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Abstract: This paper investigates and benchmarks quadrotor navigation and hold autopilots’ global
control performance using heuristic optimization algorithms. The compared methods offer advan-
tages in terms of computational effectiveness and efficiency to tune the optimum controller gains for
highly nonlinear systems. A nonlinear dynamical model of the quadrotor using the Newton–Euler
equations is modeled and validated. Using a modified particle swarm optimization (MPSO) and
genetic algorithm (GA) from the heuristic paradigm, an offline optimization problem is formulated
and solved for three different controllers: a proportional–derivative (PD) controller, a nonlinear
sliding-mode controller (SMC), and a nonlinear backstepping controller (BSC). It is evident through
the simulation case studies that the utilization of heuristic optimization techniques for nonlinear
controllers considerably enhances the quadrotor system response. The performance of the conven-
tional PD controller, SMC, and BSC is compared with heuristic approaches in terms of stability and
influence of internal and external disturbance, and system response using the MATLAB/SIMULINK
environment. The simulation results confirm the reliability of the proposed tuned GA and MPSO
controllers. The PD controller gives the best performance when the quadrotor system operates at
the equilibrium point, while SMC and BSC approaches give the best performance when the system
does an aggressive maneuver outside the hovering condition. The overall final results show that
the GA-tuned controllers can serve as a benchmark for comparing the global performance of aerial
robotic control loops.

Keywords: heuristic algorithms; modeling; nonlinear sliding mode control; nonlinear backstepping
control; PD; quadrotor

1. Introduction

The quadrotor UAVs have gained considerable attraction from the control engineering
community in the last decade. Compared with traditional vertical take-off and landing
robots, they are more stable and can perform tasks with complete autonomy, minimizing
the need for a direct human operator control [1]. They also provide an excellent platform
for research and commercial applications, with tremendous technological capabilities in
microfeature transducers, actuators, and high-performance computers depending mainly
on the mini-, micro-, and nanoembedded systems [2]. The major applications include aerial
media video streaming for coverage [3], power line inspections [4], traffic management
system [5], spraying and monitoring of crops [6], surveillance [7], and fire detection system
and control [8].

Unlike traditional UAVs, the quadrotor consists of two rods along with four actuators.
Amongst the four rotors, its two pairs are rotating in a clockwise manner, while the other
two are in a counterclockwise direction to balance the torque [9,10]. Hovering and vertical
take-off and landing (VTOL) capabilities are prerequisites to reach the requirements for the

Drones 2022, 6, 379. https://doi.org/10.3390/drones6120379 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6120379
https://doi.org/10.3390/drones6120379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-6686-255X
https://doi.org/10.3390/drones6120379
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6120379?type=check_update&version=4


Drones 2022, 6, 379 2 of 29

applications mentioned above [11]. Traditional UAVs with hovering and VTOL capabilities
have a complex structure that is more costly and very difficult to be controlled [10]. As a
multivariable nonlinear six-degree-of-freedom (DOF) system, the quadrotor is considered
an exciting benchmark in control engineering for the testing, validation, and authentication
of control laws tasks in real-time platforms. The quadrotor serves as a helicopter with
some significant simplifications, as it is characterized by being underactuated, it has a
high-coupling nature, is highly nonlinear, and has strong system uncertainties [12]. The
design of autonomous, robust, and computationally effective controllers for such systems
is still an open and challenging task for the control engineering community.

1.1. Motivation and Literature Review

Several research groups have studied and investigated original approaches for the
guidance, navigation, and control of quadrotors. In [12–14], an omnidirectional stationary
flying outstretched robot (OS4) quadrotor model was used. It was originally developed
at the Ecole Polytechnique Federal De Lausanne (EPFL) to test and validate the proposed
control laws to prove their novelty. The X4 Flyer Mark I I model was an inventive design
using inverted teetering rotors developed by The Australian National University [15–18],
while Mesicopter (developed by off-the-shelf components) was the invention of Stanford
University [19]. STARMAC (I and I I), the Stanford autonomous rotorcraft prototype
for multiagent control, was developed to investigate the aerodynamic influences on the
quadrotor system when it worked outside the hovering region [10,20]. The PIXHAWK
(ETH Zurich) work is commendable and novel for a microquadrotor in terms of its hard-
ware, system software, and building an onboard computer vision system [21]. Table 1
illustrates the popular quadcopter platforms developed and investigated by universities
and companies.

Table 1. Quadrotor platforms.

No. Reference Platform University/Company Year

1 [21] PIXHAWK ETHZ 2011
2 [19] Mesicopter Stanford 2001
3 [12] OS4 EPFL 2004
4 [20] STARMAC Stanford 2005
5 [22] RAVEN MIT 2008
6 [15] X4 Flyer ANU 2008
7 [23] MAVs TUM 2012
8 [24] GRASP GRASP team 2012
9 [25] Parrot AR.DRONE 2.0 French company Parrot 2016
10 [26] mdMAPPER1000 German company MICRODRONES 2017
11 [27] FlyBebop Poznan University of Technology 2020

Several studies have investigated the stability and control performance of quadcopter
systems using the linear PD control method. For instance, in [13,28], a control strategy for
quadrotor-type aerial robots based on the PD loop was developed to stabilize and control
the position of a quadrotor during disturbances. Moreover, in [17], the PD controller was
used to stabilize the Newton–Euler angles along with the altitude of the quadcopter system.
The implementation of the PD controller on a rotorcraft unmanned microaerial vehicle to
control the rotation angles and the attitude stability of the quadrotor system on a flying
platform was described in [29]. The authors in [30] explained the dynamical model of
a quadrotor and implemented the PD control algorithm to regulate the orientation and
trajectory tracking of the quadrotor at slow speeds. Moreover, in [31], an extended Kalman
filter (EKF) based smart self-tuning fuzzy-PID (SSTF-PID) controller for posture control of
the quadcopter was presented. In [32], the authors implemented an adaptive pole placement
based on a self-tuning-PID (ST-PID) controller to stabilize the Euler angle of the quadcopter.
In [33], a gain-scheduling methodology based on a state feedback control (SFC) in the
quadrotor linear model nearby the hovering point was illustrated and the characteristics of
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the quadrotor linear model were analyzed. In order to stabilize a quadcopter and to tune
the PID parameters, a gain-scheduled PID controller and a fuzzy logic control (FLC) were
applied in [34]. Moreover, in that work, they compared the behavior of the conventional
PID and the gain-scheduled PID controllers. In [35], a gain-scheduled PID controller scheme
connected to the quadcopter helicopter plummeting an endorsed load at an assigned time
was presented. In [36], an optimal design of a ducted multipropeller configuration for
the aerodynamic performance of the quadrotor drone was integrated. In [37], the authors
validated their proposed optimal PID controller by stabilizing the attitude and altitude
of the quadrotor system. A novel PID control algorithm was proposed to stabilize the
altitude and rotation angles of the quadcopter helicopter landing on a ship deck in [38].
In [39], the authors implemented a multiloop control technique to control and stabilize
the position control of a quadcopter with the help of a nonlinear backstepping controller
(BSC) and a PID controller to stabilize the orientation angles and altitude for the inner and
outer loops, respectively. A study comparing various control techniques such as PID and
linear–quadratic regulator (LQR) controllers for modeling the dynamics of quadrotors was
presented in [40]. Moreover, an implementation and comparison between the PID and the
MRAC (model reference adaptive control) to stabilize the Euler angles of the quadcopter
helicopter were proposed in [41].

Due to the nonlinear nature of the quadrotor system, nonlinear control algorithms
have been investigated for flight controllers. Some nonlinear control algorithms such as
sliding-mode control for fault-tolerant control [42], robust LPV control [43], decentralized
sliding-mode control [44], and nonlinear model predictive control (MPC) [45] have been
widely used. SMC (sliding-mode control) and BSC were implemented in [28] to solve the
stabilization and trajectory tracking problems of the quadcopter system. Furthermore, a
system design for measuring UAV parameters was also proposed in [46] in order to aid the
tuning of flight control algorithms.

In [14], the authors proposed nonlinear SMC and nonlinear BSC methods to model
and control the OS4 quadrotor model by including a nonlinear control design NCD from
the MATLAB optimization toolbox. In [47], an implementation of SMC to stabilize the
quadrotor and a comparison in terms of performance between an integral-SMC and a
model-based reinforcement learning (MBRL) were proposed. The flight controller using
multiple-loop SMC and the sliding-mode disturbance observer was designed in [48]. The
adaptive sliding-mode control of robot manipulators with system failures was studied
in [49]. Further, in [50], the proposed sliding-mode control was extended using a neu-
roadaptive control methodology and validated concerning the control goals of improving
robust performance against matched uncertainties. In [51,52], the authors used two passive
and active fault-tolerant sliding-mode controllers (PF-SMC and AF-SMC) to design the
ASCTec Pelican quadrotor, using regular and cascaded SMC by tuning the controllers with
an ecological systems algorithm (ESA) and a bioinspired stochastic search algorithm (BSSA).
The authors in [53] proposed a novel integrated path planning and sliding-mode trajectory
tracking control framework for a quadrotor system, which included model uncertainties
and environmental obstacles. In [54], the adaptive neural-network-based nonsingular
fast terminal sliding-mode approach was used for the trajectory tracking control problem
of a quadrotor in order to ensure the finite-time convergence of the integrated system.
More specifically, significant aspects such as uncertainties and external disturbance is-
sues were included. A controller for multiple-input multiple-output (MIMO) uncertain
nonlinear systems, based on intelligent adaptive BSC using a radial basis function neural
network (RBFNN) was presented in [55] to stabilize the orientation and trajectory tracking
of a quadrotor helicopter. A comprehensive review of control methods and techniques
for different UAV structures, including quadrotors, can be found in [56]. In [57], the au-
thors presented an educational platform for simulating the quadrotor system that was
implemented by using MathWorks Virtual Reality toolboxes in order to emulate different
trajectory tracking control. The controller strategies applied for quadrotor platforms could
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be clustered into three categories: linear robust control, nonlinear control, and intelligent
control [58]. Table 2 summarizes all the results presented above.

Table 2. Comparison of the recent and current studies.

Controller

Reference Platform Approach Tuning Method Controller Target

[59] PIXHAWK PID + SMC EKF Localization
[39] COBRA PID + BSC Gazebo Navigation
[60] LinkQuad PID, LQR, PID + LQR ITAE, LQR loop Robustness
[61] MAV PID Neural network Disturbance rejection
[28] QR-UAV SMC and BSC FLC Payload dropping
[14] OS4 SMC and BSC NCD Stabilzation
[47] STARMAC SMC and ISMC MBRL Outdoor control
[51,52] standard PF-SMC and AF-SMC ESA and BSSA Stablization and navigation
[55] MIMO-quadrotor PF-SMC and AF-SMC ESA and RBFNN Trajectory tracking missions
[62] simulation Feedforward-adaptive control theory Adaptive laws Attitude control

Although SMC, BSC, and PID controllers have been proposed in the literature for
quadrotors’ stability and tracking performance, the tuning of these controllers with the
latest optimization techniques for better system responses is still an open challenge in the
presence of disturbances and uncertainty. Recently, the authors in [63] modified the PSO
search algorithm by proposing a new algorithm called modified-PSO for the twin-rotor
system to obtain acceptable performance in terms of system responses. Therefore, according
to the authors’ knowledge, research works that address the tuning of the controller gains
based on heuristic algorithms, i.e., MPSO and GA, for quadrotor stability and tracking
problems, are not available in the literature.

1.2. Key Contributions

This paper extends the preliminary study presented in [64] by adopting a more so-
phisticated control of the quadrotor system. In particular, the stabilization and tracking
problems of a quadrotor system are addressed and resolved with the implementation of a
PD controller, SMC, and BSC based on heuristic algorithms approaches, i.e., MPSO and
GA. Furthermore, the performance of the proposed controllers is tested, analyzed, and
authenticated on both linear and nonlinear models of the quadrotor. A comparative study
between all the proposed and implemented controllers based on heuristic algorithms is
also presented to check the stability and trajectory tracking of the quadrotor system. The
main contributions of this paper are summarized as follows:

1. A nested loop controller is proposed and implemented through three different control
strategies: PD controller, nonlinear sliding-mode controller, nonlinear backstepping
controller;

2. Heuristic optimization tuning algorithms for the proposed control strategies are
applied and investigated;

3. A comprehensive benchmark is established for the developed approaches over a
nonlinear dynamical quadrotor model.

1.3. Outline

The rest of the paper is structured as follows. Preliminaries and the modeling of the
quadrotor are derived in Section 2. Section 3 describes the control design of the system.
The optimization problem of the controllers is investigated in Section 4. Results showing
the effectiveness of the proposed controllers are presented in Section 5. Section 6 concludes
the paper. The stability analysis is introduced in Appendix A.
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2. Preliminaries and Notation

This section helps the reader understand the adopted modeling and control of the
quadrotor considered in this study. Some definitions and information for the sake of readers’
convenience are also derived in the form of notations and preliminaries.

2.1. Notation

Boolean signals, used to illustrate the discrete system, are signals whose values are
determined to be false (indicated by zero) and true (indicated by one). Lowercase nonbold
letters denote scalars; lowercase bold letters represent column vectors; uppercase nonbold
letters indicate matrices and the set of the real numbers is R. In the paper, formulations
are derived in a discrete time k. The continuous time t can be achieved by t = kTs, with Ts
being the sampling time.

2.2. System Model

In this subsection, the quadrotor model used for the controller design is developed.
Figure 1 shows a six-DOF quadrotor equipped with four rotors. The quadrotor is controlled
by varying the angular velocities of rotors, which are rotated by electric motors. Input
control forces and moments are produced by changing rotors speeds (Ω f , Ωl , Ωb, Ωr).

Figure 1. A schematic structure of a quadrotor and its relative coordinate systems.

According to the kinematics and dynamics equations, the quadrotor model can be
derived based on Newtonian mechanics using the presumptions in [13]. In [65], an approach
similar to manipulator identification was applied to estimate the quadrotor model dynamics
over an optimized trajectory. The quadrotor model consists of three main parts: motor
dynamics, rotor velocity controller, and body dynamics. The quadrotor system open-loop
input–output block diagram is presented in Figure 2. The first block corresponding to the
motor dynamics consists of four BLDC motors, each with a first-order lag transfer function.
The speed rotor to a control input signal conversion is in the second block. The third block
consists of two parts: rotational (φ, θ, ψ) and translation (x, y, z) subsystems.
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Figure 2. Quadrotor system open-loop input–output block diagram.

2.2.1. Kinematics Model

In order to derive the kinematics model, two coordinate frames must be described:
the earth inertial frame (x, y, z) and the body-fixed frame (xE, yE, zE) in Figure 1. The two
frames are linked by the following rotational matrix

RΘ =

cψcθ cψsθsφ− sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

, (1)

where RΘ represents the orientation of the helicopter relative to the earth frame, and
c(.) and s(.) denote cos(.) and sin(.), respectively [66]. The relation between angular
velocities ωbody = [p q r]> in the body frame and the angular velocities in the earth
frame (ϕ̇earth = [φ̇ θ̇ ψ̇]>) can be defined asp

q
r

 =

1 0 −sφ
0 cφ sφcθ
0 −sφ cφcθ

φ̇
θ̇
ψ̇

, (2)

which can be written into a compact form as φ̇earth = W−1
v ωbody, with W−1

v the directional
cosine matrix. Consequently, we can describe the relation between the derivative of the
position with respect to the earth frame (Ṗ = [ẋ ẏ ż]>) and the velocity with respect to
the body frame V ∈ R3 as Ṗ = RΘV.

2.2.2. Dynamic Model

The dynamic model consists of two parts, a three-degree-of-translation part (x,y,z) and
a three-degree-of-rotation part (φ,θ,ψ), as illustrated in Figure 2. The translation motion is
coupled, while the rotational motion is completely decoupled [13,39,66]. The quadrotor
model using the Newton–Euler formulation is given by[

Fbody

τbody

]
=

[
mq I3×3 0

0 I

][
v̇body

ω̇body

]
+

[
ωbody ×mqvbody

ωbody ×ωbody Jr

]
. (3)

The Newton–Euler formulation contains the rotational and translational dynamics of
motion. The rotational motion of the quadrotor can be defined using the Newton–Euler
method as follows

τbody = Jω̇body + ωbody × Jωbody + [0 0 JrΩr]
> + MG, (4)
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where τbody ∈ R3×1 is the total torque, J ∈ R3×3 is the diagonal inertia matrix, ωbody are
the angular body rates, and MG are the gyroscopic moments due to the rotors’ inertia
Jr. The rotor’s relative speed is given by Ωr = −Ω1 + Ω2 − Ω3 + Ω4. For the sake of
simplification, a small angle approximation is made around the hover point where c(.) = 1
and s(.) = 0 [67,68]. Substituting Equation (1) into (4), the rotational dynamic model can
be written asτφ

τθ

τψ

 =

Ix 0 0
0 Iy 0
0 0 Iz

φ̈
θ̈
ψ̈

+

p
q
r

×
Ix 0 0

0 Iy 0
0 0 Iz

p
q
r

+

 0
0

JrΩr

, (5)

where Ix, Iy, and Iz are the inertia moments about the main axes in the body frame. The
aerodynamic moments for the ith rotor can be described by τi = ci(Ω2

i ). The quadrotor’s
aerodynamic moments with respect to the body frame are

[τφ τθ τψ]
> = [lCT(−Ω2

2 + Ω2
4) lCT(Ω2

1 −Ω2
3)

CD(Ω2
1 −Ω2

2 + Ω2
3 −Ω2

4)]
>,

(6)

where CT and CD denote the thrust and drag factors, respectively, and Ωi is the angular
velocity of the rotor i. Substituting Equation (6) into (5), the rotational subsystem is
described by φ̈

θ̈
ψ̈

 =


θ̇ψ̇(Iy−Iz)

Ix
− θ̇Ωr Jr

Ix
φ̇ψ̇(Iz−Ix)

Iy
+ φ̇Ωr Jr

Iy
φ̇θ̇(Ix−Iy)

Iz

+


U2l
Ix

U3l
Iy
U4
Iz

, (7)

where
U1 = CT(Ω2

2 + Ω2
3 + Ω2

4 + Ω2
1),

U2 = CT(−Ω2
2 + Ω2

4),

U3 = CT(Ω2
1 −Ω2

3),

U4 = cD(Ω2
1 −Ω2

2 + Ω2
3 −Ω2

4).

(8)

By using Newton’s second law [67], the translation motion is derived in the earth frame
as mq P̈ = [0 0 mq g]> + RΘFbody, where P, mq, and g are the quadrotor’s positions, the
quadrotor’s mass, and the gravitational acceleration, respectively. From [64], the total
forces acting on the quadrotor system in the body frame are given by Fbody = [0 0 −U1]

>.
Indeed, the translation subsystem is described by

ẍ
ÿ
z̈

 = RΘ

 0
0
−U1
mq

+

0
0
g

 =


−(cψsθcφ+sψsφ)U1

mq
−(sψsθcψ−cψsφ)U1

mq
g−(cθcφ)U1

mq


>

. (9)

2.2.3. Actuation Model

BLDC motors were selected in our quadcopter due to their capability to provide little
friction and high torque. A MATLAB identification toolbox was used to identify the model
of the BLDC motor. We provided a PWM input signal to each BLDC motor ranging from
25 to 65, which in rpm represents 1000 rpm to 7000 rpm. The identified first-order transfer
function for each motor was given in the form of Equation (10), and the relation between
angular velocity Ωi of each motor and its control input Ui was given by

G(s) =
499.7

s + 4.416
. (10)
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In order to show the goodness of fit of the BLDC, the fit percent value, which is an accuracy
measure that presents how well the model fits the measured data, was defined as

Fit% = 100×
( ||ymea − ysim||
||ymea − 1

N ∑ ymea||

)
(11)

and from Figure 3 it follows that the measured signal fitted the reference signal with a
goodness of fit of 80.5%.

1 2 3 4 5 6 7 8 9 10 11

Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
o
t
o
r
 
S
p
e
e
d
 
(
R
P
M
)

Best fitting  Model

Measured Output

Figure 3. Experimental identification of BLDC model.

2.2.4. State Space Model

From Equations (7) and (9), the state space representation for the quadrotor system
can be written as follows

X = [x1 x2 . . . x12]
> (12)

that can be mapped to the DOF of the quadrotor as follows

X = [x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇]>. (13)

The state vector defines the quadrotor states: positions, Euler angles, and linear and angular
velocities. The control input vector U is defined as

U =
[
U1 U2 U3 U4

]>. (14)

From (7) and (9), the nonlinear state space representation can be derived as
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F(X, U) =



x1
x2
x3
x4
x5
x6

− (cψsθcφ+sψsφ)U1
mq

− (sψsθcψ−cψsφ)U1
mq

g−(cθcφ)U1
mq

θ̇ψ̇(Iy−Iz)
Ix

− U2l
Ix

φ̇ψ̇(Iz−Ix)
Iy

+ U3l
Iy

φ̇θ̇(Ix−Iy)
Iz

+ U4
Iz



. (15)

3. Control Design

In this section, the trajectory tracking problem of the quadrotor system is solved by
using three different approaches: a PD controller, SMC, and BSC. The scheme of the control
architecture for the quadrotor system is shown in Figure 4. The quadrotor system is a
MIMO system with four inputs and six outputs. The reference input vector R, the error
vector E, the control signal vector U, and the measured outputs vector Y are given by

R =



xd
yd
zd
φd
θd
ψd

, U =


U1
U2
U3
U4

, Y =



xm
ym
zm
φm
θm
ψm

, E =



Ex
Ey
Ez
Eφ

Eθ

Eψ

. (16)

Figure 4. Control architecture for the quadrotor platform. The subscript d denotes the desired
reference values with respect to the positions and the Euler angles.

On account of the quadrotor dynamics, a nested-loop control methodology is suf-
ficient [13]. From (7) and (9), it is evident that the orientation is independent of the
translational motion, but the opposite is not valid. Therefore, an inner-loop control can be
developed to guarantee a relaxed trajectory of orientation and altitude, whereas an outer
loop handles position control for the quadrotor platform. Three different approaches were
used. A PD approach was designed for the outer loop, and all approaches (PD control,
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SMC, and BSC) were designed for the inner loop control. For the three control models, a
saturation function was required to ensure that the reference control inputs U1, U2, U3, and
U4 were within the specified limits. The saturation function could be described through
the equations

U1 = sat(U1 max), U2 = sat(U2 max),

U3 = sat(U3 max), U4 = sat(U4 max),
(17)

where

sat(x) =

{
x if ||x|| ≤ xmax,
sign(x)xmax if ||x|| > xmax.

(18)

Figure 4 defines the control scheme of the quadrotor system.

3.1. Inner Loop

In order to control the Euler angles and altitude of the proposed quadrotor model, an
open-loop simulation was adopted in order to include the attitude and altitude controllers
as shown in Figure 4. Furthermore, the attitude and altitude controller took as an input an
error signal e which was the difference between the desired values and their actual values.
The altitude and the attitude controller produced the output signals U1, U2, U3 and U4,
respectively. For the sake of clarity, the following subsections present the three controllers,
the PD controller, SMC, and BSC controllers, respectively.

3.1.1. PD Controller

For the PID approach, the standard PD controller is represented in the frequency
domain by

C(s) = kp

(
1 +

1
Tis

+
Td

Td
N s + 1

)
E(s) (19)

and the parallel PID controller in the frequency domain is given by

C(s) =
(

kp +
ki
s
+ kds

)
E(s), (20)

where ki =
kp
Ti

is the integral gain, kd = kpTd is the derivative gain, and constant N ≥ 10 for
a realizable standard PD controller. Say U1, U2, U3, and U4 are the desired control inputs
for the quadrotor calculated from the PD approach. Usually, unstable dynamics require
ki = 0. Both the standard PD and parallel PD forms were used to stabilize and control
the attitude (roll angle φ, the pitch angle θ, the yaw angle ψ) and altitude z. The control
signal U1 was responsible for the altitude z and U2, U3, and U4 were responsible to stabilize
the attitude (φ, θ, ψ) as follows

U1 = kpz(z− zd) + kdz(ż− żd), (21a)

U2 = kpφ(φ− φd) + kdφ(φ̇− φ̇d), (21b)

U3 = kpθ(θ − θd) + kdθ(θ̇ − θ̇d), (21c)

U4 = kpψ(ψ− ψd) + kdψ(ψ̇− ψ̇d), (21d)

where zd, φd, θd, and ψd are the desired altitude, roll, pitch, and yaw angles, respectively, żd, φ̇d, θ̇d,
and ψ̇d are the desired height, roll, pitch, and yaw angles’ rate of change, respectively, and
(kpz, kpφ, kpθ , kpψ), (kiz, kiφ, kiθ , kiψ), and (kdz, kdφ, kdθ , kdψ) are proportional gains, integral
gains, and derivative gains of altitude and orientation angles control, respectively.

3.1.2. Sliding Mode Control

Because of the nonlinearity and coupled dynamics of the quadrotor model, linear
control approaches are not sufficient. This section derives an SMC approach, also called
the variable structure control (VSC) method. The main idea behind SMC is the possibility
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to force the system state trajectory on a chosen sliding surface S. The corrective control
function targets reaching the sliding surface by handling state trajectory variations. The
equivalent control conversely assures that the time derivative of the sliding surface is
continuous until it reaches the value of zero, with the aim that the state trajectories remains
on the sliding surface [13,28]. The control signal U(t) in the SMC approach consists of two
parts that are the equivalent control signal Ueq and corrective control signal Uco, as follows

U(t) = Ueq(t) + Uco(t). (22)

Here, we only present the altitude controller. Hereinafter, the attitude controller can
be derived using the same steps. For a fair presentation, the nonlinear system under
investigation was extracted from the state space model derived in (15). The SMC for the
altitude was designed to converge the altitude z position to its desired value zd. The altitude
error signal was given by

ez = zd − z. (23)

The sliding surface was defined as

Sz = kz1(zd − z) + (żd − ż), (24)

where kz1 > 0. The time derivative of the sliding surface yielded

Ṡz = kz1(żd − ż) + ( ˙̇zd − ˙̇z). (25)

Moreover, the Lyapunov control theory was used to retain the error on the sliding sur-
face s(e, t) = 0. A suitable Lyapunov function was defined by

V(Sz, ez) = 0.5(S2
z + e2

z). (26)

By using the guideline in [67], the derivative of the sliding surface was equated to the
following exponential reaching law as follows

Ṡz = −kz1 sign(Sz)− kz2 , (27)

where

sign(Sz) =

{
1 if Sz > 0
−1 if Sz < 0

(28)

and kz1 , kz2 > 0 are constant numbers. Substituting (27) into (25) yielded

kz1(żd − ż) + (z̈d − z̈) = −k1zsign(Sz)− k2zSz. (29)

Substituting (15) into (29), the control input U1 could be written as

U1 =
mq(kz1 ż + kz2 sign(Sz) + g)

cos φ cos θ
. (30)

Similarly, the attitude controller U2, U3, and U4 could be derived to stabilize and converge
the Euler angles φ, θ, ψ to the desired Euler angles φd, θd, ψd as follows

U2 =
(kφ1 φ̇ + kφ2 sign(Sφ)− a1ψ̇θ̇)

b1
, (31)

U3 =
(kθ1 θ̇ + kθ2 sign(Sφ)− a3ψ̇φ̇)

b2
, (32)

U4 =
(kψ1 ψ̇ + kψ2 sign(Sφ)− a5θ̇φ̇)

b3
, (33)
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where

a1 =
Iy − Iz

Ix
, a3 =

Iz − Ix

Iy
, a5 =

Ix − Iy

Iz
, b1 =

l
Ix

, b2 =
l
Iy

, b3 =
1
Iz

. (34)

3.1.3. Backstepping Controller

Backstepping control, which is based on the state space representation derived in (15),
was derived to stabilize and control the orientation and z-position of the quadrotor plat-
form. After this, it was considered a recursive design technique that worked by designing
intermediate control laws for the state variables [69]. Unlike other control approaches
that lead to linearizing the nonlinear models such as the LQR approach, BSC does not
eliminate the system’s nonlinearities. The design approach of BSC is systematic. Therefore,
we introduced the design technique for the altitude. Roll, pitch, and yaw BSC controllers
could be derived correspondingly. The two states (x3, x9) from (15) were the altitude z and
its rate of change ż. By extracting these states from Equation (15), it yielded

x3 = z, x9 = ż. (35)

By differentiating the above equation and by using (7), it followed that

ẋ9 = ẍ3 = z̈ =
g−U1(cos φ cos θ)

mq
. (36)

The altitude z was in the strict feedback (sort of triangular) form that presents the following
Lyapunov function:

V1 =
L2

1
2

, (37)

where L1 is the error between the desired and measured x3d position described as follows

L1 = x3d − x3 = zd − z. (38)

The derivative of the previous form yielded

V̇1 = L1 L̇1 = L1(żd − ż). (39)

In order to achieve this condition, a positive definite bounding function W1L1 was chosen
for bounding V1 as follows

V̇1 = L1(ẋ3d − x9) ≤ −cz1 L2
1, (40)

where cz1 > 0. The virtual control input could be chosen as

ẋ9d = x3 + c1L1. (41)

Moreover, a new error variable L2 had to be defined

L2 = L̇1 − cz1 L1. (42)

By modifying Lyapunov function V1 and its time derivative V̇1 in the new coordinate (L1, L2),
we obtained

V̇1 = L1 L̇1 = −L1L2 − cz1 L2
1. (43)

The previous Lyapunov function V1 was modified through the function V2 defined as

V2 = V1 + 0.5L2
2 = 0.5(L2

1 + L2
2). (44)
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The time derivative of the above equation was given by

V̇2 = V̇1 + V̇2 = L1 L̇1 + L2 L̇2. (45)

Substituting the value of ẋ9 from (15) into (45), it yielded the inequality

V̇2 = −L1L2 − cz1 L2
1 + L2(ẍ3d − ẋ3d − cz1 L1) ≤ −cz1 L2

1 − cz2 L2
2. (46)

Moreover, the actual control input U1 could be found for the overall altitude control
as follows

U1 =
mq

cos φ cos θ
(L1 + cz1 L̇1 − cz2 L2 + g + z̈d), (47)

where cz1 , cz2 > 0. Similarly, the attitude controllers U2, U3 and U4 could be derived
to stabilize and converge the Euler angles φ, θ, ψ to the desired Euler angles φd, θd, ψd
as follows

U2 =
1
b1
(L3 + cφ1 L̇3 − cφ2 L4 − a1θ̇ψ̇ + φ̈d), (48)

U3 =
1
b2
(L5 + cθ1 L̇5 − cθ2 L6 − a3φ̇ψ̇ + θ̈d), (49)

U4 =
1
b3
(L7 + cψ1 L̇7 − cψ2 L6 − a5φ̇θ̇ + ψ̈d), (50)

where b1, b2, b3, a1, a3, and a5 have the same meaning as the terms in (34), with cφ1 , cφ2 , cθ1 , cθ2 ,
cψ1 , cψ2 > 0.

3.2. Outer Loop

After stabilizing the altitude and attitude of the quadrotor system using multivariable
controllers as discussed above, a complete position controller was developed based on
the PD control for the generation of the desired roll angle φd and the pitch angle θd. Then,
the tracking of the orientation angles was accomplished through the inner control loop.
Based on the desired point (xd, yd), the desired (ẍd, ÿd) accelerations were computed by
the position PD controllers and were given by

ẍd = kPx(xd − x) + kIx

∫ t

0
(xd − x)dt + kDx(ẋd − ẋ), (51)

ÿd = kPy(yd − y) + kIy

∫ t

0
(yd − y)dt + kDy(ẏd − ẏ), (52)

where (xd, yd) is the desired position, (ẋd, ẏd) is the desired velocity, kPx, kPy, kIx, kIy,
kDx, kDy are the PD controller gains. The horizontal positions (x, y) were neither decen-
tralized nor could they be controlled immediately with any one of the control signals Ui,
i = 1, · · · , 4. However, the positions (x, y) could be controlled by the Euler angles. The
reference angles (φd, θd) could be resolved from (53) and (54) as the below subequations:

ẍd =
−U1(cos φd sin θd cos ψ + sin φd sin ψ)

mq
, (53)

ÿd =
−U1(cos φd sin θd sin ψ− sin φd cos ψ)

mq
. (54)

Based on the small angle values assumption (φ, θ), i.e., s(φd) = φd, s(θd) = θd, and
c(φd) = c(θd) = 1 about the equilibrium point, we could simplify Equations (51)–(54)
as follows[

ẍd
ÿd

]
=

U1

mq

[
− sin ψ − cos ψ
cos ψ − sin ψ

][
φd
θd

]
,
[

φd
θd

]
=

mq

U1

[
ÿd cos ψ− ẍd sin ψ
−ÿd sin ψ− ẍd cos ψ

]
. (55)
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In order to show the correct working and capabilities of the controller, for the reader’s con-
venience, the mathematical formulation of the stability analysis for the nonlinear controllers
is reported in Appendix A.

4. Optimization Problem

In this section, we formally state an optimization problem for the controller tuning. For
the different control algorithms, the tuning of the controller gains was performed by two
heuristic optimization algorithms: GA and MPSO. These two algorithms have a stochastic
programming strategy that simulates the natural evolution process. We focused on a GA
and MPSO to tune the parameters of the three benchmarked control approaches.

The objective of the optimization is assessed based on the constraints, which use the
critical error as a performance index with these values set as the control gains. Numerous
benchmarks utilize the same performance indices, as described in [70]. The most preferred
benchmarks for performance indices to evaluate the performance of a controller are ISE
(integral squared error) [71], IAE (integral absolute error), ITSE (integral time squared
error), and ITAE (integral time absolute error) [72]. In order to balance the performance
of the controller with the operational cost, an aggregate of ITAE and the squared control
signals Ui were utilized in the following performance index described as

J(e, U) =
∫ ∞

0

(
t|ez(t)|+ t|eφ(t)|+ t|eθ(t)|+ t|eψ(t)|+ U2

1 + U2
2 + U2

3 + U2
4

)
dt. (56)

It was clearly observed that the desired solution to the optimization problem was obtained
by minimizing the objective function J(e, U) using a GA and MPSO. With regards to
physical limitations, the parameters of the controllers must lie in the interval [0, 100]. In
order to guarantee convergence and reliability, 10 random trials were carried out for both
algorithms. The best gains of the GA and MPSO were evaluated using a series of simulation
trials in MATLAB before applying the navigational trajectories. All experiments were run
on a PC with an Intel Core (TM) i7-1185G7 HQ 3.0 GHz and a RAM capacity of 32 GB.
In order to properly scale the different terms in the cost functions, suitable weights were
chosen through a series of simulations. For controller tuning, we tuned the inner control
loop for both linear and nonlinear controllers (attitude and altitude) using a GA and MPSO.
Afterward, we tuned the outer control loop. As a stopping condition, the error tolerance
for the performance index was used, as mentioned in Table 3.

Table 3. GA and MPSO parameters.

Algorithm Parameter Value

Population size 50
Generation Nvar * 100
Elite count 2.5

GA Crossover fraction 0.8
Migration fraction 0.2
Migration interval 20
Function tolerance 10−6

Swarm size Nvar * 10
Max iteration Nvar * 200

MPSO Min fraction neighbors 0.25
Initial swarm span 2000
Function tolerance 10−6

The parameters for the GA and MPSO were selected empirically based on a set of
initial runs for a linear quadrotor model to investigate the optimality performance of the
algorithm parameters following the recommendations in previous work by the authors
for a similar twin-rotor problem [63]. Initial runs for a range of values around the one
mentioned above with crossover fractions (CF) of {0.6, 0.7, 0.8, 0.9} and different population
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sizes of {80, 120, 160} were conducted. The results illustrated in Figure 5 show that a GA
with a CF of 0.8 and a population size (PS) of 120 had an acceptable performance. Based on
the obtained results, we came to a selection for the GA and the corresponding values in the
PSO. In Table 4, PI denotes the performance index, FEC denotes the function evaluations
count, and CT denotes the computation time.

Table 4. Test results for different GA configurations.

Population
Size

Crossover
Fraction Best PI Mean PI Standard

Deviation
Average

FEC
Average
CT (min)

80 0.6 1.216228 1.277688 0.056627 4080 7.50

80 0.7 1.087693 1.191613 0.096759 4080 8.57

80 0.8 1.192226 1.305917 0.068377 4080 10.66

80 0.9 1.157399 1.281824 0.091529 4080 8.55

120 0.6 1.179078 1.312724 0.103165 6120 11.03

120 0.7 1.259124 1.298816 0.037556 6120 11.22

120 0.8 1.195250 1.286108 0.108280 6120 10.47

120 0.9 1.178229 1.254034 0.064195 6120 10.26

160 0.6 1.243172 1.360126 0.074655 8160 13.70

160 0.7 1.173221 1.268387 0.071414 8160 13.79

160 0.8 1.119076 1.449619 0.605782 8160 13.73

160 0.9 1.080213 1.219144 0.090415 8160 13.75

Figure 5. Test results for different GA configurations

5. Results and Discussion

In this section, the inner and outer loops are designed and investigated for the imple-
mented control approaches: PD controller, BSC, and SMC using the GA and the MPSO
optimization algorithms. Table 5 includes the parameters of the quadrotor system utilized
in the experiments. In order to authenticate and validate the experiments in this research
study, the parameters from the ST-450 experimental quadrotor were adopted.
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Table 5. Simulation parameters.

Variable Description Value

mq Mass of the quadrotor 1.006 kg
g Gravitational acceleration 9.81 ms−2

l Moment arm length 0.225 m
Ix Moment of inertia along x 0.0143 kg·m2

Iy Moment of inertia along y 0.0148 kg·m2

Iz Moment of inertia along z 0.0246 kg·m2

CT Thrust factor 2.2901× 10−5 N·s2

CD Drag factor 1.9318× 10−7 Nm·s2

Jr Rotor inertia 6.6231× 10−5 kg·m2

5.1. Optimization Algorithms Performance Analysis

Each controller for the inner loop was optimized and statistically analyzed over
10 trials for both algorithms to guarantee convergence, stability, and reliability. The step
response time-domain characteristics of the best obtained controller with the statistical
measures for the optimization processes are reported in Tables 6–9. The bar charts in
Figure 6 show the statistical analysis of the optimization results of both algorithms over the
10 trials.

Table 6. Optimal tuning results for roll angle control.

Best Mean Standard Average Rise Time Overshoot Settling Time
Objective Function Objective Function Deviation Computing Time (min) (s) % (s)

PD-GA 3.89187 3.90278 0.01139 10.02 0.061 0 0.111

PD-PSO 3.89206 3.89762 0.00723 1.93 0.061 0 0.111

BSC-GA 2.55844 2.5618 0.00324 7.56 0.051 0 0.094

BSC-PSO 2.56584 2.56717 0.00134 3.7 0.052 0 0.094

SM-GA 10.13309 11.57198 1.87204 11.21 0.138 0 0.241

SM-PSO 10.22139 11.14991 1.06096 7.67 0.138 0 0.241

Table 7. Optimal tuning results for pitch angle control.

Best Mean Standard Average Rise Time Overshoot Settling Time
Objective Function Objective Function Deviation Computing Time (min) (s) % (s)

PD-GA 3.89187 3.90278 0.01139 19.34 0.061 0 0.111

PD-PSO 3.89206 3.89762 0.00723 3.89 0.061 0 0.111

BSC-GA 2.55844 2.5618 0.00324 15.89 0.051 0 0.094

BSC-PSO 2.56584 2.56717 0.00134 3.99 0.052 0 0.094

SM-GA 10.13309 11.57198 1.87204 11.22 0.138 0 0.241

SM-PSO 10.22139 11.14991 1.06096 7.69 0.138 0 0.241

Table 8. Optimal tuning results for yaw angle control.

Best Mean Standard Average Rise Time Overshoot Settling Time
Objective Function Objective Function Deviation Computing Time (min) (s) % (s)

PD-GA 39.55843 41.58047 0.85551 8.91 0.189 0 0.337

PD-PSO 39.43105 39.79369 1.00944 4.66 0.189 0 0.326

BSC-GA 39.569 39.57475 0.00631 6.45 0.198 0 0.355

BSC-PSO 39.57773 39.5853 0.00373 4.28 0.196 0 0.351

SM-GA 52.65907 55.06883 3.28271 4.93 0.328 0.4 0.514

SM-PSO 52.75427 53.77765 0.74082 3.98 0.314 0.1 0.508
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Table 9. Optimal tuning results for altitude control.

Best Mean Standard Average Rise Time Overshoot Settling Time
Objective Function Objective Function Deviation Computing Time (min) (s) % (s)

PD-GA 916.05901 916.05954 0.00051 6.24 0.461 5.9 1.142

PD-PSO 916.06168 916.0893 0.04788 1.92 0.461 5.9 1.142

BSC-GA 550.49708 551.42031 2.44355 4.34 0.466 6.5 1.184

BSC-PSO 550.49708 550.56088 0.08678 2.44 0.466 6.5 1.184

SM-GA 793.10311 888.21495 111.88848 6.14 0.754 0 1.464

SM-PSO 797.4567 823.99621 19.36555 1.85 0.756 0 1.464

Figure 6. Statistical performance bar charts for the optimization of the controllers tuning process.

The best configurations obtained for the three controllers are summarized in Tables 10–12.
The step responses are plotted in Figures 7–10 to visually compare the PD controller, the
BSC, and the SMC for the inner control loops. The step commands were a 5◦ step for the
orientation angles, and a 2 m command for the altitude. From Figure 8, it can be observed
that the BSC-GA and the BSC-PSO controllers gave the best roll angles. Interestingly, the
SMC-GA and the SMC-PSO controllers successfully tracked the step command with a
slower response time.

Table 10. Best obtained PD controller parameters of GA and MPSO algorithms after 10 trials.

Attitude Control Heading Control Altitude Control Position Control

kpφ kdφ kpθ kdθ kpψ kdψ kpz kdz kpx kdx kpy kdy

PD-GA 100 3.21 100 3.21 7.76 0.86 100 20.84 10.12 5.97 10.61 6.07
PD-PSO 100 3.21 100 3.21 6.59 0.75 100 20.84 10.06 5.92 11.98 6.60
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Table 11. Best obtained SMC controller parameters of GA and MPSO algorithms after 10 trials.

Attitude Control Heading Control Altitude Control Position Control

kφ1 kφ2 kθ1 k2θ2 kψ1 kψ2 kz1 kz2 kx1 kx2 ky1 ky2

SMC-GA 92.59 72.72 92.59 72.72 17.44 17.16 100 5.15 11 6.60 11.39 6.60
SMC-PSO 90.26 96.37 70.26 96.37 18.11 17.04 5.15 100 10.56 6.25 11.88 6.87

Table 12. Best obtained BSC controller parameters of GA and MPSO algorithms after 10 trials.

Attitude Control Heading Control Altitude Control Position Control

cφ1 cφ2 cθ1 cθ2 cψ1 cψ2 cz1 cz2 cx1 cx2 cy1 cy2

BSC-GA 13.98 99.29 13.98 99.29 3.77 18.22 3.18 68.02 7.43 4.57 8.91 5.08
BSC-PSO 13.99 100 13.99 100 4.09 20.79 3.17 49.06 6.80 4.35 8 4.71
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Figure 7. Step responses for the altitude controllers.
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Figure 8. Step responses for the roll angle controllers.
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Figure 9. Step responses for the pitch angle controllers.
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Figure 10. Step responses for the yaw angle controllers.

To ensure the stability and tracking performance of the three controllers. The three
control configurations were validated against an up–down–up signal. Figures 11–14
illustrate the tracking results of the attitude and altitude. Figures 11–13 show the angles
{φ, θ, ψ} responses based on three different controllers. According to the given input signal,
all the implemented controllers were acceptable for tracking the reference signal for the
angles {φ, θ, ψ}. On the other hand, from the perspective of the control architecture, it is
possible to observe from Figure 14 that the altitude z responses based on the three different
controller algorithms correctly met the reference signal for all variable step commands.
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Figure 11. The up−down−up response of quadrotor with nonlinear approaches of roll angle.

Figure 12. The up−down−up response of quadrotor with nonlinear approaches of pitch angle.

Figure 13. The up−down−up response of quadrotor with nonlinear approaches of yaw angle.
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Figure 14. The up−down−up response of quadrotor with nonlinear approaches of altitude.

5.2. Three-Dimensional (3D) Trajectories

In order to evaluate the proposed control loops, two different 3D trajectories were
considered in a windy environment. The wind effect was implemented as noisy forces and
moments added to the quadrotor dynamical differential equations of motions. The first
trajectory was the curved triangle, which can be mathematically described asxtri

d (t)
ytri

d (t)
ztri

d (t)

 =

 Atri sin
(
ωtrit

)
−Atri sin

(
ωtrit

)
cos(ωt)

Atri cos
(
ωtrit

)
+ btri

, (57)

where Atri = 6, ωtri = 0.033, and btri = −8. Similarly, the helix trajectory was defined as

xhex
d (t)

yhex
d (t)

zhex
d (t)

 =


Ahex sin

(
ωhext

)
Ahex cos

(
ωhext

)
chext + bhex

, (58)

where Ahex = 8, ωhex = 0.1, chex = −0.2, and bhex = −2.
For the curved triangle, Figures 15–17 illustrate the tracking performance of the

curved triangle trajectory for the PD control, the SMC, and the BSC, respectively. Likewise,
Figures 18–20 show the tracking capability for the three controllers following the helix
trajectory. It can be noticed that the PD and the SMC followed the trajectories perfectly
while the BSC produced a slightly significant tracking error at some waypoints along both
trajectories. One of the known disadvantages of BSC is that it generates aggressive control
signals. Recalling from the step response, the BSC achieved the fastest response time for
the roll angle, but at the expense of more aggressive trajectories. Therefore, the trajectories
for the BSC exhibited tracking errors away from reference points at steeper maneuvers.
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Figure 15. PD tracking measures for the curved triangular trajectory

Figure 16. SMC tracking measures for the curved triangular trajectory.

Figure 17. BSC tracking measures for the curved triangular trajectory.
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Figure 18. PD tracking measures for the helix trajectory.

Figure 19. SMC tracking measures for the helix trajectory.

Figure 20. BSC tracking measures for the helix trajectory.

For further investigation, the mean square error (MSE), the normalized root-MSE
(NRMSE), and the goodness of fit percentage for the tracking performance over the three
dimensions were calculated. These statistical measures were defined as

MSE =
1
N

N

∑(xd − x)2, (59)
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NRMSE = 100× ‖xd − x‖∥∥∥xd − 1
N ∑N xd

∥∥∥%, (60)

Goodness = (100−NRMSE)%, (61)

respectively. Tables 13 and 14 comprise the computed measures over the x, y, and z axes
for the two trajectories, respectively. The BSC aggressive maneuvering can be noticed on
the y dimension for the curved triangle trajectory with an increase of the NRMSE up to 8%.
Moreover, the BSC exhibited an NRMSE of 10–11% on the x and the y axes. On the other
hand, the PD controller and the SMC showed perfect tracking properties with a goodness
of fit measure of 98–99%.

Table 13. Statistical tracking measures for the curved triangle trajectory.

x y z

MSE NRMSE Goodness MSE NRMSE Goodness MSE NRMSE Goodness
% % % % % %

PD-GA 0.0009 0.73 99.27 0.0012 1.66 98.34 0.0097 1.13 97.72

PD-PSO 0.0009 0.74 99.26 0.0009 1.48 98.52 0.0097 1.13 97.72

BSC-GA 0.0068 2.04 97.96 0.0273 8.61 91.39 0.0014 0.43 99.12

BSC-PSO 0.0074 2.12 97.88 0.0246 8.14 91.86 0.0014 0.43 99.12

SMC-GA 0.0016 0.96 99.04 0.0011 1.63 98.37 0.0029 0.61 98.76

SMC-PSO 0.0018 1.02 98.98 0.0014 1.78 98.22 0.0029 0.62 98.75

Table 14. Statistical tracking measures for the helix trajectory.

x y z

MSE NRMSE Goodness MSE NRMSE Goodness MSE NRMSE Goodness
% % % % % %

PD-GA 0.0188 2.45 97.55 0.0156 2.29 97.71 0.0098 0.44 99.05

PD-PSO 0.0191 2.47 97.53 0.012 2 98 0.0098 0.44 99.05

BSC-GA 0.3168 10.87 89.13 0.289 10.64 89.34 0.0016 0.18 99.61

BSC-PSO 0.3353 11.21 88.78 0.2643 10.13 89.85 0.0016 0.18 99.61

SMC-GA 0.0016 0.71 99.29 0.0012 0.61 99.39 0.0089 0.42 99.09

SMC-PSO 0.0019 0.75 99.25 0.0014 0.67 99.33 0.0089 0.42 99.09

6. Conclusions and Future Prospects

This paper presented three control techniques (PD control, SMC, BSC) that were
tuned based on heuristic algorithm approaches (GA and MPSO) to stabilize a nonlinear
quadrotor model. Depending on the model states, inner loop control and outer loop control
strategies were employed to stabilize and track the orientation and position commands.
The MATLAB/SIMULINK environment was adopted to evaluate and compare the imple-
mented controllers with different optimization techniques in their dynamic performances
under different inputs and scenarios. The ST-450 experimental quadrotor was used as
a benchmark.

A parameter tuning of the implemented controllers was carried out using GA and
MPSO, where the performance index guided the cost function. The GA and the MPSO
were used, with the cost function count and error tolerance as stopping criteria. The
results showed that the performance index within a sufficient search time calculated
through the GA optimization was better and contrasted with the MPSO. Furthermore, the
statistical examination of 10 independent trials was illustrated to ensure the applicability
and reliability of the achieved resolution for these controllers. The PD control performed
better than the BSC and the SMC when the quadrotor flew inside the linear region around
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the hovering point. Comparatively, the BSC and the SMC showed good performance
outside the linear equilibrium range. According to the system’s step response tests, the GA
showed better results with a good sensible settling time, rise time, and overshoot, than the
MPSO. The varying trajectory up–down–up test for the trajectory tracking of the quadrotor
was also carried out for a thorough comparison between all three control configurations
on the nonlinear model of the quadrotor system. Finally, the 3D trajectories of the curved
triangle and helix showed the validity and applicability of the benchmarked controllers.
However, the BSC exhibited some aggressiveness in the tracking performance.

Future work includes extending the proposed study to a real-world environment and
experiments to get a deeper comparison of their dynamic performance. Additionally, we
wish to extend and enhance the system’s performance with the design of a computationally
effective MPC approach to improve tracking performance and the ability of the quadrotor
to carry payloads.
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Appendix A. Stability Analysis

In this appendix, the state convergence properties of nonlinear controllers are analyzed
and are evaluated based on the Lyapunov stability approach. Consider the positive definite
Lyapunov function

Vi = 0.5L2
i , (A1)

for i = 1, 2, . . . , 8. The system is analyzed in the transformed coordinate system using
nonlinear control for the altitude dynamics as follows[

L̇1
L̇2

]
=

[
c1 −1
1 c2

][
L1
L2

]
. (A2)

The closed-loop system is a nonlinear autonomous system in the coordinates of the er-
ror. The stability of such a nonlinear autonomous system can be analyzed based on the
Krasovskii–LaSalle formula [73]. Using (44), the Lyapunov function is positive definite, ra-
dially unbounded. Using (45), the system is ensured to be stable if the Lie derivative of (A1)
is negative semidefinite. Based on Lyapunov’s second approach, the system is globally
asymptotically stable. Furthermore, the trajectories L1 and L2 are bounded. From (47), the
actual control input boundedness can be formulated. Furthermore, the Lyapunov function
has a minimum rate of dissipation given by

V̇2(L) ≤ −αV2(L), (A3)

where c1 ≥ 0.5, c2 ≥ 0.5, and L = [L1 L2]. Consequently, the system is globally expo-
nentially stable with a bounded control input. Hereinafter, a bound on the error of the
transient tracking is derived for the controller gains. Based on (45), the rate of the Lyapunov
function satisfies

V̇2(L) ≤ −c1L2
1 (A4)
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and the L2 norm of the transient tracking error is defined as follows

||L1||2 =
∫ ∞

0
L1(τ)

2dτ

≤ −1
c1

∫ ∞

0
V̇2(L(τ))dτ

≤ 1
c1
[V2(L(0))−V2(L(∞))]

≤ 1
c1

V2(L(0)).

(A5)

Following the same method as the altitude controller, the stability analysis for the attitude
nonlinear control approaches is derived.
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