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Abstract: Pesticides are essential for removing plant pests and sustaining good yields on agricultural
land. Excessive use has detrimental repercussions, such as the depletion of soil fertility and the
proliferation of immune insect species, such as Nilaparvata lunges and Nezara viridula. Unmanned
aerial vehicle (UAV) variable-rate spraying offers a precise and adaptable alternative strategy for
overcoming these challenges. This study explores research trends in the application of semi-automatic
approaches and land-specific platforms for precision spraying. The employment of an autonomous
control system, together with a selection of hardware such as microcontrollers, sensors, pumps,
and nozzles, yields the performance necessary to accomplish spraying precision, UAV performance
efficacy, and flexibility in meeting plant pesticide requirements. This paper discusses the implications
of ongoing and developing research. The comparison of hardware, control system approaches, and
data acquisition from the parameters of each study is presented to facilitate future research. Future
research is incentivized to continue the precision performance of the variable rate development by
combining it with cropland mapping to determine the need for pesticides, although strict limits on the
amount of spraying make it difficult to achieve the same, even though the quality is very beneficial.

Keywords: pesticide; control systems; spraying distribution; water-sensitive paper (WSP);
simulations; environmental parameters; nozzle

1. Introduction

Due to their efficacy in field work, agricultural drones are becoming an option for
modern farmers. When market demand for food is high, customers realize they must
reconsider how to boost agricultural production and efficiency to directly effect the success
of their farming enterprise. To determine which elements required improvement, soil
quality, rainfall patterns, temperature, climatic change, wind speed, and the presence of
weeds and insects were evaluated [1]. To increase and organize productivity in accordance
with market demand, farmers must work diligently to develop innovations. However, there
are numerous paradoxes in rural contexts, where knowledge and technology are still used
conventionally, despite the fact that the number of food requirements is not significantly
different from that of metropolitan areas. In addition, pests and plant diseases are the
principal issues that have a direct impact on the quality of land productivity. Chemicals
and pesticides can be utilized as the principal means of eliminating and stabilizing the
biotic composition of crops to circumvent this issue. However, using pesticide spraying
equipment in the field is essential due to the diverse pesticide requirements of each crop.
More than 88% of manually operated sprayers in China are knapsack air-pressure or electric
sprayers and knapsack mist-blower sprayers [2].
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Currently, consumers prefer the usage of precision variable spraying systems mounted
on unmanned aerial vehicle (UAV)-based sprayers over ground plant protection vehicles
due to their speed of operation. Farmers are beginning to consider limiting the use of
pesticides and regulating the environment to preserve the nutrient content of their land,
in light of the high speed of drone operations. As researchers, we must also introduce
public innovations that meet the demands of farmers [3]. Moreover, by the end of 2020, the
adoption of pesticide spraying technology that is high in efficiency, product safety, resource
efficiency, and environmental friendliness will be promoted, with the ultimate objective of
attaining a zero percent growth in overall pesticide use. The application of pesticides by
unmanned aerial vehicles (UAVs) can limit chemical waste to precise levels. However, due
to external factors such as wind and the effect of the UAV itself, such as fluid dynamics
caused by propeller blowing, UAVs experience droplet drift and adhesion, resulting in
non-uniform spraying [4].

According to Phang et al. (2014) [5], a UAV has greater benefits over terrestrial vehicles
such as tractors in terms of mobility. It is 40 times faster than the conventional backpack
sprayer and can replace it. Using a UAV sprayer results in a 90% reduction in water
usage and a 30–40% reduction in insecticides. Reducing pesticide use has a significant
influence on the environment by preserving soil fertility and pest resistance to pesticides as
a result of the correct treatment quantity. Wheat and soybean farmers can save an estimated
$1.3 billion annually in expenses and money from crop yields, according to this calculation.
It is required to establish a dynamic model between affecting elements and spraying
quantity. This system and technology can be efficiently applied to rice and soybeans, the
two main carbohydrate-based agricultural products in Asia.

According to statistical evidence, temperate climates are also home to rice, the world’s
most important crop. Additionally, rice provides calories to more than one-third of the
world’s population. Rice does not inevitably become a commodity with a high production
quantity value due to the magnitude of the monetary value of these needs. Numerous
insects that feed on rice inhabit this crop. The brown plant-hopper (BPH) is the most
devastating insect pest recorded in Asia during the past decade [6]. BPH has wreaked
havoc on rice farms in China, Japan, South Korea, and Vietnam. In 2005 and 2008, China
reported a combined yield loss of 2.7 million tons of rice due to direct damage by BPH.
Grassy stunt virus (RGSV) and ragged stunt virus (RRSV) are other plant pests that BPH
can spread [7,8]. Aside from rice, one of the most economically significant pests that infest
soybeans is the southern green stink bug, Nezara viridula (L.PH) [9,10], which can be found
in Europe, Asia, Africa, and the United States. This pentatomid is extremely polyphagous,
feeding on more than 145 plant species [11–14].

Recent research has been conducted actively and extensively on variable quantity
spray technology. Cruvinel et al. (2016) [15] established relationships between operating
velocity, nozzle height, and spray flow. To achieve consistent spraying, this approach
only modulates the flow rate based on speed and altitude. Nevertheless, environmental
conditions and spray system characteristics impact the spray effect [16]. Temperature,
relative humidity, and wind speed influence droplet deposition by causing droplet drift
and evaporation. The spacing between nozzles in the fuselage’s structural characteristics
has an effect on spray uniformity [17]. Furthermore, the rotor’s pitch changes its airflow
field and influences droplet deposition [18]. Deng et al. (2016) [19] built a constant-pressure
sprayer governed by a proportional integral derivative algorithm with a closed-loop.
This sprayer’s pressure was altered by manipulating the solenoid valve’s opening, hence
altering the spray volume. In the same field, crops are affected by pests and diseases of
varying severity, whereas environmental factors and flight characteristics affect spraying
efficiency. To imitate the spray operation of an unmanned aerial vehicle (UAV) in a wind
tunnel, Ling et al. (2018) [20] established varying wind speeds and flight angles. Finally, a
correlation between the influencing factors and spray volume was established. However,
the classic linear relationship model of traffic flow and many variables is inflexible, making
it impossible to differentiate the degree of influence of each item. The linear relationship
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model between spray quantity and flight speed at the flight altitude cannot accurately
adjust the flow rate [21] due to the fact that environmental conditions and flight parameters
vary in real time during plant protection operations.

In China, intense use of precision spraying technologies for plant pest control has
begun and is increasing rapidly. Aviation technology in the agriculture sector is still in its
infancy, but is evolving rapidly due to its greater adaptability in contrast to ground-based
plant treatment vehicles. UAV has great precision control characteristics and rapid response
to field-specific parameters. In certain situations, the design of a plant protection UAV vari-
able spray system is based on the interpretation of the task prescription map. The system
collects prescription information for real-time position via graphical interpretation of plant
protection UAV, and PWM proportional–integral–derivative (PID) control is employed to
swiftly and precisely modify the spray volume. Experiments verify the system’s stability
and practicability, providing a theoretical reference for the study of plant protection UAV
variable spray systems and extending to the field of contemporary agricultural aviation
for plant protection [22]. The PID control algorithm is based on a system error control law.
The algorithm is a proportion (P), integration (I), and differentiation-adjusted optimum
control (D). It possesses a simple principle, high control accuracy, simple implementation,
and strong applicability [23]. The PID control algorithm has discernible implications on the
dynamic system calibration procedure for continuous systems. The PID control technique
is used to accomplish closed-loop system control [19] in order to precisely control the flow
of the system and assure the precision and stability of the variable spray operation.

Most of this study is devoted to the development of a variable rate spraying sys-
tem with near-precise performance for use with unmanned aerial vehicles. The ultimate
objective of establishing an autonomous spraying system that takes into consideration
environmental and platform characteristics is to spray a precise amount of pesticide on
plants without affecting the quality of the point of land owing to excessive pesticide use.
Pesticides are substances that, when applied in excessive quantities, are detrimental to both
the environment and humans [24,25]. Pesticides, on the other hand, can be the most effec-
tive solution if applied correctly, especially when paired with high-precision agricultural
equipment and machinery within a UAV-based spraying system.

2. Application Development for an Independent Control System
2.1. Unmanned Aerial Vehicle (UAV) in Agriculture Area

UAVs are radio-controlled aircraft capable of flight. Multi-rotor UAVs are the only
type that may be further categorized by the number of rotors on their platform. In recent
decades, numerous UAV model types have been deployed, as shown in Table 1. Compared
to multi-rotor aircraft, the design of fixed-wing UAVs (Figure 1a) is drastically different,
and the aerodynamic structure of their two wings makes them easier to fly. Figure 1b
depicts a model of a single-rotor helicopter with one large rotor on top and a smaller one in
the tail of the UAV. Quadcopters, hexacopters, and octocopters refer to multirotor aircraft
with four, six, or eight rotors (Figure 1c–e, respectively).

Single-rotor, quadcopter, hexacopter, and octocopter are subcategories of multirotors.
A multi-rotor has a lower flight speed, distance, and duration than a fixed-wing drone since
it requires an enormous amount of power to generate lift and maintain flight [48].

The octocopter has all the advantages of the hexacopter, but with increased power.
These devices are not inexpensive but are generally obtain the best possible aerial footage.
These eight motor drones offer the same, or additional, advantages to the quadcopter, and
the hexacopter.
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1. Speed: Much faster than their competitors and capable of reaching greater altitudes.
2. Control: Exceptional control that is less impeded by wind and rain and is stronger

and more dependable.
3. Safety: Even if one motor malfunctions, the octocopter can be flown just as well as

a hexacopter. Furthermore, depending on the position and overall payload, two or
three motors could be dysfunctional without the craft crashing. Furthermore, they are
very stable and perform better in harsh weather conditions.

The characteristics of each type of drone can be used to determine which species will
be used as a prototype in the control system development. Furthermore, the independent
control system is expected to include a carrier option feature that farmers can select based
on the drone sprayer they own. It is critical to understand the characteristics of the various
types of UAV sprayers because the cons that arise can be overcome only with each solution
from the drone. For example, if a drone company wants to increase the lifting capacity of a
quadcopter, the lifting power must be increased in a way that is directly proportional to the
drone’s size increase.

Table 1. Types of UAVs distinguished by the number of propellers.

Type Advantage Disadvantage Reference

Single rotor helicopter Long endurance More dangerous [21,23,26–33]
Octocopter Greater redundancy and lifting capacity Several components to keep track of [21,26,34–38]

Quadcopter Simplest mechanical structure, opposite
force stays balanced Light lifting capacity [39–41]

Hexacopter Greater redundancy Insufficient performance and battery
capacity [21,34–37,42–44]

Fixed wing Fly faster and longer distances Reduce mapping efficiency, inflexible
take-off and landing [45–47]
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Figure 1. Different types of UAV: (a) Fixed Wing, (b) Single rotor, (c) Quadcopter (d) Hexacopter, and
(e) Octocopter.

The type of drone can be determined based on the aforementioned advantages; multi-
rotors are commonly used as prototyping materials. The invention of a remote-controlled
multirotor with the capability of a drone sprayer begins with the selection of a controller
and its customization to the field’s requirements. Before carrying additional implements,
the UAV’s carrying capacity, flight capability, and performance were modified. Considering
the performance, weight, and transmission speed of each tool, the underlisted are the
materials utilized to manufacture drone sprayers (Table 2).
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Table 2. Different controllers and methodologies with respective capabilities and performance.

Controller Framework Load Speed Reference

Ardu 2.8 FC RC transmitter - - [21]
UAV ZHKU-0404 - 1–15 dm3 3.5 m/s [40]

Arduino mega 2560 WIFI module - - [41]
FC RC Transmitter 5 dm3 1 m/s [44]

Arduino At mega 328, Radio receiver - - [28,39,49]
Hexa-II Atmega1284p WIFI 1 kg (camera) - [42]
Atom board processor - 0.6 kg (Laser scanner) - [43]

DJIs 900 model - - 1.3 m/s [36]
ARM processor - 1 kg 8.33 m/s [38]

TTA M8A TR-PIV 10 kg 0–15 m/s [26]
Aero drone PAM-20 Radio Link 25 kg 22.22 m/s [45]

Pathfinder-plus Radio link 67.5 kg 13.89 m/s [46,47]
Z-3 - 20 dm3 3 m/s [28]

Yamaha RMAX - 100 kg 5.56 m/s [30]
MSP430 single-chip RC transmitter 25 kg 3–6 m/s [31]
Rotomotion’s SR200 RC Transmitter 22.7 kg (5 kg) - [29,32,33]
KK v5.5 Atmega 168 RC Transmitter, WSN - - [50]

Atmega 8bit AVR - - - [51]
LLP & HLP Radio Link 1 kg - [52]

Arduino Radio frequency 8 kg 5 m/s [53–55]
N-3 type - 25 dm3 4 m/s [56]

2.2. UAV Drone Sprayer Basic Components

Not only is the controller a remote device responsible for internal and management
controls, but it also plays a crucial role in decision-making. The parameters are read
by environment-detecting sensors and the drone itself. Several aspects are utilized as
measuring parameters, and sensors are required to read their parameters in terms of
drone function needs [48], drone flying performance maintenance [57], drone decision-
makers [58], data collection [48], and control implementation [59]. These sensors and
hardware components are installed in the UAV to monitor its exterior and interior and to
identify other UAV components, such as distinct sensors, applications, and focal points.
The roles of the main types of hardware components and peripherals utilized in UAVs are
depicted in Table 3.

Table 3. Components and microcontrollers of the UAV sprayer.

Components Purpose Reference

Accelerometer Acceleration measurement [38,39,41,42,44,49,52,60,61]
Gyro Rotational movement [29,31,32,38,39,44,49,52,54,60,62]

BLDC (brushless DC) Motion control [39,41,42,44,49–51,53,54,60,62,63]
ESC (electronic speed control) BLDC’s speed control [39,41,42,44,49–51,53,54,60,64]

Water sensitive paper Assessing spray coverage [40,56]
Anemometer Wind speed measurement [40]
Filter papers Fine substances separator [40]

Digital Temperature Temperature detectors [28,40,56]
Humidity indicator Air moisture measurement [28,40,56]

Magnetometer Magnetic field measurement [29,31–33,42,52,60]
WSN Sensing environmental conditions [39,49,65,66]
IMU Angular rate and forces measurement [29,32,33,43,51,52,54,55,60,62]
GPS Provides geo location of an object [29,31–33,38,39,41,42,44,45,50,52,53,56,60,62,63,67,68]

Telemetry Obtain real-time data from a UAV [31,33]
Altimeter Altitude measurement [31]

Air Pressure Sensor Gases or liquids measurement [38,52,69]
Barometer Atmospheric pressures [28,60]

PWM controller Signal pulse provider [32,33,54]
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2.3. Spraying and Nozzle Systems

In spraying systems, there are various types of nozzles, each with its own efficiency,
performance, and technical specifications. This sprinkler system, which is often located at
the bottom of the UAV, employs a nozzle connected to the pesticide tank to spray pesticide
solution over crops. The two components of a sprinkler system are the spraying control
and nozzle systems. The spraying system includes both spraying material (pesticides or
fertilizers) and a spraying nozzle. The second component is a controller that regulates
the nozzle of the sprayer. A pressure pump is a sprinkler system component that forces
insecticide through the nozzle using pressure. A motor driver integrated circuit is utilized
to adjust the pump’s pressure as required. Table 4 compares the flow rates and nozzles
utilized by UAVs for spraying.

Table 4. List of pesticide injection pumps and nozzles and its specifications.

Nozzle and Pump Type Operating Speed Operating Pressure Reference

Singflo Flo-2203 a (pump) 2.6 dm3/min 0.483 MPa [70]
BPP-25 b (pump) 3.5 dm3/min 1 MPa [70]

Unbranded/generic c (pump) 5.5 dm3/min 0.9 MPa [70]
XR80015-VS d 0.57 dm3/min 0.103–0.41 MPa [44,70]

AI11002 e 0.76 dm3/min 0.27–0.69 MPa [30,70]
Micron air–A+ 27.22 g/min - [33]

TX VK-08 f 0.5 dm3/min 0.207–2 MPa [21,70]
Rotary atomizer 0.85 dm3/min - [56]
TP800067-VS g 0.25 dm3/min 0.207–0.414 MPa [40,70]

a YOUME ELECTRIC CO, LTD., Xiamen, China. b JMRRC Co. LTD., Guangdong, China. c Pro Pumps Co., China.
d, e, f, g series (Spraying Systems Co. Ltd., Glendale Heights, IL, USA). Schematics and specifications of all nozzle
listed in this table can be found in Spraying Systems Co. Ltd.

2.4. The Use of the Spraying Method

Typically, one of two techniques are utilized by UAVs for spraying pesticides. The
first type of UAV-based sprayer has a spraying system on the boom sprayer [71] and the
second type has a spraying system under the propeller rotor [72,73]. The location of the
nozzle under the rotor affects the movement of the droplets [74] (Chen H. et al., 2021). The
V6A drone (Figure 2) is an example of a boom sprayer-type UAV drone that is equipped
with four CR80-005 nozzles (Lechler GmbH, Metzingen, Germany). An example of a drone
spraying system located below the rotor is the MG-1, which has four XR110-01 nozzles
(TeeJet Technologies, Wheaton, IL, USA). The XR110-01 nozzles have 110 spray angles and
are flat fan nozzles, while the CR80-005 nozzles have 80 spray angles and are hollow cone
nozzles. XR110-01 nozzles have a typical flow rate of 354 mL/min at 226 kPa, whereas
CR80-005 nozzles have a typical flow rate of 197 mL/min at 517 kPa.
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Similar to the DJI Agras MG-1 (Figure 3), an octocopter drone is a four-nozzle sprayer
system, often positioned on the main propeller shaft [75]. The SG10P (Model SG-10P,



Drones 2022, 6, 383 7 of 23

Hankook Samgong, South Korea) is a South Korean-made octocopter drone sprayer with
this nozzle position.
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2.5. Spraying Deposition Data Acquisition Methods

There are two methods of measuring the distribution of environmental treatment
spraying. The initial method of measurement utilizes the actual environment (Figure 4),
and then the measured value is employed as a parameter. This method involves flying a
drone sprayer directly over crop fields and using an automatic weather station (AWS) as a
sensor to obtain the environmental treatment parameters [76]. The second measurement
approach involves the creation of an artificial environmental climate (Figure 5) in which
values can be modified based on the requirements of data gathering [77,78]. Researchers
may develop a simulator that can provide controlled environmental conditions, such as a
wind generator [71], a rail track that connects the drone sprayer to the simulator, a ground
height adjuster [72], or the operation of a drone rotor to generate fluid dynamics that
influence the spray nozzle underneath [73].
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WSP, which records distribution values such as percentage coverage, droplet diameter
width, and the number of droplet populations in an area, can be analyzed via image process-
ing. This methodology is commonly employed in other related studies. As demonstrated
by [79], the WSP recording method requires image selection strategies because WSP only
supports two color schemes (yellow and blue or white and red). Based on the foregoing,
the image processing algorithm can easily process the embedded image information.
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2.6. WSP Data Processing Methods

The spray distribution results recorded by WSP are then transformed into concrete
values such as coverage, droplet size, and so on after obtaining the results of the spray-
ing performance recorded by WSP. There are numerous methods for measuring WSP
recorded data values, which can then be converted using image processing software such
as DropletScanTM (WRK, Oklahoma and Kansas, USA) StainAnalysis (Metasystems, Ltd.,
Bengaluru, Karnataka, India), AgroScan (ECM Naveko International, Inc., Angouleme,
France), Gotas (Embrapa, Brasilia, DF, Brasil), SnapCard (Department of Agriculture and
Food, South Perth, Western Australia), and others. The procedures used to convert WSP
recordings into data values such as coverage, droplet diameter, and population are detailed
in Table 5.

Table 5. WSP image processing techniques.

Method Data Type References

Spectrometer-fluorometer (Model USB2000+,
Ocean optics, Inc., Dunedin, FL) Number of droplets, spray pattern [80]

Image J Spray droplet size (SMD) [81–83]
DropletScan™ Spray droplet size (SMD), coverage, spray application rate [84,85]
StainAnalysis Coverage, droplet density, number of droplets [86,87]

AgroScan Spray droplet size (SMD), coverage, number of droplets [86]
SnapCard Spray droplet size (SMD), coverage [87]

Gotas Spray droplet size (SMD), coverage, Number of droplets [86]
StainMaster Spray droplet size (SMD), coverage [86]
ImageTool Spray droplet size (SMD) [81,82,86]

The spectrometer–fluorometer approach is demonstrated in Figure 6 using a Model
USB2000+ (Ocean Optics, Inc. in Dunedin, FL, USA). In addition, the orthogonal design
approach or other simulation variation methods can be used to retrieve simulation data
and analyze spraying pattern parameters [88].

The primary aim of developing an independent control system is to measure spray
coverage area by employing several types of deflected nozzles with varying liquid flow
rates. Sies and Asmuin (2017) [81] analyzed fluid parameters, such as density, viscos-
ity, and surface tension. The value of the spraying distribution from the UAV sprayer
must be determined using a device capable of recording spraying performance. Cover-
age, population, droplet diameter, and coverage drift are examples of spraying data [89].
These data can be recorded in a single document commonly used for assessing the per-
formance of sprayer equipment, covering low- and high-level test scales, industrial, and
agricultural industries [90]. The material under discussion is a water-sensitive paper
(WSP), which changes color when exposed to liquids and is therefore utilized well in the
spraying value assessment method (Figure 7) [81]. After the WSP has been sprayed, its
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droplet size must be measured using hardware and software such as DropletScanTM and
Spectrophotometer–fluorometer.
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2.7. Expectation of Results and Development of a Control System

Wen et al. (2019) [91] investigated various flight speeds and spraying altitudes in their
study. The flight speeds employed are 1 m/s, 3 m/s, 5 m/s, and 7 m/s, with altitude
variations in the range of 2 to 4 m. Table 6 summarizes the data collection results using
the V6A and DJI MG-1 drones. This data acquisition is carried out in conjunction with the
construction of an orthogonal matrix model to obtain the most effective variation value,
ensuring that no data acquisition is piled up and that the result value is not required for
further analysis. The orthogonal matrix produces variable coverage values, droplet sizes,
and population values, which are then applied to the flight plan simulation to generate the
coefficient of variation (CV) value. This CV value is used to create the logic for the control
system development algorithm.
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Table 6. The spray efficiency based on application height and ground speed for the two UAV
sprayer platforms.

Platform Speed
(m/s)

Application
Height (m)

Effective
Swath (m)

Theoretical
Application

(L/ha)

Measured
Application

(L/ha)

Spray
Efficiency (%)

V6A 1 2 5.2 25.3 14.9 58.8
V6A 1 3 6.4 20.6 14.9 72.6
V6A 1 4 4.0 32.9 6.4 19.3
V6A 3 2 5.8 7.6 6.4 84.6
V6A 3 3 4.6 9.5 4.7 49.2
V6A 3 4 5.2 8.4 2.0 23.8
V6A 5 2 6.4 4.1 5.3 129.9
V6A 5 3 5.2 5.1 2.2 42.5
V6A 5 4 4.0 6.6 1.5 22.5
V6A 7 2 5.2 3.6 1.7 47.0
V6A 7 3 5.2 3.6 1.2 32.9
V6A 7 4 7.0 2.7 1.0 37.2

MG-1 1 2 7.6 31.1 39.9 128.1
MG-1 1 3 6.4 36.9 33.3 90.0
MG-1 1 4 5.8 40.8 29.3 71.8
MG-1 3 2 7.6 10.4 11.3 108.9
MG-1 3 3 7.0 11.3 6.3 56.2
MG-1 3 4 5.8 13.6 8.9 65.6
MG-1 5 2 6.4 7.4 6.5 87.8
MG-1 5 3 7.0 6.8 18.7 276.8
MG-1 5 4 4.6 10.3 5.8 55.9
MG-1 7 2 7.6 4.4 4.9 110.5
MG-1 7 3 5.8 5.8 5.5 95.1
MG-1 7 4 5.8 5.8 3.6 62.2

This table presents data with varying flying speed and altitude parameters. The results
of the spraying test using both V6A and MG-1 drone types are shown in Figures 8 and 9.
The effective swath results are shown by two types of speed, i.e., flight speed and spraying
altitude, for the two examples of UAV sprayer types with their respective characteristics
(hexacopter and octocopter) and each spraying placing (boom sprayer and under-rotor
sprayer). According to the sample results, the MG-1 drone has a wider swath than the effec-
tive V6A of the two second parameters. However, when negative effects from parameters
are present, V6A has a more stable performance. These findings are then used to analyze
the development of a control system tailored to the performance categories and advantages
of drones by adjusting the channel control system settings based on where the system is
applied to a drone.

The WSP analysis results in numerical data such as coverage value, droplet size, pop-
ulation, and coefficient of variation (CV), which can be used to develop control systems.
This value is derived from outputs that vary depending on the platform and device used.
Multiple parameter modifications are integrated into the development of the control system
for each collected data point. Figure 10 depicts a method for the development of control
systems applicable to precision spraying manufacturing. Figure 10 employs the neural
network method by integrating spraying deposition transformation data from the simu-
lation of a spraying drone. This solution employs several control components, including:
A. Jetson nano (main core), B. battery, C. digital airspeed sensor, D. altimeter, E. GPS, F.
wind-factor sensor, G. spraying system. These parts are integrated to form a unit that serves
as the primary spraying system. The role of each sensor is to detect environmental factors
in real time and generate values that are fed into the solution algorithm for processing
and yielding benchmark values. For example, if the existing parameters are overcome by
operation of the nozzle, the resulting solution value will be the pump A or B threshold.
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The placement of these four nozzles is determined by the nozzle arrangement [92], which
can be either a boom sprayer or an under-rotor sprayer.
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The fabrication process is then continued by matching the drone sprayer with the
control system data requirements based on the independently developed control system
results. Changes to the channel could involve utilizing a different type of drone (hexacopter
or octocopter), sprayer (boom sprayer or square sprayer) [93], or nozzle. Similar to creating
the required independent control system for accurate variable quantity treatment, the
expected result is an accurate spray distribution depending on land requirements and
specific locations. Following is a description of the development of the variable quantity
agriculture sprayer, as well as a consideration of the sustainability of this research and
related studies.

3. Benchmarks and Evaluations for Existing Research
3.1. Platform Development and Manufacturing

A UAV sprayer is not always universally utilized. Crop varieties, geographical loca-
tions, and treatment types are utilized as a reference to determine the characteristics of
the field for UAV spraying. For example, when considering “specialty crops,” land man-
agement is conducted separately based on the particulars of the specialty [94–98]. These
characteristics increase the likelihood of environmental events and must be considered.
Certain characteristics and well-defined phenomena, such as the availability of land water,
average wind conditions, the intensity of sunlight, and evaporation percentage (relative
humidity), are considered to improve land characterization performance [99–101].

April et al. [102] developed a UAV plant protection system in 2019 based on a con-
sideration of various platform operating factors in several related studies, such as the
optimization of predatory mite dispensing by multirotor UAVs in wind. They invented a
mathematical model that can optimize the autonomous dispensing of wind parameters, alti-
tude, and flight speed using UAVs. As shown in Figure 11, the system development process
begins with outdoor experiments and data collection using machine-learning techniques.
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The model that was established has an average error of 12.8%, RMSE. Because of its
parametric and predictive nature, the model lends itself to the future design of UAV flight
controllers that can compensate for wind-induced targeting errors. They also stated that
this modeling method can be used in other UAV dispensing applications, such as liquid or
granule pesticide deliveries, in addition to developing predatory mite dispensing.

In a study conducted by Lim J. in 2020 [103], titled “Development of a Spray Calcula-
tion Algorithm Using Pest Control Drones,” an algorithm was developed that considered
the type of agriculture aircraft based on spray time depending on platform performance,
payload, and flight speed. Lim also considered a pump model with good performance in
terms of providing an effective spray width for farming. The study’s output was a system
that calculates time and effective spraying intervals and suggests an algorithm for accurate
pest control area calculation based on the type of pest control drones used.

A UAV sprayer platform upgrade development study was also carried out by Chen
et al. in 2016. They considered the spray parameter of a small unmanned helicopter on the
distribution regularity of droplet deposition. The researchers used a schematic diagram test
at the spray test site with a droplet sampling card test as a means of recording the spread of
spraying. The scheme they used can be seen in Figure 12. In this study, the parameters of
flight height and flight speed both had a great influence on the mean droplet deposition
amount but did not have a significant influence on the uniformity of droplet deposition.
The wind field environment is also an influencing parameter, though it was not taken into
account [104]. This, of course, can be considered in future studies, as discussed in this
paper, to establish environmental factors such as wind speed and direction as parameters
that must be addressed.

Another study that obtained a precision variable rate system on a UAV sprayer was
conducted in 2018 by Wen S, et al. [22], who designed and experimented with a variable
spray system for unmanned aerial vehicles based on PID and PWM control. They used
prescription maps as a reference for spraying with different quantities of values at each crop
point in their research. The value of the operation of the UAV sprayer is obtained by using
GPS data from land mapping [105,106], the processing of raster distribution data added
to prescription data on pesticide requirements [107], and geographic information [108], as
shown in Figure 13.
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Execution of the control system in reading the prescription map is combined and
matched with the spraying system (Figure 14) so that the variable rate quantity value is
obtained in accordance with the given value [109]. The PID controller will provide feedback
on target velocity, actual flow rate, location information, and prescription value, which
will be forwarded by the PWM controller during the variable rate spraying [33]. Although
this system takes into account operational values such as flight speed and spray height, it
cannot overcome negative environmental factors during operation. In windy conditions
and with uncertain wind directions, the total mapping variable rate will deviate from the
prescription map, reducing accuracy.
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Figure 14. A hardware schematic depicting a prescription graphic translation system (a) and a
variable spray controller (b).

The employment of a UAV-based sprayer for variable-rate and precise-quantity appli-
cations, on the other hand, offers various benefits. Wang, G. utilized a battery-powered
3WTXC8-5 six-rotor UAV (Henan Tianxiucai Aviation protection machinery Co., Ltd.,
Kaifeng, China) (Figure 15) for a spray deposition comparison study in 2019 [21]. The
UAV was powered by two 12,000 mAh Li-Po batteries (Shenzhen Grepow battery Co., Ltd.,
Shenzhen, China). With a full charge, the flight lasted roughly 15 to 20 min. The flight
speed was 12.6–14.4 km/h with two rotary cup atomizers positioned on either side. The
distance between the nozzles was 0.85 m and the installation angle was vertically down-
ward. The rotation speed of the disk speed was 10,000 rpm. With a flow rate of 1.24 L/min,
the chemicals were transferred from the tank to the nozzles using a HXB600 micro liquid
pump (Shanghai Hallya Electric Co., Ltd., Shanghai, China). The well-trained operator was
responsible for controlling the flight’s height and speed with precision. Effective spraying
width was 4 m, and flying height was 1 m. Approximately 10 L/ha, or double the tank’s
capacity, was sprayed in a single sortie.

Drones 2022, 6, x FOR PEER REVIEW 16 of 23 
 

 
Figure 15. 3WTXC8-5 six-rotor UAV sprayer (Henan Tianxiucai Aviation protection machinery Co., 
Ltd., Kaifeng, China). 

These parameters enable UAVs to overcome wind speed and direction, contour 
height, geographical conditions, and crop types [110]. Especially when using UAVs, 
spraying deposition is affected by wind conditions. Qin et al. (2017) optimized the flying 
parameters for preventing plant hoppers, demonstrating that a flight height of 1.5 m and 
a flying velocity of 5 m/s produced the best lower layer deposition and the most uniform 
distribution for the HyB-15L UAV sprayer (Gao Ke Xin Nong Co., Ltd., Shenzhen, Guang-
dong, China) [111]. The ideal parameters vary based on the UAV and crop type. In a 
spraying test of different shapes (open center shape and round head shape) of circus trees, 
the 3W-LWS-Q60S UAV (Zhuhai Crop Guardian Aerial Plant Protection Co., Zhuhai, 
Guangdong, China) performed better at a working height of 1 m against 0.5 m and 2 m 
[48]. Various UAV sprayers are utilized in a multi-spraying swath test to determine dep-
osition uniformity [112]. 

3.2. Precision Spraying System Effectiveness 
The use of human assistance platforms should always yield superior results com-

pared to manual labor. A platform may be deemed usable as a possible consequence. Us-
ing modern platforms as tools has good outcomes in terms of increasing productivity. 
However, if its main purpose is to help humans work, a technology must continue to de-
velop and exploit its potential. One example is the application of a UAV plant protection 
system in 2019 by April et al. [102]. They developed a predictive algorithm for plant pro-
tection treatment for a variety of parameters, with the goal of obtaining target values 
based on crop needs while remaining unaffected by various factors during operation. An 
established model has an average error of 12.8% (RMSE); this value indicates that the use 
of plant protection materials such as pesticides, fertilizers, or other plant treatments can 
be reduced, which benefits the environment and even the economy [113].  

Afterward, in a study conducted in 2020 by Lim J., who developed a spray calculation 
algorithm that considers various factors, obtains an output of effective operating time, and 
selects the type of pump with high efficiency and direct effectiveness at wide intervals, 
the result was an extraordinary breakthrough in increasing agricultural activity efficiency. 
Energy and economic aspects will be more affordable as operating time declines. Consid-
eration of the use of devices such as the type of platform, pump, and nozzle becomes 
important when one is evaluating the effectiveness of other parties in developing a spray-
ing system for the needs of precise plant care. In 2020, Chen et al. used a quadrotor UAV 
to test droplet deposition against rice plant hopper pest control [114]. 

4. Future Scope and Considerations 
The development of the precision variable rate is not generalized but can be ex-

panded by merging previous research and using it as a reference for the platform’s appli-

Figure 15. 3WTXC8-5 six-rotor UAV sprayer (Henan Tianxiucai Aviation protection machinery Co.,
Ltd., Kaifeng, China).



Drones 2022, 6, 383 16 of 23

These parameters enable UAVs to overcome wind speed and direction, contour height,
geographical conditions, and crop types [110]. Especially when using UAVs, spraying depo-
sition is affected by wind conditions. Qin et al. (2017) optimized the flying parameters for
preventing plant hoppers, demonstrating that a flight height of 1.5 m and a flying velocity
of 5 m/s produced the best lower layer deposition and the most uniform distribution for the
HyB-15L UAV sprayer (Gao Ke Xin Nong Co., Ltd., Shenzhen, Guangdong, China) [111].
The ideal parameters vary based on the UAV and crop type. In a spraying test of different
shapes (open center shape and round head shape) of circus trees, the 3W-LWS-Q60S UAV
(Zhuhai Crop Guardian Aerial Plant Protection Co., Zhuhai, Guangdong, China) performed
better at a working height of 1 m against 0.5 m and 2 m [48]. Various UAV sprayers are
utilized in a multi-spraying swath test to determine deposition uniformity [112].

3.2. Precision Spraying System Effectiveness

The use of human assistance platforms should always yield superior results compared
to manual labor. A platform may be deemed usable as a possible consequence. Using
modern platforms as tools has good outcomes in terms of increasing productivity. However,
if its main purpose is to help humans work, a technology must continue to develop and
exploit its potential. One example is the application of a UAV plant protection system
in 2019 by April et al. [102]. They developed a predictive algorithm for plant protection
treatment for a variety of parameters, with the goal of obtaining target values based on
crop needs while remaining unaffected by various factors during operation. An established
model has an average error of 12.8% (RMSE); this value indicates that the use of plant
protection materials such as pesticides, fertilizers, or other plant treatments can be reduced,
which benefits the environment and even the economy [113].

Afterward, in a study conducted in 2020 by Lim J., who developed a spray calculation
algorithm that considers various factors, obtains an output of effective operating time, and
selects the type of pump with high efficiency and direct effectiveness at wide intervals,
the result was an extraordinary breakthrough in increasing agricultural activity efficiency.
Energy and economic aspects will be more affordable as operating time declines. Con-
sideration of the use of devices such as the type of platform, pump, and nozzle becomes
important when one is evaluating the effectiveness of other parties in developing a spraying
system for the needs of precise plant care. In 2020, Chen et al. used a quadrotor UAV to test
droplet deposition against rice plant hopper pest control [114].

4. Future Scope and Considerations

The development of the precision variable rate is not generalized but can be expanded
by merging previous research and using it as a reference for the platform’s application.
For example, if provided with coordinate data describing the quantity of plant disease
treatments, a UAV-based precision sprayer could precisely apply pesticides to plants.
Wen et al. (2018) [91] employed agricultural land mapping to analyze land and collect
treatment information for pest-damaged plants. Wen et al. (2018) also developed a pesticide
requirements map based on the route of the drone sprayer.

Three layers are utilized to develop a prescription map that can be integrated with
the performance of a precision UAV sprayer. As depicted in Figure 16, the first layer is the
route the drone will traverse throughout the spraying process. Based on pest damage to
plants, the second layer offers data regarding the requirement for pesticides. The third and
final layer consists of coordinate data illustrating how to provide the drone with a spraying
threshold and nozzle opening treatment.
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During spraying, the crop protection drone’s onboard high-precision GPS sends real-
time data to the controller and compares it to the unit area’s coordinates on the drone’s
work route map to determine the UAV’s present location. When the UAV position data is
correctly matched, the current location prescription value is retrieved. The resulting spray
quantity data is then communicated to the variable spray controller to execute the spraying
operation.

Kulkarni et al. (2015) [115] discuss the calculation of the spraying mechanism for
near-perfect plant care applications. In addition to environmental elements such as wind
variables, operating altitude, fluid dynamics, and drone flying speed, the performance of
the spraying system itself is a crucial consideration. In the creation of this variable rate, a
UAV-based precision platform, sprayer system variables such as gallons per acre (GPA),
miles per hour (MPH), gallons per minute (GPM), sprayed width per nozzle (W), output
per minute (OPM), and nozzle flow rate (NFR) are computed and utilized as a reference.

Nevertheless, considerations and execution restrictions must be considered. The actual
conditions in the field will substantially impact the accuracy level, hence reducing perfor-
mance. The system considered environmental parameters and calculated them for in-depth
analysis; however, the weather is not an artificial factor that can be easily constructed. Fig-
ure 17 displays a variable-rate UAV-based application with precise performance, matching
the pest and plant disease treatment corresponding to the coordinate data. Even if the
spray is highly successful, there is a high probability that the treatment will not satisfy the
expected requirements; thus, the quantity must be sufficient. This is generally caused by a
system that cannot handle the speed and direction of the wind [116].
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Researchers continue to develop strategies for pesticide resistance. In succeeding
studies, each constraint uncovered during a previous research phase might be addressed
individually. The concern with the overall analysis of this work is the quantity, which
must nevertheless meet the objective. Although the parameters of flying speed, alti-
tude, wind speed, wind direction, and spraying factors are considered, the produced
results can meet spraying quality but must be more accurate to fulfill pesticide treatment
quantity [117]. Future research must satisfy both requirements so pesticide usage can be
regulated sustainably.

5. Conclusions

This article examines the development of UAV sprayers for agricultural applications.
This evaluation further identifies the UAV-based drone sprayer innovation technique
most closely related to the use of variable quantity precision spraying, whose values and
coordinates are generated from image analysis of land requirements. Several elements,
including the wind’s direction and intensity, the flight’s height and speed, the propeller’s
fluid dynamics, the pesticide’s viscosity, and the fluid rate at which it was sprayed, were
taken into account during the execution. In implementing this method, the selection and
nozzle opening options are determined by the outcomes of the parameter reading that
serves as its idea. Thus, the most pertinent spraying system and logic-type algorithm
methodologies were evaluated and described, along with their application to agricultural
sprayer UAVs for detecting spray quality with WSP recording.

As a result, a number of studies conducted on agricultural sprayers and precision
agricultural sprayers are compared to the UAV-enhanced precision sprayer to make im-
provements. In addition, the most recent spraying system algorithms utilized by agri-
cultural UAVs and the structural problems of sprayer UAVs were outlined. Finally, after
examining the primary concerns of autonomous sprayer UAVs on agricultural land, a
comprehensive review of recent studies on spraying system methods and algorithmic logic
selection is offered.

However, the operational pattern and several constraints of agricultural sprayer
UAVs were described in depth. The detection sensors on environmental parameters, UAV
performance, and control architectures for threshold nozzle mechanism execution are
thoroughly highlighted, opening the way for future researchers to develop their agriculture
sprayer UAV systems. The physical construction, liquid load, and sloshing of the sprayer
UAV, as well as the most often employed detection sensors, were reviewed.

Due to the impact of environmental modification simulation tests and/or simulations
using environmental parameters directly, this research trend generated the notion of a
variable-rate spraying platform with a UAV carrier. Its use can assist farmers in decreasing
the number of pesticides required while preserving the efficiency of pest management.
Furthermore, with the precision of the variable spraying rate UAV platform, it is possible
to eliminate the need for multiple pesticides on land and consistently provide the same
treatment value.
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