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Abstract: Optimizing naval aircraft deck sortie scheduling is important for improving the sortie
efficiency of naval aircraft groups. It is also an important link in realizing the automated scheduling
of aircraft carriers. Firstly, a single-aircraft surface transit path library was constructed. This paper
used the improved A* algorithm and the optimal control deck path planning algorithm to construct
the transit path library between the deck parking position and take-off position, or between warmable
and non-warmable parking positions. Secondly, a mathematical optimization model was constructed
for the sortie scheduling of a mixed fleet of fixed-wing carrier aircraft and carrier helicopters. The
model took the maximum sortie time of the fleet and taxiing time of the fleet of fixed-wing aircraft
as the optimization objectives, and considered the process flow, spatial, and resource constraints.
Thirdly, a discretized improved whale optimization algorithm (IWOA) was designed to solve the
problem. To improve the optimization-seeking capability of the algorithm, we discretized the
algorithm, optimized its coding method, and introduced pre-constraints, learning factors, parameter
improvements, and population restart. Finally, we set up various cases and proposed a new strategy
for simulation experiments: these simulations verified the validity of the model, the excellent
optimization performance of the IWOA, and the superiority of the sortie strategy. The research
in this study will help to implement automated aircraft carrier scheduling.

Keywords: unmanned carrier aircraft; mixed fleet; sortie scheduling; improved whale
optimization algorithm

1. Introduction

The aircraft carrier fleet is a “great weapon” for maritime operations, as a compact
maritime airfield containing many advanced technologies: its comprehensive effectiveness
is closely related to the technical and tactical performance of its carrier aircraft, and to
the efficiency of its deck operations, which are mainly responsible for planning and com-
manding the landings and sorties of aircraft, reflecting the “soft” strength of the carrier’s
integrated support. Compared to land-based airports, aircraft carrier decks have limited
space, high safety risks for moving platform operations, a variety of tasks, complex pro-
cesses and resource constraints, complex coupling of different operations, and demanding
support timelines; therefore, researching carrier aircraft surface operations scheduling, so
that the fleet can safely, collaboratively, and efficiently complete operational tasks such as
take-off, landing, and surface support, is an important part of improving the effectiveness
of carrier sorties, and a key technology for enhancing the comprehensive support and
combat capability of aircraft carriers, and for automating their dispatch.

When a fleet of aircraft is deployed, the choice of support positions and take-off posi-
tions, the type of aircraft departing, and the sequence of deployments will greatly impact
the sortie time; moreover, a large number of aircraft concentrated in a small space for mass
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transfer is highly susceptible to collision, which can lead to significant conflict between
safety and efficiency; furthermore, as unmanned technology continues to develop, un-
manned aerial vehicles will become part of the Navy’s carrier operating environment: this
will add significant complexity to an already highly stressful and dangerous environment.
The shift to a manned–unmanned shared environment means that aircraft, tow vehicles,
and crew planning and scheduling must be more automated. Fully and rationally utilizing
the deck space to ensure that the carrier aircraft can be deployed and depart quickly, safely,
and in an orderly manner, and with a high degree of automation, is an important problem
facing aircraft carriers today.

Current research on surface scheduling is focused on full-process scheduling and
phased scheduling. In terms of model construction, for full process scheduling, Michini [1]
and Ryan [2–4] conducted a series of studies based on methods such as integer program-
ming, which paved the way for a holistic architecture for surface scheduling research. In
phased scheduling, there are simulation models [5], queuing network models [6], intelli-
gent body collaboration models [7], optimal control models [8], mixed-integer planning
models [9], mission planning models [10], and mixed integer planning models [11]: they
solve deck, munitions support, and sortie and recovery scheduling problems.

These reasonable models have achieved optimal or exact solutions, but they still
lack adaptability to the problems investigated in this study: for example, the integer
programming model is more suitable for the exact solutions to single-stage problems,
and is extremely inefficient for the large-scale dispatching problem studied herein. Most
other simulation and queueing models need human intervention, and cannot achieve
full scheduling automation. Some of the models are too abstract, and not comprehensive
enough to describe the scheduling problems in this study, or they are limited to simulating
the sorties of fixed-wing aircraft, and lack careful consideration of mixed fleets of fixed-
wing aircraft and carrier helicopters: for example, fixed-wing aircraft need to warm up their
engines before sorties, but some deck spaces cannot be warmed up because of the structure
of the aircraft carrier, so the fixed-wing aircraft need to be transferred first, while the carrier
helicopters do not require this step; fixed-wing aircraft need to skid when taking off, which
takes up a lot of deck space, while carrier helicopters only take up a small space at the
take-off position; the fleet will interfere, owing to limitations in transfer equipment, space
resources, etc. A new optimization model for the automated sortie scheduling problem for
fixed-wing aircraft and helicopter mixed fleets is required: we refer to our model study as
Automated sortie Scheduling Problem for Mixed Fleet (ASPMF).

The scheduling optimization algorithms are mainly exact solution methods, repre-
sented by the branch-and-bound methods: for example, the Gurobi commercial optimizer
is based on the MIP model, but its application to complex constrained scheduling problem
cases is less frequent. Although constrained planning methods use constraint propagation
and neighborhood reduction, they possess the same computational complexity as the exact
solution methods. Construction heuristics and meta-heuristic search algorithms based on
heuristic rules (such as SA), greedy iterative algorithms based on neighborhood search, and
evolutionary algorithms based on population intelligence search (such as GA, ABC, PSO,
and quantum algorithms [12,13]) are computationally efficient, but do not easily obtain
globally optimal solutions, being prone to premature maturity or restricted to local optima.
Reinforcement-learning-based scheduling algorithms are another option, for which there
is currently a lack of large amounts of data for training. In this study, an improved whale
optimization algorithm (IWOA) with higher solution efficiency was designed, to solve the
model optimally, and to realize the co-optimization of fleet deployment, sortie timing, and
take-off position selection.

The fixed-wing carrier aircraft and carrier helicopters mentioned are both unmanned
aircraft. The remainder of this section outlines the focus of work in this study.

Before conducting the scheduling optimization study, extensive preparatory work
was done for this paper. We constructed an ASPMF path library. To perform single-
carrier aircraft path planning, we used a carrier deck surface path planning algorithm that
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combined the A* algorithm with an optimal control algorithm [8,14,15]: thus, we obtained
the shortest path for the deck transfer of the carrier aircraft, which satisfied kinematic,
terminal position constraints, and deck space resource constraints. An ASPMF path library
of over 300 paths was constructed via route planning for any two aircraft positions.

In the model construction, we used the ASPMF path library to optimally model the
ASPMF. In terms of the optimization objectives, we set up two optimization objectives, min-
imizing fleet departure time and carrier aircraft taxiing time, which were optimized hi-
erarchically. In terms of constraints, we considered the process flow, space resource, and
support resource constraints on the process of the carrier aircraft sortie. This model al-
lowed us to solve multiple types of carrier aircraft sortie schedule problems that had never
been studied.

In terms of the optimization algorithm, we proposed the improved whale optimization
algorithm (IWOA) [16]. We discretely designed the algorithm using list coding, and
improved it through a learning factor and pre-constraint, parameter dynamic improvement,
and population restart.

Three sortie scenarios, for case simulations with 8, 12, and 16 aircraft, were constructed.
Simulations were conducted to verify the validity of the model and the excellent optimiza-
tion performance of the IWOA. A hybrid sortie strategy was proposed and compared with
the existing sortie strategy, to demonstrate that it could effectively improve the efficiency of
the sortie.

2. Related Works
2.1. Fleet Sortie Scheduling

The complete carrier aircraft take-off and landing operation flow is shown in Figure 1:
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Figure 1. Carrier aircraft fleet take-off and landing operation flow. 

The operation process includes air and surface operations, and its scheduling opti-
mization is divided into surface and air operation scheduling. The entire operation pro-
cess—except for air execution, air waiting, and landing—and the rest of the tasks in each 
phase, are the problems that need to be studied for the take-off and landing of carrier 
aircraft. 

In recent years, several studies have been conducted on ship surface schedules. With 
regard to deck operations, in [17], the authors developed a robust scheduling model for 
flight deck operations, and designed a base hybrid teaching optimization algorithm that 
successfully improved the robustness of flight deck operations; in [5] the authors 
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The operation process includes air and surface operations, and its scheduling optimiza-
tion is divided into surface and air operation scheduling. The entire operation process—
except for air execution, air waiting, and landing—and the rest of the tasks in each phase,
are the problems that need to be studied for the take-off and landing of carrier aircraft.

In recent years, several studies have been conducted on ship surface schedules. With
regard to deck operations, in [17], the authors developed a robust scheduling model for
flight deck operations, and designed a base hybrid teaching optimization algorithm that
successfully improved the robustness of flight deck operations; in [5] the authors devel-
oped an integrated optimization model for job scheduling and resource allocation, and
proposed a multi-objective super heuristic selection function-based model-solving method,
to develop an effective job scheduling plan under different resource configurations. With
regard to weapons transfer, in [11] the authors developed a mixed-integer programming
model, and proposed a dual population immunity algorithm that could effectively cope
with the problem of securing weapons for carrier aircraft under different sortie missions.
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With regard to deck resource scheduling, in [18] the authors proposed an improved variable
neighborhood search algorithm, with four original neighborhood structures for the joint
optimization of flight deck resource station configurations and carrier pre-flight scheduling.
With regard to fleet recovery, in [9,10] the authors formulated the sequencing problem of
aircraft fleet landing, as an optimization problem with a cost function, and proposed a
dynamic sequencing algorithm based on an ant colony algorithm, to obtain the optimal
sequence of aircraft fleet landing. The authors then proposed a new distributed mission
planning architecture that considered realistic constraints at all levels of the distributed
structure (vortex effects, crowd effects, aircraft motion), and a distributed path planning
algorithm based on an asynchronous planning strategy, to solve the carrier aircraft sortie
mission planning problem. With regard to path planning, in [19] the authors developed a
conceptual model of helicopter landing, containing two phases—approach and landing—
and proposed a multiphase path planning algorithm with pigeon-inspired optimization
(MPPIO), to solve the path planning problem of autonomous helicopters landing on aircraft
carriers. In [20] the authors developed a path planning model that combined manual
experience with an improved artificial swarm algorithm, to propose a method for planning
the trajectory of a carrier aircraft on deck. In [21] the authors proposed a genetic algorithm
and threat prediction-based probabilistic neural network (PNN) approach for real-time tra-
jectory planning, which successfully implemented online flight trajectory planning. In [22]
the authors designed a multihabitat parallel chaotic algorithm (KCMPSO) to solve the
aircraft transfer path planning problem for aircraft carriers. As mentioned above, despite
extensive research in the field of deck support, the study of fleet sortie scheduling has been
mainly limited to path planning and fixed-wing aircraft. Path planning is extremely limited
in its consideration of practical constraints, and we need a realistic, accurate, and efficient
model and algorithm to solve the problem of scheduling the sorties of multiple types of
unmanned carrier aircraft under complex constraints.

If we ignore the spatial constraints of the transfer paths and parking spaces, and
consider the aircraft as workpieces—where warm-up, transfer, and take-off are operational
processes in different phases, and transfer equipment in each phase as parallel machines—
then we can abstract the ASPMF as a hybrid flow shop scheduling problem (HFSP), where
the operational phases interfere with each other [23]; therefore, we implemented model
improvements based on the hybrid flow shop model, to provide an in-depth study of
DSPMF under complex constraints.

2.2. Hybrid Flow Shop Problem

Workshop scheduling problems include various classifications, such as single machine
scheduling [24], parallel machine scheduling [25], flow shop scheduling [23], job shop
scheduling [26], flexible shop scheduling [27], and open shop scheduling [28]. Depending
on the type of parallel machine, HFSPs can be divided into three categories: identical
parallel machine [29]; uniform parallel machine [30]; and uncorrelated parallel machine [31].
According to the abstraction method described in the previous section, the safeguard
equipment involved in the process of carrier aircraft sorties can be abstracted as parallel
machines, even if the individual tractors have the same function, because the waiting time
to call the tractors is different. We can consider parallel machines to have the same function
but different processing times; therefore, the problem we study can be abstracted as a
uniform parallel machine problem.

Combined with the characteristics of our study, this involves several classifications of
HFSPs. For example, only one carrier aircraft can take off from any take-off position, so the
take-off operation of the carrier aircraft is a blocked HFSP [32]; there is a waiting position
for the fixed-wing carrier aircraft after its take-off position, which is equivalent to a buffer
zone, and this stage is a limited buffer HFSP [33]; compared to a fixed-wing aircraft, a naval
helicopter lacks a warm-up process, so it is a skippable HFSP [34]; the warm-up process of
a fixed-wing aircraft requires immediate taxiing when the warm-up is completed in order
to reduce fuel consumption, and this phase is a zero-idle HFSP [35]. Therefore, although
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the problem we studied was similar to the hybrid flow shop scheduling problem, it was
more complex, and involved more constraints.

There are currently four main approaches to finding the optimal solution for HF-
SPs: integer programming, heuristic algorithms, meta-heuristic algorithms, and learning
algorithms [36,37]. Traditional integer programming methods are only suitable for the
exact solutions of small-scale problems derived from two-stage HFSPs to k-stage HFSPs,
where complex constraints between stages and machines reduce the speed of integer
programming solutions, making it difficult to find the optimal solution in an efficient time.

To solve two-stage HFSPs, researchers have used an exact algorithm to verify the
derived lower bound for the problem. In [38], the authors formulated a mixed-integer
programming model for an energy-efficient HFSP, and adopted an estimation of distribution
algorithm to solve large scale problems; in [39], the authors formulated a new mixed-integer
programming model for this multi-objective HFSP; to realize the green scheduling, an
energy conservation/noise reduction strategy is embedded into this model.

In heuristic algorithms, scholars determine optimal solutions using assignment rules
and local search mechanisms. In [40], the authors investigated a skippable HFSP with
a minimum completion time as the optimization objective. The authors optimized the
completion time by improving the LPT and SPT rules. In [41], the authors proposed
heuristic algorithms along with priority rules based on traditional SPT and LPT rules, to
solve a new variant of the HFSP.

In terms of meta-heuristic algorithms, in [42], the authors proposed a hybrid genetic
algorithm-based ant colony optimization (GACO), to solve the minimum completion time
problem for a re-entrant HFSP with time window constraints. In [43], the authors proposed
an improved Particle Swarm Optimization (PSO) algorithm, to solve the HFSP for the
same parallel machine, considering the influence of human factors. In [44], the authors
constructed a hybrid biogeography-based optimization with a variable neighborhood
search mechanism, to solve the no-wait HFSP. In [31], the authors proposed an improved
genetic algorithm for solving the HFSP.

In terms of learning algorithms, in [45], the authors approximated the value function
using a neural network to solve the flow shop scheduling problem; under the reinforcement
learning framework, satisfactory results were obtained for all seven machine sets.

Except for a few individual problems, most workshop scheduling problems are NP-
hard problems. Only intelligent scheduling methods are available for mid- and large-scale
problems, to obtain a satisfactory solution that weighs computational timeliness and
scheduling optimality.

3. Description of the Problem

The departure of fixed-wing naval aircraft consists of four main stages, which are
outlined below.

1. Warm-up and self-test. According to the requirements of fixed-wing carrier engines,
a warm-up and self-test are required before take-off, to confirm whether the perfor-
mance indicators of the engine are normal. This stage generally requires 2–3 min.
Because of the design characteristics of the carrier structure, some positions cannot
operate aircraft warm-ups, as the fixed-wing aircraft tail flames would cause ablation
of the carrier structure: therefore, some aircraft need to be transferred at this stage.

2. Waiting behind the deflector. When the aircraft completes the engine warm-up and
self-test, it is transferred to the take-off position. If the target take-off position already
exists, the aircraft will be transferred to the waiting position behind the target take-off
position: as this stage involves deck transit, transit collision avoidance constraints must
be considered, to prevent collisions due to interference in the path of the carrier aircraft.

3. Preparation at the take-off position. Once the aircraft has reached the target take-off
position, it can be prepared for take-off.

4. Take-off. When the carrier aircraft has completed all preparations, it waits for the
take-off order, and completes it.
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For carrier helicopters, we divided the sortie process into two sub-stages, which are
outlined below.

1. Transfer to take-off position. After the helicopter has completed its support, it can
be transferred to the target take-off position: this stage requires consideration of the
transit path blocking, aircraft position interference, and transit collision avoidance
constraints. The road conditions determine the timing of the helicopter transfer, and
the helicopter must wait in the original parking position when there is a helicopter in
the target position.

2. Take-off preparation and take-off. Once the helicopter has reached the target take-off
position, preparations are made for take-off, such as rotor deployment, navigation
calibration, and control system self-testing. After completing this series of tasks, the
helicopter can wait for the take-off command to execute the take-off, which takes
approximately 5 min.

The complete take-off process is shown in Figure 2:
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A detailed analysis of the mixer group sortie process includes the constraints
outlined below.

1. Warm-up position constraints. As mentioned above, a fixed-wing aircraft needs to
be transferred first, for aircraft that are unable to complete engine warm-up in their
initial position. The transfer must be operated when no warm-up position is available,
after the other aircraft has left the parking position.

2. Transport collision avoidance restraints, to ensure that no collisions occur during the
carrier aircraft transfer process.

3. Blockage of transit path by parking position. As shown in Figure 3, for helicopter
take-off position C7, all helicopters selecting the C7 take-off position will interfere
with the carrier aircraft A12, A13, and A14. Only after the A12, A13, and A14 carrier
aircraft take off will the taxi to take-off position for C7 be clear.

4. Runway incursion constraint. As shown in Figure 3, if a carrier aircraft is parked
at the C1 take-off position or the waiting position behind it, it will invade the take-
off runway of the C3 take-off position, which will cause C3 to be unable to take
off. Similarly, the carrier helicopters parked at the C4 take-off position occupy the
runways corresponding to the C1, C2, and C3 take-off positions, and the carrier
helicopters parked at the C6 take-off position occupy the runway corresponding to
the C3 take-off position.

5. Take-off interval constraint. After a fixed-wing carrier aircraft takes off, its take-off
wake disturbs the airflow field on the carrier surface, which leads to a higher risk
for subsequent aircraft take-off, and the deflector plate behind the fixed-wing carrier
aircraft take-off position also needs to be reset and cooled. For helicopters, it takes
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time to reach a safe distance from the carrier after take-off; therefore, after a carrier
aircraft has taken off, a period of time must be allowed for the next carrier aircraft to
take off, to ensure safe sortie.

6. Operational flow constraint. Fixed-wing aircraft and carrier helicopters are required
to complete their respective take-off procedures in a specific sequence before they
can sortie.

7. Take-off weight constraint. When the take-off weight of the carrier aircraft exceeds a
certain limit, the take-off must be performed at the C3 take-off position with a longer
glide distance, to ensure that the carrier aircraft achieves the required speed when
leaving the deck.

8. Take-off position selection constraint. As fixed-wing aircraft and helicopters have
different types of take-off positions, they need to be constrained in the selection of
take-off positions.
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We consider that the wings of both the fixed-wing aircraft and the helicopters are
folded during the transit stage, and are not deployed until they reach the take-off position.

In summary, ASPMF is a study to optimize the timing and positioning of a mixed
fleet of aircraft at each stage of departure, under complex constraints such as warm-up,
space resource, operational flow, and take-off position selection constraints, to minimize
the completion time and deck taxiing time of each fleet of aircraft.

4. Path Library and Mathematical Formulation
4.1. Path Library Construction

To obtain the shortest path of ship transfer that satisfies the kinematic and start/end
position attitude constraints, in order to improve the efficiency of ship transfer, we adopted
an earlier reported path planning method [8,14,15], so as to carry out single aircraft deck
path planning, and construct a ship deck transfer path library. The effect of single aircraft
path planning is shown in Figure 4.
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Figure 4. Single carrier aircraft path planning results.

The parameters in the optimal control algorithm were set as follows: obstacle shape pa-
rameter p = 3, aircraft front and rear wheelbase L1 = 5.88 m, tractor front and rear wheelbase
L2 = 2.4 m, aircraft steering angle β1max = π/4, tractor speed −1 m/s ≤ v2 ≤ 1 m/s,
control quantity (tractor acceleration) −1 m/s2 ≤ u2 ≤ 1 m/s2, the angle between the
axial direction of the carrier aircraft and the x-axis −π ≤ θ1 ≤ π, the angle between the
axial direction of the tractor and the x-axis −π ≤ θ2 ≤ π, as the distance between the
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tractor articulation point and the center of the rear wheels of the tractor was extremely small
in the actual tractor M0 = 0, and the control quantity −1 ≤ u1 ≤ 1 (tractor steering angle
−π/4 ≤ β2 ≤ π/4). The transfer path bank between the deck and hangar stops is shown
in Figure 5.

Drones 2022, 6, x FOR PEER REVIEW 8 of 29 
 

 
Figure 4. Single carrier aircraft path planning results. 

The parameters in the optimal control algorithm were set as follows: obstacle shape 
parameter =3p , aircraft front and rear wheelbase 1=5.88mL , tractor front and rear wheel-
base 2 2.4mL = , aircraft steering angle 1max = / 4β π , tractor speed 21m / s 1m / sv− ≤ ≤ , con-
trol quantity (tractor acceleration) 2 2

21m / s 1m / su− ≤ ≤ , the angle between the axial direc-
tion of the carrier aircraft and the x-axis 1π θ π− ≤ ≤ , the angle between the axial direction 
of the tractor and the x-axis 2π θ π− ≤ ≤ , as the distance between the tractor articulation 
point and the center of the rear wheels of the tractor was extremely small in the actual 
tractor 0 0M = , and the control quantity 11 1u− ≤ ≤  (tractor steering angle 

2/ 4 / 4π β π− ≤ ≤ ). The transfer path bank between the deck and hangar stops is shown 
in Figure 5. 

 
Figure 5. Path library. 

4.2. Mathematical Formulation 
4.2.1. Problem assumptions: 
1. When an operation begins, it cannot be stopped; 
2. Only one transfer equipment may be accepted for transfer at any transfer stage at any 

one time; 
3. The carrier aircraft can perform a transfer operation with any transfer equipment 

corresponding to each stage; 
4. The parameters of the path library are constant, and are unaffected by other transfer 

operations; 
5. The interference of unexpected factors, such as malfunction, is not considered. 

4.2.2. Notation 
The relevant notations and decision variables for modeling the ASPMF are provided 

in Table 1. 

Table 1. The relevant notations and decision variables for modeling the ASPMF. 

Notation Definition 

1I  The set of fixed-wing carrier aircraft { }1 11,2, ,I Nf=  . 

2I  The set of carrier helicopters { }2 21,2, ,I Nf=  . 

I  The set of mixed fleet { }1 2 1,2, ,I I I Nf= =  , 1 2Nf Nf Nf= + . 

Figure 5. Path library.

4.2. Mathematical Formulation
4.2.1. Problem Assumptions

1. When an operation begins, it cannot be stopped;
2. Only one transfer equipment may be accepted for transfer at any transfer stage at any

one time;
3. The carrier aircraft can perform a transfer operation with any transfer equipment

corresponding to each stage;
4. The parameters of the path library are constant, and are unaffected by other

transfer operations;
5. The interference of unexpected factors, such as malfunction, is not considered.

4.2.2. Notation

The relevant notations and decision variables for modeling the ASPMF are provided
in Table 1.

Table 1. The relevant notations and decision variables for modeling the ASPMF.

Notation Definition

I1 The set of fixed-wing carrier aircraft I1 = {1, 2, · · · , N f1}.
I2 The set of carrier helicopters I2 = {1, 2, · · · , N f2}.
I The set of mixed fleet I = I1 ∪ I2 = {1, 2, · · · , N f }, N f = N f1 + N f2.

Ψj
The set of parking positions that can be used for the j-th stage of the

start-up process.
P The set of parking positions.

J

The set of sortie operations, J = {0, 1, 2, 3, 4}, 0 is the initial operation,
the 1 operation of the helicopter is equivalent to the 2 operation of the
fixed-wing carrier, and the 2 stage of the helicopter is equivalent to the

4 stage of the fixed-wing carrier.

R The set of take-off positions R = R1 ∪ R2,R1 = {C1, C2, C3},
R2 = {C4, C5, C6, C7}.

Oij The j-th operation of carrier aircraft i-th.

TR(p, q, Apt(p, q)) The duration of the carrier aircraft transit from initial position p to target
position q at time t.

txj The duration of tethering and untethering for carrier aircraft.
dwj The duration of fixed-wing carrier aircraft j-th operation.
dhj The duration of carrier helicopter j-th operation.

γp
The take-off position corresponding to waiting position

p,p ∈ Ψ2, γp ∈ Ψ3.

Φp(p, q) The set of parking positions that interfere with the path from the initial
position p to the target position q.
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Table 1. Cont.

Notation Definition

Φr(p, q) The set of runways invaded by the path from the initial position p to the
target position q.

δi
Wake interval of the i-th fixed-wing carrier aircraft or safe departure time

of the i-th carrier helicopter.
∆tb The duration of deflector cooling and resetting.
mi Take-off weight of the i-th fixed-wing carrier aircraft.

f mp Maximum take-off weight at take-off position p.
Swij The start time of the j-th support operation of the i-th carrier aircraft.
Ewij The end time of the j-th support operation of the i-th carrier aircraft.
Szij The start time of the j-th transfer operation of the i-th carrier aircraft.
Ezij The end time of the j-th transfer operation of the i-th carrier aircraft.

Pij
The parking position occupied by the j-th operation of the i-th

carrier aircraft.

Ypijegp

If the j-th operation of the i-th carrier aircraft occupies the same parking
position as the g-th operation of the e-th carrier aircraft, and the i-th

carrier aircraft has higher priority, then Ypijegp is 1; otherwise Ypijegp is 0.

Yrijegr

If the j-th operation of the i-th carrier aircraft invades the same take-off
position as the g-th operation of the e-th carrier aircraft, and the i-th
carrier aircraft has higher priority, then Ypijegp is 1; otherwise, it is 0.

xie
If the i-th carrier aircraft has a higher priority than the e-th carrier aircraft,

then xie is 1; otherwise, it is 0.

4.2.3. Optimization Objectives

6. Minimize fleet sortie completion time

A carrier aircraft fleet generally operates in a cyclical cycle when conducting missions.
Owing to the overly narrow deck of the carrier, it is necessary to complete the current wave
of carrier aircraft sorties, to accelerate the wave cycle:

minCmax = max
∀i ∈ I

Ewi4 (1)

7. Minimize fleet transit time

The shorter the transit time of the fleet, the safer the fleet transfer process:

minTT = ∑
i ∈ I

TR
(

Pij, Pi(j+1), ApSzij

(
Pij, Pi(j+1)

))
, j = 2 (2)

4.2.4. ASPMF Constraints

8. Timing constraint on workflow

Both fixed-wing aircraft and helicopters have multiple operations that are interlinked
and have internal timing relationships. For transfer operations, the timing constraints are
as follows:

Ezij = Szij + ∆Tzij, ∀i ∈ I, j ≥ 1 (3)

The transit time of the carrier aircraft ∆Tzij is derived from the parking position of the
two adjacent stages:

∆Tzij =

{
TR
(

Pi(j−1), Pij, ApSzij

(
Pi(j−1), Pij

))
+ txj, if Pi(j−1) 6= Pij

0, otherwise
(4)

support operational timing constraints as:

Ewij = Swij + dwj or Ewij = Swij + dhj, ∀i ∈ I, j ≥ 1 (5)
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constraints on transit operations and support operations as:

Swij ≥ Ezij, ∀i ∈ I, j ≥ 1 (6)

Szij ≥ Ewi(j−1), ∀i ∈ I, j ≥ 2 (7)

Equation (6) indicates that for both support and transfer operations of the same stage,
the former must wait for the latter’s completion before proceeding. Equation (7) indicates that
transfer operations must not commence until the previous support stage has been completed.

In addition, a fixed-wing aircraft needs to wait for the deflectors to cool and reset
before entering the take-off position:

Szej ≥ Ypijejp

(
Ewi(j+1) + ∆tb

)
, ∀i, e ∈ I1, j = 3, p ∈ Pj (8)

9. Space resource constraint

This constraint consists mainly of a transit collision avoidance constraint, and occu-
pancy of the same space priority constraint, for the former:

Ai

(
Roadt

(
Pi(j−1), Pij

))
∩Ae

(
Roadt

(
Pe(g−1), Peg

))
= ∅,

t ∈
[
Szij, Ezij

]
∩
[
Szeg, Ezeg

]
, ∀i, e ∈ I, j, g ≥ 1

(9)

The latter is mainly used to delay the transfer of the carrier aircraft when there is
an interference between the transfer path and the take-off glide path of the fixed-wing
carrier aircraft:

Szij ≤ Szeg + BM
(
1−max

(
Ypijegp, Yrijegr

))
, ∀i, e ∈ I, j, g ≥ 1, ∀p ∈ P, ∀r ∈ R (10)

10. Take-off position matching constraint

For fixed-wing aircraft, there are waiting positions behind each take-off position, and
when a fixed-wing aircraft selects a waiting position, its take-off position is also determined:

Pi(j+1) = γPij , ∀i ∈ I, j = 2 (11)

11. Take-off interval constraint

The wake interval should be met between successive sorties for fixed-wing carrier
aircraft, and the safe departure interval should be met between successive sorties for
carrier helicopters:

Swej ≥ xie
(
Ewij + δi

)
, ∀i, e ∈ I1, j = 4 (12)

12. Take-off weight constraint

Heavier fixed-wing aircraft can only take off from the C3 take-off position, so the
choice of take-off position for fixed-wing aircraft needs to meet the weight requirements of
the take-off position:

Pij ∈
{

p
∣∣mi ≤ f mp

}
, ∀i ∈ I1, j = 3 (13)

13. Decision variable constraint

Ypijegp, Yrijegr, and xie are Boolean 0–1 decision variables:

Ypijegp, Yrijegr, xie = {0, 1}, ∀i, e ∈ I, j, g ≥ 1 (14)

14. Take-off position selection constraint

Because of the difference in take-off positions between fixed-wing aircraft and carrier
helicopters, it is necessary to select the appropriate take-off positions according to the type
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of carrier aircraft, which can be C1, C2, and C3 when the carrier aircraft is a fixed-wing
aircraft, and C4, C5, C6, and C7 when the carrier aircraft is a carrier helicopter:

Pij ∈
{

R1 i ∈ I1, j = 3, 4
R2 i ∈ I2, j = 4

(15)

5. IWOA

Based on the above modeling analysis, a solution to the ASPMF faced the following
three difficulties compared to HFSPs: firstly, the start time of the transfer operation was
not only constrained by the available transfer equipment, but also by the feasible path and
multiple aircraft collision avoidance constraints; secondly, there was interference between
the different operations of each aircraft, which was not a consistent flow direction of the
HFSP; thirdly, the process flow of each type of aircraft was different.

Mimicking the feeding behavior of whales in nature, a novel population intelligence
optimization algorithm called the WOA was proposed by Mirjalili in 2016 [16]. The WOA
has a simple structure, requires few parameters to be adjusted, and is relatively easy to
implement. The WOA has an information feedback mechanism and convergence factor that
can be adjusted adaptively, to balance the local search with the global search. This section
outlines how an IWOA, based on the standard WOA, was designed to solve the ASPMF.

5.1. The Principle of the WOA

The optimization steps of the algorithm were as follows: (1) initialize the parameters
and individuals of the population; (2) calculate the fitness value of the individuals, and
take the individual with the smallest fitness value as the optimum; (3) update the next
generation population; (4) if the termination condition is reached, output the optimum
individual; otherwise, return to step (3) to continue the optimization. There were three
ways to update the population: encircling prey, the bubble-net attacking method, and
searching for prey, which were the core of the algorithm.

5.2. Encoding and Decoding

In the coding stage, we assigned take-off positions C1, C2, and C3 or C4, C5, C6, and

C7 according to the type of aircraft at a certain stop, and obtained
⇀
Y =

[
y1, y2, · · · , yN f

]
,

where yj indicated the take-off position corresponding to the aircraft at parking posi-

tion j; the take-off sequence of the aircraft was coded in a list,
⇀
X =

[
x1, x2, · · · , xN f

]
,

where xj indicated the priority of the aircraft at stop j in the list, and the value range was
xj ∈ {1, 2, 3, · · · , N f }, the smaller the number, the higher the priority.

The final code was:

⇀
Z =

⇀
Y +

⇀
X
k k = 10, 100, 1000, · · · (16)

To translate the take-off position information and departure sequence priority infor-
mation in the encoding into a specific sortie-scheduling scheme, decoding was required.
Definition: set Wg to be scheduled; set Sg already scheduled. We first extracted the integer
part of the code, to obtain the take-off position information of the fleet. We then extracted
the fractional part of the code, to obtain the take-off sequence in order of priority. SL
ws the set of completed operations of the carrier aircraft, where SLi was the number of
operations completed by aircraft i. The decoding process for mixed fleet sortie scheduling
was as follows:

Step 1 Initialization Wg = π, Sg = ∅, SL = [0]1×N f , index = 1.
Step 2 When Wg = π, go to step 6.
Step 3 Select the carrier aircraft number i∗ = Wg(index), which corresponds to

the take-off position c∗= yi∗ . If c∗ ≤ 3 meant that the carrier aircraft was a fixed-wing
carrier aircraft, we executed the fixed-wing carrier aircraft sortie operations Case 1~Case 4.
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According to the completion of the operations of this carrier aircraft, we selected the next
operation to execute, Switch(SLi + 1).

Case 1: Fixed-wing carrier aircraft warm-up and self-check operations. In this opera-
tion, we needed to determine whether the current parking position of the i∗ carrier aircraft
was warmable and, if so, we executed the operation directly, and went to Case 2, SLi∗ = 1;
otherwise, we needed to transfer the i∗ carrier aircraft to a warmable parking position first.
Before transferring, we checked if there were free warmable parking positions and, if so,
we selected the one with the minimum combined transfer time from the current parking
position to that position and then to the take-off position, and we then went to Case 2,
SLi∗ = 1. If there were no available warmable parking positions, we checked the earliest
time when the carrier aircraft had sortied its warm-up position, and recorded it. When the
aircraft had left the warm-up position, we could transfer the i∗ aircraft into position and go
to Case 2, SLi∗ = 1; otherwise, if the i∗ carrier aircraft could not complete the warm-up,
we made index = index + 1, and went to step 2.

Case 2: Fixed-wing carrier aircraft transfer to take-off or waiting positions. Before
transferring, we checked whether there was an available path. We construct a set of
parking positions Φp(Pi∗1, c∗) that interfered with the path from the warm-up position
Pi∗1 to the take-off position c∗. If Φp(Pi∗1, c∗) was not an empty set, the carrier aircraft
could not execute this operation, making index = index + 1, and proceeding to Step 2. If
Φp(Pi∗1, c∗) was an empty set, we checked the earliest passable time t1 of the path; similarly,
we constructed a set of sortie runways Φr(Pi∗1, c∗) that interfered with the path from the
warm-up position Pi∗1 to the take-off position c∗, and found the earliest time t2 that the
departure runway was free, because t1; t2 was the earliest transfer time; the actual transfer
start time t3 was determined by the collision avoidance delay for the carrier aircraft during
transfer, based on the space resource constraint referred to in Section 4.2.4. If there were no
aircraft ready for take-off at the c∗ take-off position, we directly transferred the i∗ carrier
aircraft to the take-off position, and the duration of waiting operations after the deflector
took 0. If there were aircraft ready for take-off, we transferred the i∗ carrier aircraft to the
waiting position corresponding to the take-off position c∗, and went to Case 3, making
SLi∗ = 2.

Case 3: Fixed-wing carrier aircraft ready for take-off. We applied this operation only
to the carrier aircraft in the waiting position. After the carrier aircraft in its corresponding
take-off position c∗ had sortied, and the plate had been reset and cooled after ∆tb, we
transferred the carrier aircraft into the take-off position, to prepare for take-off and, making
SLi∗ = 3, went to Case 4.

Case 4: Fixed-wing carrier aircraft sorties. After the previous take-off fixed-wing
aircraft on the deck disappeared. or the previous take-off carrier helicopter had taken off to
a safe distance, we used that time t1 as the earliest available take-off time for the carrier
aircraft, and used t1 as the starting time to check the time t2 when the interference parking
position on the corresponding take-off runway was cleared; therefore, t2 was the actual
take-off time for the carrier aircraft; we made SLi∗ = 4, Wg = Wg − {i∗}, Sg = Sg ∪ {i∗},
index = 1, and we then went to step 2.

If c∗ ≥ 4 meant that the carrier aircraft was a carrier helicopter, we executed the carrier
helicopter sortie operations Case 2, Case 4. According to the completion of the operations
of this carrier helicopter, we selected the next operation to execute: Switch(SLi + 2).

Case 2: Carrier helicopter transfer to take-off position. Before transferring, we checked
if there was an available path. We constructed a set of parking positions Φp(Pi∗1, c∗) that
interfered with the path from the warm-up position Pi∗1 to the take-off position c∗: if
Φp(Pi∗1, c∗) was not an empty set, the carrier aircraft could not execute this operation; we
made index = index + 1, and went to step 2; if Φp(Pi∗1, c∗) was an empty set, we checked
the earliest passable time t1 of the path. Similarly, we constructed a set of sortie runways
Φr(Pi∗1, c∗) that interfered with the path from the warm-up position Pi∗1 to the take-off
position c∗, and found the earliest time t2 that the departure runway was free, because t1;
t2 was the earliest transfer time, and the actual transfer start time t3 was determined by
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the collision avoidance delay for the carrier aircraft during transfer, based on the space
resource constraint referred to in Section 4.2.4. If there were no aircraft ready for take-off at
the c∗ take-off position, we directly transferred the i∗ carrier aircraft to the take-off position,
and the duration of waiting operations after the deflector took 0. If there were aircraft ready
for take-off, we transferred the i∗ carrier aircraft to the waiting position corresponding to
the take-off position c∗, and went to Case 4, making SLi∗ = 2.

Case 4: Carrier helicopter sorties. Preparation of the carrier helicopter for take-off,
such as the deployment of the rotor blades, would start immediately after transfer to the
take-off position, and would be completed in t1. After the previous take-off fixed-wing
aircraft on the deck disappeared or the previous take-off carrier helicopter had taken off to
a safe distance, we used that time t2 as the earliest available take-off time for the carrier
aircraft, and we used t2 as the starting time to check t3, when the parking position that
interfered with the departure position was cleared; therefore, t3 was the actual take-off
time for the carrier aircraft, and we made SLi∗ = 4, Wg = Wg − {i∗}, Sg = Sg ∪ {i∗},
index = 1, and proceeded to Step 2.

Step 4 After the sortie, we output the sortie scenario, and calculated the objective
function values as:

f = Cmax + ωf
dt · TT, (17)

where ωf
dt
(
0 < ωf

dt � 1
)

was a weighting factor for aircraft transfer time.
Step 5 The start time of warm-up operations for a fixed-wing carrier aircraft must be

later: this ensures that transfer to the take-off position is carried out immediately after the
carrier aircraft has finished warming up, avoiding excess engine standby time and saving fuel.

5.3. Learning Factor

We designed the learning factors to adjust the individual learning dimensions; more-
over, we defined the learning dimension α as an integer of [1, [s′ · D′max + 1]], where s′ was

the learning factor that took values in the range (0, 1), and D′max was the dimension of
⇀
Z

that represented the number of carrier aircraft. α determined the value of participation F
in the subsequent discretization design of this study, as well as the maximum dimension
of the effect of some operations on individuals in the population restart. α was used to
balance the local search with the global search capability: the larger its value, the greater
the global search capability of the algorithm.

α also determined the maximum individual dimension that this algorithm could
operate for encircling prey, searching for prey, and the field forward and reverse order in the
population restart: according to this feature, α gradually increased from 1 to [s′ · D′max + 1]
as the number of iterations increased. To balance the global and local search capabilities of
the algorithm effectively, we used the exponential function for incrementing α as:

α =

[[
s′ · D′max + 1

]
· t2

T2

]
+ 1, (18)

where t denoted the current number of iterations, T denoted the maximum number of
iterations, and [•] denoted the rounding operation.

5.4. Discrete Design

We considered the discrete nature of the ASPMF, and the fact that the standard WOA
algorithm was not applicable to this problem; therefore, we designed the whale optimiza-
tion algorithm in a discrete manner. We adopted a differential information collaboration

mechanism, inspired by [46]. For two random individuals
⇀
Zr1 and

⇀
Zr2 in the population,

we extracted their corresponding take-off priority sequences
⇀
Xr1 and

⇀
Xr2, and used the

differential information of the two with the participation degree F to obtain the transi-
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tion individual priority sequence
⇀
Xnew. Then, we reorganized with the original take-off

information
⇀
Y r1, to obtain new individuals

⇀
Znew, as follows:

⇀
Znew =

⇀
Zr1 ⊕ F⊗

(
⇀
Xr2 −

⇀
Xr1

)
. (19)

The above equation contains the following two primary operations:
Step 1 We obtained information on the difference between individuals Zr1 and Zr2 at

the participation level F:

∆i = F⊗
(
⇀
Xr2 −

⇀
Xr1

)
(20)

For each dimension, the rationale was as follows:

∆i,j =

{ ⇀
Xr2,j −

⇀
Xr1,j rand(·) < F

0 other
, (21)

where rand(·) was a random number uniformly distributed on (0, 1), and F = α
D′max

.
Step 2 We used differential information to update the individual’s priority sequence:

⇀
Znew =

⇀
Zr1 ⊕ ∆i (22)

For each dimension, the rationale was as follows:

⇀
X
′

r1,
⇀
S (j)

=
⇀
Xr1,j, (23)

where
⇀
S (j) was the priority designation of the carrier aircraft originally located at position

j after the individual
⇀
Zr1 had moved, using differential information ∆i.

For example, for individual
⇀
Zr1 =

(
z1, z2, z3, · · · , zN f

)
, the subscript vector of

its corresponding position was
⇀
S r1 = (1, 2, 3, · · · , N f ), and the subscript vector after

shifting using the difference information was
⇀
S =

⇀
S r1 + ∆i, sorting the subscripts in

⇀
S in

ascending order, while the
⇀
Xr1 extracted from

⇀
Zr1 was synchronously rearranged according

to the
⇀
S subscript exchange sequence, to obtain

⇀
X
′
r1, and

⇀
X
′
r1 was regrouped with

⇀
Y r1 to

obtain
⇀
Znew. If the same subscript appeared in the sorting process

⇀
S , the subscript before

sorting to the left was sorted to the right, to ensure the feasibility and diversity of the

operation. If there were identical subscripts in the sorting process
⇀
S , the subscripts to the

left before sorting were sorted to the right, to ensure the feasibility and diversity of the
operation. The basic process is illustrated in Figure 6.

5.4.1. New Encircling Prey

For the current individual
⇀
Z(t) and the population optimum individual

⇀
Z p(t):

⇀
Z(t + 1) =

⇀
Z(t)⊕ F⊗

(
⇀
X(t)−

⇀
Xp(t)

)
. (24)

5.4.2. New Bubble-Net Attacking Method

For the current individual
⇀
Z(t) and the population optimum individual

⇀
Z p(t):

⇀
Z(t + 1) =

⇀
Z(t)⊕ F′ ⊗

(
⇀
X(t)−

⇀
Xp(t)

)
, (25)
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where F′ =
∣∣∣[D′max · ebl · cos(2πl)

]∣∣∣, D′max was the maximum individual dimension, b
was a constant that defined the shape of the spiral, l was a random number in (−1,1), [·]
was rounding, and |·| was the absolute value.

5.4.3. New Search for Prey

For current individuals
⇀
Z(t) and random individuals

⇀
Zr(t) in the population:

⇀
Z(t + 1) =

⇀
Z(t)⊕ F⊗

(
⇀
X(t)−

⇀
Xr(t)

)
. (26)Drones 2022, 6, x FOR PEER REVIEW 16 of 29 
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5.5. Pre-Constrained

We considered that there was interference between the parking position and take-off
position in the process of carrier aircraft sortie, so when the algorithm generated a new
individual, according to the analysis of the transit scheduling decoding, the individual
sequence could be pre-searched for pre-adjustment of the carrier aircraft sortie sequence.
For example, when an interfering aircraft position corresponding to the take-off position of
carrier A existed for carrier B, and the take-off sequence of A was superior to that of B, we
moved A to the latter priority of B, to further refine the effective search space.

5.6. Parameter Improvements

In the WOA framework, the algorithm encircles the prey when |A| ≤ 1, and searches
for prey when |A| > 1: these two foraging methods are the concrete embodiment of local

search and global search, and the convergence factor
⇀
a controls the value of

⇀
A; therefore,

the change in
⇀
a controls the balance between the algorithm’s global and local search

abilities. We improved the decreasing method of the convergence factor
⇀
a by using an

exponential function during the iteration of the algorithm. Through this operation, the
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convergence factor showed a nonlinear dynamic change, which could effectively balance
the global search and local search according to different stages:

⇀
a = 2

(
1− t2

T2

)
(27)

5.7. Population Restart

When the population’s optimal solution had not been updated for all L generations,
we introduced a population restart. In this operation, we employed multiple strategies to

hierarchically reconfigure the population, and instead of operating on only
⇀
X in individual

⇀
Z in Section 5.4, we operated on

⇀
X and

⇀
Y in individual

⇀
Z separately, and then formed

them into new individuals. With this operation, we changed the initial array of the hybrid
fleet and take-off sequence, making them more diverse, and fully accounting for the factors
affecting the objective function.

Inspired by PSO, we obtained a new population, by operating on an individual’s
historical optimal solution and the population’s historical optimal solution, as shown
in Table 2, where: sizepop is the number of individuals in the population; floor is the

integer function to negative infinity;
⇀
Z i,p is the historical optimal solution for individual i,

corresponding to
⇀
Xi,p and

⇀
Y i,p;

⇀
Z p is the population optimal solution, corresponding to

⇀
Xp and

⇀
Y p;

⇀
Z i,new is the recombination of individuals for individual i; 06 and 09 are field

reinsertion operations; 12 and 15 are two-point crossover operations; and 18 and 21 are
field inverse order operations.

There was an optimal sequence of sorties for each initial layout; therefore, there was
a two-level search for optimality: one was used to optimize the initial layout, and the
other optimized the outgoing sequence for certain layout conditions. Through this restart
mechanism, the algorithm exhaustively searched the solution space.

Table 2. Population restart.

Function: Population Restart

01: if the population optimal solution is not updated for L iterations;
02: for i = 1: floor(sizepop*0.4)
03: Randomly generate a new individual to replace pop(i)
04: end for
05: for i = floor(sizepop*0.4) + 1: floor(sizepop*0.5)
06: Perform a field reinsertion operation on

⇀
Xi,p and

⇀
Y i,p to get

⇀
Z i,new;

07: end for
08: for i = floor(sizepop*0.5) + 1: floor(sizepop*0.6)
09: Perform a field reinsertion operation on

⇀
Xp and

⇀
Y p to get

⇀
Z i,new;

10: end for
11: for i = floor(sizepop*0.6) + 1: floor(sizepop*0.7)
12: Perform a two-point crossover operation on

⇀
Xi,p and

⇀
Y i,p to get

⇀
Z i,new;

13: end for
14: for i = floor(sizepop*0.7) + 1: floor(sizepop*0.8)
15: Perform a two-point crossover operation on

⇀
Xp and

⇀
Y p to get

⇀
Z i,new;

16: end for
17: for i = floor(sizepop*0.8) + 1: floor(sizepop*0.9)
18: Perform a field reverse operation on

⇀
Xi,p and

⇀
Y i,p to get

⇀
Z i,new;

19: end for
20: for i = floor(sizepop*0.9) + 1: sizepop
21: Perform a field reverse operation on

⇀
Xp and

⇀
Y p to get

⇀
Z i,new;

22: end for
23: end if
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1. Field reinsertion operations

For each individual, we randomly selected any field up to α in length at any position,
extracted it, and reinserted it at any position in the remaining fields, as shown in Figure 7.
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2. Two-point crossover operations

For each individual, we randomly selected two different positions in the field, and
swapped the data from those two positions, as shown in Figure 8:
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3. Field inverse order operations

For each individual, we randomly selected fields of length no greater than α at any
position, and inverted the order of the selection sequence, as shown in Figure 9:
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5.8. IWOA Processes

We propose a discretized improved whale algorithm for the ASPMF problem, which
is divided into four main steps: (1) population initialization, (2) pre-constrained retrieval,
(3) encircling prey and searching for prey, and (4) population restart. Its flow is shown
in Figure 10, where p is a constant of [0, 1], l the population’s optimal solution-updated
generation, L the population restart threshold, t the current, and T the maximum evaluation
generation of the algorithm:
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6. Case Study

To validate the applicability of our model and algorithm to the ASPMF, we designed
three cases of 8, 12, and 16 aircraft sorties.

In the 8-aircraft sortie case, the set of positions was Ω8 = [A1, A6, A7, A8, A9, A10,
A11, A15], because any position could be used to warm up the fixed-wing aircraft, and
was not an interfering position in the take-off position. In the 12-aircraft sortie case, the set
of positions was Ω12 = [A1, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16], because
any position could be used to warm up the fixed-wing aircraft. In the 16-aircraft sortie case,
the set of positions contained all the A-positions.

6.1. Orthogonal Optimization of Algorithm Parameters

In the ASPMF case study, we defined the tethering/untethering time as 30 s, and
determined that the transfer speed of the aircraft should not exceed 3.6 km/h, according
to the safety requirements of surface transfer. For the algorithm parameter tuning, we
used L16

(
34) orthogonal tables as shown in Table 3 to find the optimal values for the

four parameters: population size Np = {10, 50, 100}, learning factor s′ = {0.2, 0.6, 1},
population restart threshold L = {5, 10, 20}, and foraging mode selection threshold
p = {0.3, 0.5, 0.8}; each parameter had four levels.

We conducted a case study for the aforementioned nine parameter combinations, each
simulated in a 16-aircraft mission containing 4 carrier helicopters and 12 fixed-wing carrier
aircraft. We conducted 20 experiments for each combination of parameters, and took the
average transit completion times for analysis. The program was run in MATLAB 2020a
with an Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz 2.59 GHz, and the experimental
results as shown in Table 4:
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Table 3. Orthogonal table of algorithm parameters.

Np s′ p L

1 10 0.2 0.3 5
2 10 0.6 0.5 10
3 10 1.0 0.8 20
4 50 0.2 0.5 20
5 50 0.6 0.8 5
6 50 1.0 0.3 10
7 100 0.2 0.8 10
8 100 0.6 0.3 20
9 100 1.0 0.5 5

Table 4. Orthogonal table of algorithm parameters.

Np s′ p L Cmax (min)

1 10 0.2 0.3 5 20.350118
2 10 0.6 0.5 10 19.836323
3 10 1.0 0.8 20 20.645739
4 50 0.2 0.5 20 20.492237
5 50 0.6 0.8 5 20.017508
6 50 1.0 0.3 10 19.644733
7 100 0.2 0.8 10 19.756210
8 100 0.6 0.3 20 20.416650
9 100 1.0 0.5 5 19.679947

O1j 60.832180 60.598565 60.411501 60.047573
O2j 60.154478 60.270482 60.008508 59.237267
O3j 59.852808 59.970419 60.419457 61.554626

Rj 0.9793724 0.6281466 0.4109494 2.3173595

Parameter
priority L—Np—s′—p

Optimum
solution Np = 100, s′ = 1.0, p = 0.5, L = 10

In the table, O1j, O2j, and O3j denote the sum of Cmax corresponding to the jth Parameter
at levels 1, 2, and 3, respectively:

O11 = Cmax1 + Cmax2 + Cmax3
O14 = Cmax1 + Cmax5 + Cmax9

(28)

Rj denotes the extreme differences among O1j, O2j, and O3j for the same parameter. The
larger Rj was, the more pronounced was the effect of the Parameter on Cmax. The optimal
levels of O1j, O2j, and O3j were those with the smallest Cmax. From the data in the table, the
optimal solution was: population size Np = 100, learning factor s′ = 1, foraging mode
selection threshold p = 0.5, and population restart threshold L= 10.

6.2. Simulation of Different Sortie Cases

We selected the optimal solution for the above algorithm parameters. We used a
decoding evaluation number of 20,000 as the algorithm iteration termination condition, to
simulate and optimize the three cases.

6.2.1. 8-Aircraft Sortie Case

After simulation and optimization, we obtained the trend of the optimization objective
of the sortie scheduling, as shown in Figure 11. The sortie completion time converged to
the optimal value of Cmax = 9.91 min, and the fleet transfer time TT = 13.57 min. From
Figure 11a,b, it can be seen that the sortie completion time gradually converged to the
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optimal solution when the number of evaluations reached approximately 4500. In contrast,
the fleet transfer time converged to the optimal solution when the number of evaluations
reached 2000. The fixed-wing aircraft could all finish warming up in their original position;
therefore, when the deck arrangement of the aircraft and their take-off positions were
determined, the transit time was also fixed. In the optimization process, the first step was
to complete the optimization of the fleet layout and take-off slot allocation, at which point
the TT had reached the optimal solution. Subsequently, the optimal sequence of sorties
was determined based on the optimal layout, at which point the sortie completion time
converged; hence, the convergence of (b) before (a).
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These two Gantt charts demonstrate that the sortie scheduling process satisfied the 
model constraints. From Figure 13, I2′s take-off position C2 was interfered with by C4. 
Although I2 had completed its pre-take-off preparation before I1 took off, it still needed 
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Figure 11. Trends in scheduling optimization objectives in 8-aircraft sortie case: (a) trends in fleet
sortie completion time in 8-aircraft sortie case; (b) trends in fleet transit time in 8-aircraft sortie case.

The same conclusion can be drawn by looking at the trend of the optimization indices
for the 12-aircraft sortie.

Figures 12 and 13 show the sortie Gantt chart and the Gantt chart for each take-off
position for the optimal mixed fleet sortie solution. In Figure 13, each line of the Gantt bars
represents a carrier aircraft, with the number shown as the vertical coordinate, and time
as the horizontal coordinate; “J − j” in the Gantt box represents the departure operation j,
which is not shown when the second operation of the fixed-wing carrier aircraft took very
little time. The transit process of the carrier aircraft is shown in Figure 13 in gray gantry
boxes, with the start and target parking positions marked at the left and right ends of the
gray gantry boxes. In Figure 14, each row of the Gantt bars represents the take-off position,
and is numbered as shown in the vertical coordinates. The numbers in the Gantt box are
labeled as “Carrier Aircraft Number-Sortie Operation Stage Number”.
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These two Gantt charts demonstrate that the sortie scheduling process satisfied the model
constraints. From Figure 13, I2’s take-off position C2 was interfered with by C4. Although
I2 had completed its pre-take-off preparation before I1 took off, it still needed to wait for I1,
which occupied the C4 take-off position; I3, I4, I5, and I6 also satisfied this constraint, and they
all verified the validity of the model and algorithm. By combining Figures 12–14, we can see
that the collision avoidance constraint was satisfied by the aircraft fleet.

6.2.2. 12-Aircraft Sortie Case

After simulation and optimization, we obtained the trend of the optimization objective
of the sortie scheduling, as shown in Figure 15. The sortie completion time converged to the
optimal value of Cmax = 13.96 min, and the fleet transfer time TT = 22.85 min. Figures 16–18
show the relevant images of the optimal solution for this case.

Comparing the images of the 12-aircraft with the 8-aircraft sortie, we can see that one
feature of the 12-aircraft sortie was that no helicopters took off from the C4 take-off position:
this was because, in the 12-aircraft sortie case, the fixed-wing carrier aircraft increased from
four to eight. No helicopters took off from the C4, as it would have interfered with the
C1, C2, and C3 take-off positions simultaneously, and sortieing the carrier helicopters here
would have caused the fleet to take much longer to sortie.

6.2.3. 16-Aircraft Sortie Case

After the simulation and optimization, we obtained the trend of the optimization
objective of the sortie scheduling, as shown in Figure 19, which converged to the optimal
value of Cmax = 19.01 min, and the fleet transfer time TT = 31.46 min. Figures 20–22 show
the relevant images of the optimal solution in this case.
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6.3. Comparison of Different Sortie Strategies

To verify the superiority of our proposed sortie strategy, we compared it with the cur-
rent carrier sortie strategy (carrier helicopters first, followed by fixed-wing carrier aircraft).
We chose the optimal parameter scheme of the previous section, and the algorithm iteration
termination condition was taken as the number of evaluations in 20,000. We carried out
simulation experiments of the two departure strategies for the three cases. The results
obtained are shown in Table 5:

Table 5. Simulation results for different sortie strategies.

Case Strategies Cmax (min) Result

8-aircraft sortie
Hybrid sortie 9.91

0.02 min reductionSeparate sortie 9.93

12-aircraft sortie
Hybrid sortie 13.96

0.10 min reductionSeparate sortie 14.06

16-aircraft sortie
Hybrid sortie 19.01

1.32 min reductionSeparate sortie 20.33
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According to Table 5, the difference between the 8- and 12-aircraft fleets was insignif-
icant, and the time reduction was within 0.1 min for both sorties. In the sortie cases we
set, the initial parking positions used in the 8- and 12-aircraft cases were warmable. The
fixed-wing aircraft did not need to be transferred for the warm-up; thus, there was relatively
little path interference during the fleet sortie. The transfer and operation time of the carrier
aircraft were constant; therefore, the carrier aircraft sortie time was also relatively constant
(for the optimal solution only). The time difference between the two sortie strategies was
mainly due to the constraint that the fixed-wing carrier aircraft had to take off later than
the carrier helicopter; therefore, the time difference between the two sortie strategies arose
mainly from the mandatory waiting time for a fixed-wing carrier aircraft.

The hybrid departure strategy in the 16-engine departure case reduced by 1.32 min,
due to the complex warm-up transfer involved in the fixed-wing carrier aircraft in this
case, and to a large number of aircraft in the fleet, which used more space. The change
in the sortie sequence due to the mandatory requirement of the sortie strategy led to a
change in the interference between the warm-up and take-off transfer paths, resulting in
delayed sorties, to avoid collisions. The increased use of the C4 take-off position owing
to the separate sortie strategy, which blocked the sorties of all fixed-wing aircraft, also
contributed to the extended sortie times of the fleet.

7. Conclusions

To solve the ASPMF problem, we propose a method that can integrate the kinematic
constraints of carrier aircraft, the terminal attitude constraints of carrier aircraft, the deck
space resource constraints, the exclusivity constraints of equipment allocation, the timing
constraints of carrier aircraft transfer, the collision avoidance constraints of carrier aircraft
transfer, and the timing constraints of transferring equipment. This method includes two
parts: path library construction and ASPMF optimization modeling.

In the path library construction part, we used a combination of heuristic and optimal
control deck path planning algorithms to carry out single aircraft path planning for carrier
aircraft scheduling in a full-layout state; we obtained the shortest path for carrier aircraft
transfer that satisfied the carrier aircraft kinematics, terminal attitude constraints, and space
resource constraints; and we successfully built the ASPMF path library.

In the model building part, we modeled the ASPMF with reference to the HFSP.
The minimization of the sortie time and transit time of the fleet was the objective of
optimization; simultaneously, we considered the constraints of the process flow, space
resources, and support resources in the sortie process.

To find the optimal solution of the model efficiently and stably, we designed the
IWOA, using the WOA as a framework. We discretized the algorithm to make it suitable
for the ASPMF problem, improved it using learning factors, pre-constraints, parameter
improvements, and population restarts, and used L16

(
34) orthogonal tables to determine

the optimal combination of parameters for the algorithm.
Finally, in the case study, three cases of 8, 12, and 16 aircraft sorties were constructed,

each with four carrier helicopters. We used these three cases to verify the model’s validity
and the performance of the IWOA optimization, and then compared our proposed hybrid
sortie strategy with the existing separate sortie strategy: the results show that the hybrid
sortie strategy can effectively improve the efficiency of fleet sorties, and is more effective
for large-scale sorties.
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