PL defines a 3D point relative to the coordinate frame L.
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Next, a point PL is converted to its corresponding point PG in the coordinate frame G
to generate the 3D point cloud reconstruction, as follows:

PG = RG
L PL + TG

L (4)

where the collected points in PG represents the 3D reconstructed map of the scanned
environment; and RG

L and TG
L are the rotation matrix and translation vector from coordinate

frame L to coordinate frame G, respectively. Here, the rotation matrix is obtained as
follows:

RG
L =

1 0 0
0 cos(ψL) − sin(ψL)
0 sin(ψL) cos(ψL)

 cos(θL) 0 sin(θL)
0 1 0

− sin(θL) 0 cos(θL)

cos(φL) − sin(φL) 0
sin(φL) cos(φL) 0

1 1 1

, (5)
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where φL, θL, and ψL are the LiDAR orientations around its xL, yL, and zL axes, respectively.
On the other hand, the translation vector is written as:

TG
L =

xG
yG
zG

 (6)

where xG, yG, and zG are the LiDAR 3D coordinates in the coordinate frame G.

2.4. Evaluating the Stockpile Volume

The volume of the scanned environment (stockpile in this study) is estimated by
calculating the volume under the generated reconstructed 3D map. First, a 3D surface is
fitted over PG, i.e., the points that are defined in the coordinate frame G. Because of the
simplicity of the actuated 1D LiDAR concept, the reconstructed 3D map of the stockpile is
expected to be of low density. Hence, the MATLAB fit function [76] was used with a cubic
interpolation scheme to represent the fitted surface. Then, a uniform 2D grid was defined
as Gxy across the fitted surface. The height above each Gxy was defined as Hz, completing
the generation of a 3D grid. Therefore, the total volume of the stockpile was evaluated as
the sum of the 3D grids as follows:

Vevaluated = ∑ HzGxy. (7)

The percentage volumetric error, Ve, between the evaluated and actual volumes was then
obtained as follows:

Ve =
|Vevaluated −Vactual |

Vactual
× 100%. (8)

2.5. Reconstruction Ratio

As a further means to evaluate the quality of reconstruction for the mapping missions,
here, a metric so-called projected reconstrued area ratio, Ra, is proposed. This metric is defined
as the ratio between the projected area of the generated surface, ap, to the total area to be
mapped, At:

Ra =
ap

At
. (9)

As such, Ra provides a loose indication of whether the stockpile was partially or fully
reconstructed. Of note is that because the surface of a stockpile is generated across the
collected points, the quality of reconstruction of that stockpile is limited to how these
collected points are distributed within the total area being mapped. For instance, the
stockpile example shown in Figure 4 is partially reconstructed, and the white areas (non-
reconstructed areas) are because no points were collected from these regions.
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3. Simulation Setup
3.1. Simulation Environment and Stockpiles Design

The proposed actuated 1D LiDAR system was used for stockpile aerial scanning
within a fully confined storage space while onboard a quadcopter. The simulation model to
replicate actual missions was developed using the open-source simulation software Webots
(2021a) (Cyberbotics Ltd., Lausanne, Switzerland) [77]. The simulation environment has
three main parts: (1) the robotic platform, (2) the storage environment, and (3) the stockpile.
The robotic platform (drone) will be discussed in detail in Section 3.2. The storage was
realized within the simulation environment using the provided tools within the Webots
libraries. The stockpile was then incorporated as an STL file. Of note is that the 3D model
of the stockpile was generated by setting random heights within a range between one
and seven meters. The locations of the points used to allocate these random heights were
distributed uniformly within a 2D plan with the same dimensions as the storage space,
see Figure 5a. Then, a 3D surface was fitted over the points, as shown in Figure 5b, and
the actual volume under the surface was evaluated in a similar way to that described
in Section 2.4. The 3D surface was then converted into an STL 3D model file using the
function provided by [78], as shown in Figure 5c. Finally, the 3D model of the stockpile
was implemented in the simulation environment, as shown in Figure 5d,e.
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Figure 5. (a) Uniformly distributed points within the storage space used for stockpile modelling.
(b) The 3D surface is generated by fitting a surface over the predefined points. (c) The STL 3D model
file developed from (b). (d) The simulation environment showing the storage and the “first” stockpile
originated from the STL file in (c); the front wall is removed to show the inside of the storage. (e) The
simulation environment with the “second” stockpile that has more materials near the walls.

In this work, two stockpiles were investigated. The first was developed using random
heights while setting the heights of the points along the edges/walls to zero. The second
stockpile had no constraints; hence all of its points were allowed random heights. As
a result, the first stockpile had less material volume near the walls, Figure 5d, whereas
the second had more material volume by the walls, Figure 5e. This was decided so that
the effectiveness of the proposed system can be fairly assessed. Of note is that, typically,
most volume estimation errors are due to the regions close to walls where it is harder to
reconstruct the 3D map as these regions can only be scanned from one side. While this can
be overcome by flying very close to the walls, it is clearly unsafe to conduct such flight
mission scenarios with a drone. In contrast, the areas in the middle of stockpiles are easier
to map as they can be scanned from several directions.
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3.2. Robotic Platform

A quadcopter drone from the Webots in-build libraries was used for the mission. The
drone in the simulation is programmed with an attitude stability control system using the
data from the onboard inertial measurement unit (IMU) and gyro. The objective of the
control system is to provide flight stability via changing the speeds of the four motors using
gains to achieve the required altitude, heading, pitching, and rolling references. There are
four user inputs: reference altitude, zr, rolling gain, φG, pitching gain, θG, and heading gain,
ψG. While a user can fly the drone using the provided keyboard program, in this paper,
this was replaced with the autonomous control system to follow the desired trajectory and
speed. This autonomous control system is thus deemed necessary to allow convenient
controllability and, hence, repeatability in implementing the trajectories of the conducted
tests. Robots within Webots can be controlled with controllers written in C/C++, Java,
Python, or MATLAB. In this work, the quadcopter controller was written in Python.

The proposed actuated 1D LiDAR system was attached to the drone while employing
a servo motor and a 1D LiDAR sensor from the simulation libraries. The servo motor is
a rotational motor with a position sensor. The motor properties, such as its maximum
velocity and minimum and maximum positions, can be adjusted to achieve the motion
profiles described in Section 2.2.

The overall block diagram of the drone control system is illustrated in Figure 6. The
drone positions (x, y, z), orientations (φ, θ, ψ), and angular speeds (

.
φ,

.
θ,

.
ψ) are obtained

directly from the simulation. The objective of the altitude controller was to minimize the
error in the altitude, z, by satisfying the following condition:

lim
t→∞
‖ez‖ = ‖zr − z‖ = 0, (10)

where ez is the altitude tracking error and zr is the reference altitude input. To achieve this
goal, a proportional–integral–derivative (PID) controller was applied to obtain the altitude
gain, zG, as follows:

zG = kPeZ + kI

t∫
0

eZdt + kD
deZ(t)

dt
+ B, (11)

where kP, kI , and kD are the proportional, integral, and derivative tuning parameters gains,
respectively. Moreover, t is the time, and B is the bias component that provides a steady
offset.
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The objective of the heading controller was to minimize the error in the heading yaw
angle, ψ, by satisfying the following condition:

lim
t→∞
‖eψ‖ = ‖ψr − ψ‖ = 0, (12)
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where eψ is the heading angle tracking error and ψr is the required angle to the reference
trajectory waypoint (xr, yr). The angle ψr was estimated as follows:

ψr =



tan−1
(

yr − y
xr − x

)
+ π, ((xr − x) < 0)

tan−1
(

yr − y
xr − x

)
+ 2π, ((xr − x) > 0) ∧ ((yr − y) < 0)

tan−1
(

yr − y
xr − x

)
, otherwise

(13)

where the range of ψr is defined as 0◦ ≤ ψr < 360◦. Equation (12) was achieved with
a proportional controller to feed the heading gain, ψG, to the drone attitude control, as
follows:

ψG = kPeψ, −1 ≤ ψG ≤ 1. (14)

where kP is the tuning gain.
The drone speed, V, was controlled via the pitching gain, θG. To obtain the relationship

between the input θG and the output V, a flight test within the simulation was conducted
with different θG values. To ensure smooth yawing, the speed controller should consider
both eψ and the normal distance, D, to the next reference trajectory waypoint (xr, yr). In
other words, θG was cast to be directly proportional to D and inversely proportional to eψ,
allowing the definition of the following relationship:

θG = k
D
eψ

, 0 ≤ θG ≤ θG,max (15)

where k is a tuning coefficient, and θG,max is the pitching gain that is required to reach the
desired flight speed, V. The value of D was calculated as follows:

D =

√
(xr − x)2 + (yr − y)2. (16)

There was no requirement for drone rolling. Therefore, the rolling gain, φG, was set
to zero.

3.3. Desired Trajectory Waypoints

In the current study, the storage spaces were depicted as rectangular. While this was
decided to allow more simplicity to the investigation, the rectangular shape is indeed
the most common configuration in most industrial plants. Given the storage planform
rectangular shape, it was decided that the desired drone trajectory for the mapping mission
would also follow a rectangular shape. As such, the trajectory was determined by four
waypoints distributed close to the storage corners, as shown in Figure 7. The parameters L
and W in Figure 7 are the storage length and width, respectively. Moreover, the parameters
TL and TW were defined as follows:

TL = Ptraj L, (17)

TW = Ptraj W, (18)

where Ptraj is defined as a percentage that defines how much the trajectory path is offset
from the walls. This definition was introduced to enable a preliminary analysis of the best
allocations of waypoints within a storage for the mission purpose under consideration, as
will be shown later in the results section. Of note is that, depending on the specifications of
the used LiDAR scanner, more allocation points may be needed to adequately define the
trajectory. This can be the case when the storage dimensions are greater than double the
LiDAR range. In such cases, adding more allocation trajectory points allows prevention of
un-scanned areas in the middle regions.
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3.4. Simulation Parameters

Table 1 shows the considered simulation parameters. The desired flight speed, V, was
set to a low speed, following the recommendation in [79] for risky and confined space
environments. Of note is that the flight speed was achieved via the pitching gain, θG,max, as
described in Section 3.2. Figure 8 shows the relationship between the recorded flight speed,
V, versus a range of θG,max from 0 to 5. This relationship was obtained from primary flight
tests within the simulation, designed to collect data correlating speed to gain values.

Table 1. Simulation parameters were used for this work.

Parameter Symbols Value

Actual stockpile volumes for stockpiles 1 and 2 Vactual {7193.5, 8763.6}m3

Storage length L 60 m
Storage width W 40 m
Desired drone speed V 1 m·s−1

Desired flight altitude zr 12 m
Trajectory waypoints allocation percentages Ptraj {5, 10, 15, 20, 25, 30}%
Servo motor wave frequency (for Cγ = 0.95 ) f 0.67 Hz
Desired maximum angular servo motor speed

.
γmax 5 rad·s−1

1D LiDAR range r 40 m
1D LiDAR rate - 500 Hz
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Figure 8. Relationship between drone flight speed, V, and maximum pitching gain, θG,max. From the
fitted line, the desired drone speed (V = 1 m·s−1) can be reached when θG,max = 2.52.

The servo motor waveform frequency, f , was obtained from Equation (2) after setting
the desired maximum angular speed to 5 rad·s−1. This servo motor speed was decided
for being a common operating speed, equivalent to around 0.2 s/60◦ [80]. A generic
servo motor was selected from the simulator library whose maximum absolute angular
speeds were set according to the desired parameters. Similarly, the 1D LiDAR implemented
was from the simulator library and fitted to the servo motor. The LiDAR range and
rate were taken based on the common 1D LiDAR sensor: LIDAR-Lite v3 [81]. Finally,
the dimensions of the storage space considered in the mapping missions were based on
available information on typical storage sizes within industrial plants [82].
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It is worth mentioning that the proposed actuated 1D LiDAR system suffers from
having a relatively slow oscillation speed due to limitations from using a low-cost servo
motor. This makes the range data collected by the LiDAR dependant on its initial angular
position at the start of the mission, and this can influence the quality of reconstruction
achieved. To compensate for this effect, each test was repeated with 20 different initial
angular positions for the servo motor, as demonstrated in Figure 9. Then, the mean
volumetric error, Ve, and standard deviation from the 20 tests were evaluated. Of note is
that the 20 initial angular positions are split into 10 positions while rotating in the clockwise
direction and the same 10 positions while rotating in the anti-clockwise direction. This is
to account for the fact that the LiDAR ranges can also differ depending on the rotation
direction.
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Figure 9. Illustration of the different initial angular positions for the 1D LiDAR fitted on top of the
oscillating servo motor.

4. Results and Discussion
4.1. Baseline Testcase

The simulations considered as a baseline testcase in this work are based on the values
documented in Table 1 and the semi-triangular waveform servo motion profile described
in Section 2.2. Here, the system performance was measured based on the volumetric error,
Ve, between the evaluated stockpile volume from a mapping mission to the actual volume,
Equation (8). Moreover, the two different stockpiles, one with less volume by the walls
and the second with more volume by the walls, shown in Figure 5d,e, respectively, were
considered for investigation. The 2D grid size, Gxy, in Equation (7) was set to 0.1 m2. This
was decided after carrying out a sensitivity analysis showing that using smaller grids than
this size has no effect on the accuracy of the obtained results. Figure 10a shows an example
of the point cloud, PG, obtained from using the proposed actuated 1D LiDAR scanning for
stockpile 1 at Ptraj = 20%; whereas, Figure 10b shows the fitted surface across the point
cloud in Figure 10a. Values of the mean stockpile volumetric error and standard deviation
(due to servo motor initial positions) versus the trajectory waypoints allocation percentages
are shown in Figure 11. It is worth mentioning that all simulations conducted did not
consider the effect of noise from the sensors, which can lead to additional uncertainty in
the estimated volumetric error results. This is based on an assessment for the effect of noise,
presented in Appendix A, which showed that such effect can be argued to be minor.
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Figure 10. An example baseline simulation result for scanning stockpile 1 at Ptraj = 20%. (a) The
point cloud (PG) generated from the proposed scanning system. (b) The fitted surface across PG, used
to evaluate the stockpile volume. The detected walls were removed by reducing the scanned region
along the x and y axes until the walls disappeared. The colours encode height from the ground.
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Figure 11. Stockpile mean volumetric error, Ve, of both stockpiles versus the trajectory waypoints
allocation percentage, Ptraj, under baseline simulation conditions. The solid lines represent the mean
volumetric error, and the shaded regions represent the standard deviation, due to testing at different
initial positions of the servo motor.

Generally, Ve increases with Ptraj mainly because as Ptraj increases, the total flight
distance decreases, as shown in Figure 12. This reduction in the flight distance can lead to
blind spots, i.e., spots where the LiDAR cannot capture sufficient data. Figure 12 shows the
projected scans on the XY-plane, where it can be seen from Figure 12c,d that blind spots
(white regions in the figure) are more significant at maximum Ptraj and are mostly at the
corners (recall the LiDAR scanning plane is perpendicular to the flight line). The reduction
in the scanned area (or presence of more blind spots) can be assessed using the proposed
projected reconstructed area ratio, Ra, defined in Section 2.5. As Ptraj increases from 5% to
30%, the mean value of Ra reduces from ≈100% to 89% for stockpile 1 and from ≈100% to
95% for stockpile 2.

The mean volumetric error values from scanning both stockpiles are almost zero when
using the trajectory that is closest to the walls, i.e., Ptraj = 5%. The Ve values from scanning
stockpile 1 (with less material near the walls) then increase, but at a lower rate compared to
those of stockpile 2 till Ptraj reaches 20%. After Ptraj = 20%, the value of Ve for stockpile 1
starts to increase at a rate that is higher than that of stockpile 2 reaching a value of 6.1% as
Ptraj reaches 30%. This steeper change is because the material by the walls of stockpile 1
have low height and, hence, become more prone to be in a shadow region as Ptraj increases
significantly. On the other hand, the rate of increase in Ve for stockpile 2 (with more
material near the walls) remains consistent for the whole Ptraj values, and Ve reaches 4.3%
as Ptraj reaches 30%.

Of note is that the influence of the initial position of the servo motor becomes more
noticeable at higher Ptraj values, as can be seen from the larger standard deviation values
and, hence, the larger shaded areas at the higher Ptraj cases in Figure 11. This is mainly
because fewer data will be collected from the storage corners for such Ptraj cases (as shown
in Figure 12c,d), and, hence, changing the initial position of the servo motor will have a
more noticeable influence on the amount of collected data from these regions. As a result,
the mean volumetric error was estimated with almost zero uncertainty for Ptraj = 5%, but
with ±0.5% and ±0.4% uncertainties for Ptraj = 30%, for stockpiles 1 and 2, respectively.
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Figure 12. The projected scan on the XY-plane for stockpiles 1 and 2. (a,b) Results for the minimum
tested Ptraj value of 5% for stockpile 1 and 2, respectively, and (c,d) results for the maximum tested
Ptraj value of 30%. The scattered data is the point cloud, PG, and the colors encode height from the
ground. The black line is the recorded flight trajectory.

4.2. Influence of Varying Operational Parameters

In this section, we assess the influence of varying the operational parameters stated in
Table 1. The main aim is to identify whether a considerable improvement in the mapping
performance can be achieved at other operational conditions. We start with investigating
the effect of the oscillation motion waveform of the servo motor. The motion waveform in
the previous demonstrations was the semi-triangular waveform shown in Figure 2. Here,
we further test the system performance when using a sinusoidal waveform, i.e., when Cγ

in Equation (1) approaches zero. The frequency, f , of the sinusoidal wave was adjusted
to 0.5 Hz to enable the same desired maximum angular speed of the semi-triangular
waveform. The simulation test results of scanning both stockpiles compared to the baseline
testcase of Section 4.1 are shown in Figure 13. It is evident that when Ptraj ranges from 5%
to 20%, both waveforms offer similar performance. As for the higher Ptraj cases of 25% and
30%, the values of Ve from the semi-triangular waveform are slightly lower by an average
of 0.3%. This is mainly because of the higher frequency of the semi-triangular waveform
compared to the sinusoidal waveform.
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Figure 13. Stockpile mean volumetric error, Ve, against the waypoints allocation percentage, Ptraj, for
different oscillation motion waveforms of the servo motor; (a) stockpile 1 and (b) stockpile 2.

In the baseline testcase simulations, the desired flight speed, V, was always set to
1.0 m·s−1, as shown in Table 1. Now, the influence of changing the flight speed is inves-
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tigated to assess how changing the time duration allowed for scanning along a given
trajectory would influence the reconstruction quality. Figure 14 shows the results of this
investigation where it is evident that flying at different speeds has no clear impact on
enhancing the volume error for both stockpiles. However, it must be stressed that fly-
ing indoors at relatively higher speeds, such as the 2 m·s−1 in this demonstration, is not
recommended from a flight safety perspective. On the other hand, when taking into ac-
count energy budget considerations, flying at a lower speed, such as the 0.5 m·s−1 in this
demonstration, leads to more energy consumption, as will be shown later in Section 4.3.
Hence, on balance, it seems that the baseline testcase flight speed of 1 m·s−1 is the most
convenient choice.
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Figure 14. Stockpile mean volumetric error, Ve, against the waypoints allocation percentage, Ptraj, for
different flight speeds. (a) Stockpile 1 and (b) stockpile 2.

A possible way to enhance the coverage of scanning and reduce blind spot areas,
particularly at corners, is by modifying the way the drone turns to a “two-step” turning
fashion. This two-step turning, as illustrated in Figure 15, is proposed so that instead
of turning to the next waypoint in one 90◦ step, the drone turns in two-steps each at
45◦. Figure 16 shows the volumetric error for the baseline testcase results and that from
adopting the two-step turning approach. Generally, the trajectory with the two-step turning
at the corners enhances the volumetric error values but with different impact on the two
stockpiles. For stockpile 1, the value of Ve was only marginally enhanced at the maximum
Ptraj case from 6.1% to 5.7%. However, for stockpile 2, the value of Ve improved for almost
all Ptraj cases, as the average value of Ve reduced from 1.6% to 0.9%, and the maximum
value for Ve reduced from 4.3% to 2.3% at the maximum Ptraj case.
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Figure 15. Illustration of flight trajectories with a single 90◦ turning angle and two 45◦ turning angles.
Of note is that, in this demonstration, the two-step turning started at a distance that is 10% of W
before the original waypoints.
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Figure 16. Stockpile mean volumetric error, Ve, against the waypoints allocation percentage, Ptraj, for
different turning approaches at the corners. (a) Stockpile 1 and (b) stockpile 2.

The previous demonstration of the two-step turning method showed that tuning
the flight trajectory/parameters near the corners can have a considerable influence on
the reconstruction quality. As such, to enhance reconstruction quality via reducing the
blind spot areas seen in Figure 12c,d, we also tested the effect of lowering the drone’s
maximum yawing speed,

.
ψmax. This was mainly decided to allow more scanning time for

the LiDAR at the corners. The maximum yawing speed from the recorded flight test data
of the previous tests was 30◦·s−1 based on default settings within the Webots simulator.
Here, the simulation tests were repeated with maximum yawing speeds of 17, 6, and
1◦·s−1, representing a good range of possible options and achieved through consistently
reducing the limit value of ψG and the gain value of kP in Equation (14). Figure 17
shows the results of this effect on the evaluated mean volumetric error. It is evident that a
significant improvement in both the mean and standard deviation values is achieved as the
yawing speed is lowered. In particular, when comparing the results from the maximum
yawing speed case of 1◦·s−1 to those of the baseline yawing speed for stockpile 1, a clear
enhancement is evident for the Ptraj = 25% and 30% cases, as Ve decreased from 2.6% and
6.1% to 1.1% and 2.2%, respectively. Results of scanning stockpile 2 show an even better
enhancement, as the influence of lowering the drone’s maximum yawing speed to 1◦·s−1

is evident through the whole cases of Ptraj, as Ve shows an almost flat trend, with the
maximum Ve value being reduced from 4.3% to 0.6%. These improved results are mainly
due to the ability to capture more data, particularly in the corner regions, allowing for
better reconstruction and less blind spots, as illustrated in Figure 18. That said, and despite
the huge improvement, this was achieved on the expense of having a significantly higher
energy consumption, as will be demonstrated in the next section.
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It should be noted that, for stockpile 1, effects of any enhancement are always only
evident at high Ptraj values. This is because at lower Ptraj values, the error values are already
excellent; hence, there is not big room for improvement. This is not the case for stockpile 2,
where enhancements enable improvements over a wider range of Ptraj values.
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Figure 18. The projected scan on the XY-plane for stockpiles 1 and 2. (a,b) Results for the baseline
testcase at a Ptraj, value of 30% for stockpile 1 and 2, respectively, and (c,d) results for the maximum
yawing speed case of 1◦·s−1 at a Ptraj value of 30%. The scattered data is the point cloud, PG, and the
colors encode height from the ground. The black line is the recorded flight trajectory.

4.3. Energy Consumption

The drone’s total energy consumption during a scanning mission for each test con-
ducted so far was also recorded. Here, the total energy consumption is used as an indication
of the cost of the mission. Of note is that the energy consumed here is for operating the
drone and does not include the energy for actuating the servo; however, servo power
is expected to be much lower anyway. Robots with motors running within the Webots
simulator have a battery feature that, when enabled, can provide an estimation of the
consumed energy. This consumed energy sums up the energy consumption from all motors
and is obtained by integrating the power consumption over time.

To enable an easy visual comparison, the change in total energy consumption, ∆Etotal ,
is presented with reference to the baseline testcase at a Ptraj value of 5% as follows:

∆Etotal =
Etestcase − Ebaseline|Ptraj=5%

Ebaseline|Ptraj=5%
× 100, (19)

where Etestcase is the energy consumption for a specific testcase. Results for this demonstra-
tion were plotted versus the trajectory waypoints allocation percentages, Ptraj, in Figure 19.

Several interesting insights can be extracted from Figure 19. First, and as expected,
the total energy consumption decreases with the increase in Ptraj as the flight path gets
shorter for the same given set of flight parameters. Second, the slope of the variation is
mainly influenced by the flight speed, with a steeper decrease for lower flight speeds and a
shallower decrease for higher flight speeds. Third, it is evident that reducing the flight speed
from V = 1 m·s−1 to V = 0.5 m·s−1 has an influential effect on ∆Etotal , almost doubling the
energy consumption, as the drone took longer times to complete the same tasks. However,
the highest energy consumption for the cases considered is for the case with the maximum
yawing speed of 1◦·s−1. Remarkably, a small sacrifice in the reconstruction quality via
adopting the maximum yawing speed case of 6◦·s−1 can make a huge difference in energy
consumption leading to a modest average increase in ∆Etotal by 22%, with respect to the
baseline case. For completeness, we also show in Figure 19 the energy consumption for
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other cases of flight speed, two-step turning, or other maximum yawing speeds; however,
these cases are not recommended either for safety considerations or due to their limited
enhancement of the reconstruction quality as discussed in the previous sections.
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Figure 19. The change in the drone’s total energy consumption, ∆Etotal , referenced to the baseline
testcase at a Ptraj value of 5%, versus the trajectory waypoints allocation percentage, Ptraj. In this
demonstration, one parameter is changed at a time.

4.4. Recommended Operational Parameters

In this section, we attempt to summarise the main outcomes from the previous assess-
ments in terms of identifying operational flight parameters that would lead to the most
convenient scanning results. For the rectangular trajectories considered in this study, it is
evident that flight trajectories that are closest to the walls lead to the best reconstruction
quality; however, these also lead to a higher energy consumption compared to trajectories
that are very close to the middle of the storage space. While these middle trajectories lead to
lower energy consumption, being shorter, they can lead to a considerable negative impact
on the reconstruction quality. On balance, it seems that a trajectory with Ptraj = 15–20%
provides a good compromise, where the volumetric error values remain very similar to
those obtained from trajectories with Ptraj = 5% but with around 16% reduction in energy
consumption.

If geometric constraints exist within the storage space and only trajectories that are
close to the middle space are allowed, then the most influential parameter to modulate
is the maximum yawing speed value at the corners. It was shown that lowering the
maximum yawing speed to 1◦·s−1 for the short trajectories leads to a significant reduction
of the volumetric error values. That said, this was achieved on the expense of energy
consumption. However, if energy consumption is a main constraint, then a sacrifice in the
maximum yawing speed to 6◦·s−1 has been shown to lead to average volumetric errors of
1% and 0.5% for stockpiles 1 and 2, respectively, while leading to an extra 22% in ∆Etotal ,
on average, compared to the baseline case.

To further demonstrate the reconstruction quality of the different cases of interest,
Figure 20 shows the mean projected reconstrued area ratio, Ra. It can be seen that adopting
a maximum yawing speed of 6◦·s−1 enhanced the Ra values at the maximum Ptraj from
88.6% to 92.1% and from 94.7% to 96.7% for stockpiles 1 and 2, respectively. Further
decrease in the maximum yawing speed to 1◦·s−1 led to Ra values at the maximum Ptraj of
94.7% and 97.7% for stockpiles 1 and 2, respectively.

It may be worth mentioning here that there are other ways to enhance the estimated
results without increasing the flight time and/or energy consumption, such as flying
at a higher altitude and/or increasing the servo motor speed. However, the maximum
allowable altitude can be limited by the geometric constraints of the confined space and/or
the allowable sensor range. Moreover, using a high speed and precise servo motor for
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actuation can lead to costs similar to a 2D LiDAR; hence, the whole approach becomes cost
ineffective.
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4.5. Comparison with 2D and 3D LiDAR Scanners

It is instructive to compare the performance of the proposed scanning approach to
that from more complex LiDAR sensors. As such, the volumes of the two stockpiles
considered in this study were estimated using the 2D LiDAR, Hokuyo UTM-30LX [83],
as well as using the 3D LiDAR, Velodyne Puck LITE [84], representing common choices
within the field of robotics and scanning [85–88]. In terms of the scanning speed, the
proposed actuated 1D LiDAR can read 100 points/s, whereas the 2D and 3D LiDARs can
read 43,200 points/s and ~300,000 points/s, respectively. This massive increase in scanning
speed, especially for the 3D LiDAR, inevitably leads to significantly more computational
requirements. In terms of cost, the proposed scanning solution (servo motor and the 1D
LiDAR) costs around $130, whereas the 2D and 3D LiDARs cost around $3500 and $6000,
respectively (cost figures based on 2022 prices). As for the system weight, the proposed
scanning solution (servo motor and the 1D LiDAR) weighs around 40 g, whereas the 2D
and 3D LiDARs weigh around 370 g and 830 g, respectively. Clearly, as the weight of the
payload increases, this will increase the drone size and/or reduce the maximum flight time,
hence, introducing more challenges to indoor inspection missions. All in all, it is clearly
evident that the proposed system is largely better from other 2D and 3D LiDAR scanners
as far as computational requirements, cost, and weight are concerned. It thus remains to
compare favourably in terms of the scanning accuracy to demonstrate the full effectiveness
of the proposed solution.

To compare the scanning accuracy of the different scanners, the two stockpiles were
scanned based on the same trajectory paths and baseline flight parameters. The point cloud
collected by the 2D and 3D LiDAR scanners was transformed into the ground coordinate
frame G, as shown in Figure 21. Clearly, it is evident that the 2D and 3D LiDAR scanners
provide denser point clouds compared to the proposed actuated 1D LiDAR (please refer
to the actuated 1D LiDAR point clouds shown in Figure 12a,c for the same stockpile and
flight trajectory paths).

The estimated volumetric error values of the actuated 1D LiDAR (including the 1
and 6◦·s−1 maximum yawing speed cases) compared to those from the 2D and 3D LiDAR
scanners are shown in Figure 22. Remarkably, the estimated volumetric error, Ve, using the
3D LiDAR, at lower Ptraj values, are greater than those from the actuated 1D LiDAR and
the 2D LiDAR cases. This is because of the enormous amount of collected data by the 3D
LiDAR that superficially led to an evaluated volume that is larger than the actual volume.
That said, this increase in collected data was beneficial at the higher Ptraj values, as the 3D
LiDAR scanner was able to show low volumetric error values. However, for stockpile 1 at
the maximum Ptraj value, the volumetric error from the 3D LiDAR was still as high as 4.0%
due to the unscanned areas (the white blind spot areas in Figure 21d). In other words, the
use of the most capable 3D sensor did not offer a clear advantage for scanning cases with
short trajectories and less material by the walls.
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Figure 21. Projected scan on the XY-plane for stockpile 1 at the minimum and the maximum tested
Ptraj values of 5% and 30% using (a,c) 2D LiDAR and (b,d) 3D LiDAR. The scattered data is the
point cloud, PG, and the colors encode height from the ground. The black line is the recorded flight
trajectory.
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Figure 22. The volumetric error values from the actuated 1D LiDAR system compared to those from
using 2D/3D LiDAR scanners for (a) stockpile 1 and (b) stockpile 2.

The volumetric error mean and standard deviation values for the two stockpiles
and for the different Ptraj cases from the actuated 1D LiDAR (1 and 6◦·s−1 maximum
yawing speed cases), 2D LiDAR, and 3D LiDAR are 0.4 ± 0.6%, 0.8 ± 1.1%, 1.8 ± 1.7%,
and 0.9 ± 1.0%, respectively. Regarding energy consumption, tests using the 2D and 3D
LiDARs led to 31% and 64% average increase in ∆Etotal compared to the actuated 1D LiDAR
baseline testcase, respectively, as illustrated in Figure 23. This is mainly due to the increased
payload weight of the 2D and 3D LiDAR scanners.

Table 2 provides a summary comparison for the performance of the different systems
investigated in this section. Considering the reconstruction quality (judged via the volu-
metric error and the projected reconstructed area ratio), it is evident that the proposed 1D
LiDAR system with the 1 and 6◦·s−1 maximum yawing speed settings is generally capable
of achieving better results compared to those obtained from 2D/3D LiDARs. In fact, the 2D
LiDAR results are the worst in this respect; however, it provides better energy consumption
figures compared to the 3D LiDAR case. That said, when adopting the 1◦·s−1 maximum
yawing speed in the proposed system, this leads to a much higher energy consumption
expense, compared to all other cases. As such, it seems that when operating the actuated 1D
LiDAR at maximum yawing speed setting around the 6◦·s−1 value, the best compromised
results for both reconstruction quality and energy consumption are obtained.
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Table 2. Performance comparison between the proposed actuated 1D LiDAR system against 2D and
3D LiDAR scanners. Values presented are averaged from the results of the six Ptraj cases considered.
∆E
∣∣
BL represents the average difference in ∆Etotal from the corresponding baseline case.

LiDAR
Configuration

Stockpile 1 Stockpile 2

Ve [%]
=
Ra [%] ∆E

∣∣
BL [%] Ve [%]

=
Ra [%] ∆E

∣∣
BL [%]

Actuated 1D LiDAR (Baseline) 1.6 96.6 0 1.6 97.6 0
Actuated 1D LiDAR (

.
ψmax = 6◦·s−1) 1.0 97.7 22 0.5 98.2 22

Actuated 1D LiDAR (
.
ψmax = 1◦·s−1) 0.7 98.3 195 0.2 98.6 195

2D LiDAR 1.5 96.0 31 2.0 97.1 31
3D LiDAR 1.1 98.4 64 0.6 98.9 64

5. Concluding Remarks and Future Work

This work presented a novel 3D mapping approach employing a drone-borne actuated
1D LiDAR that was demonstrated via the stockpile volume estimation application. An
actuated single-point LiDAR was fitted on a micro servo motor and attached to a drone.
The servo motor was oscillated in a plane perpendicular to the drone’s forward motion.
The LiDAR ranges were then transformed to the ground coordinate frame to obtain a
reconstructed 3D map of the stockpile, whose volume was calculated by evaluating the
volume under the 3D surface. The proposed actuated 1D LiDAR was tested by scanning
different stockpiles within the Webots robot simulation environment. The system perfor-
mance was assessed via the estimated volumetric error, the total energy consumption, and
the projected reconstructed area ratio. These metrics were analysed for different flight
trajectories by allocating the waypoints at different distances from the storage walls.

In terms of volumetric errors, for the more uneven stockpiles with small material
volume by the walls, it was shown that allocating the flight trajectory waypoints at locations
from the wall that are up to 20% of the storage space dimensions can enable volumetric
error levels that are less than 0.3%. However, locating the waypoints further into the storage
space can lead to larger unscanned areas due to blind spots, which in turn lead to larger
volumetric error levels up to ~6%. As for more even stockpiles and as the distance between
the waypoints and the walls increases, the mean volumetric error showed a less steep but
more consistent increasing rate from almost zero to ~4%. When employing a sinusoidal
waveform for the servo motion as opposed to a semi-triangular waveform, no significant
differences in the scanning performance were evident. Changing the flight speed was also
shown to produce minor differences to volumetric error; yet, with a significant influence
on the energy consumption. Because most of the issues with unscanned areas are due to
those close to the corners, scanning at lower turning speeds was shown to be an effective
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approach to improve the volumetric error levels for missions with waypoints allocated far
from the walls; however, the corresponding increase in total energy consumption can be
significant, depending on the maximum yawing speed adopted.

The results of the estimated volumetric errors were compared with that obtained from
2D and 3D LiDAR scanners while fixing all other mission parameters. The 2D LiDAR
showed the worst performance among all the cases considered. When adopting a maximum
yawing speed of around 6◦·s−1, the reconstruction quality of the proposed 1D LiDAR
system was similar to that of the 3D LiDAR scanner. However, this was achieved while
requiring far less scanning speed for data acquisition, significantly less energy consumption,
and much lower system cost and weight.

In the future, we aim to conduct flight experiments to validate the proposed stockpile
volume estimation method presented in this paper. Moreover, it is evident that the problem
at hand is multi-dimensional with a huge parameter space for investigation, particularly
with respect to trajectory shapes. As such, further optimization of the flight trajectory path
is needed to seek possible reduction in blind spots and, hence, enhancing outcomes, while
simultaneously considering power budget constraints. As the proposed system is low-cost
and low-weight, several units can be attached to a single drone at different orientations,
or it can be deployed within multiple drone agents to increase the system redundancy
during scanning, which, in turn, would also increase the density of the generated point
cloud. The current work was concerned with providing a detailed demonstration of the
feasibility of the proposed actuated 1D LiDAR system for reconstruction missions; however,
all the previously mentioned flight trajectory/system configuration possibilities open lots
of directions for future enhancements to the system under different constraints.
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Appendix A Noise Effect

All simulations conducted in this work did not consider the effect of noise from the
sensors, which can lead to additional uncertainty in the estimated volumetric error results.
As such, to better understand such effect, noises were considered for the LiDAR ranges
(r) in Equation (3), the servo motor angles (γ) in Equation (1), the orientations (ψ, θ, φ)
in Equation (5), and the 3D coordinates (x, y, z) in Equation (6). The effect of noise from
the LiDAR was set to have an uncertainty of ±2.5 cm for the reading ranges based on
results in [81]. The servo motor angles were set to have an uncertainty of ±1.0◦ based on
study [89]. With no available information on the distribution shape of the uncertainties,
a normal distribution was assumed for the uncertainties above. The uncertainty in the
orientations comes from the IMU, and, according to the study in [90], orientations can be
estimated with a standard deviation of 0.143◦. Lastly, the global 3D coordinates were set to
have uncertainties that can be measured with a standard deviation of 0.113 m, as described
in [91].

Noises were produced by a random number generator; hence, the simulation results
were dependent on these numbers. Therefore, 20 tests were conducted for each stockpile,
initial servo motor position, and trajectory pathway to illustrate the uncertainty in the
results. The solid lines in Figure A1 show the mean volumetric error and the shaded regions
represent the standard deviation, and each point is the mean of 400 tests (20 initial servo
position each tested 20 times for noise effect). As expected, noises from the sensors increased
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the uncertainty of the estimated volume and, hence, may lead to a change in the obtained
stockpile volume estimation. This is evident from the larger shaded regions, representing
the standard deviation, for the simulations that account for noise effect. Additionally, these
shaded areas increase in size, indicating higher uncertainty, as Ptraj increases. However,
the mean volumetric errors show minimal change when compared to simulations that
discount the noise effect. Therefore, the noise effect can be argued to be minor.
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Figure A1. Mean stockpile volumetric error, Ve, versus the trajectory waypoints allocation percentage,
Ptraj, with sensors’ noise effect (blue line) for (a) stockpile 1 and (b) stockpile 2. The solid lines
represent the mean volumetric error, and the shaded regions represent the standard deviation.
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