
����������
�������

Citation: Li, J.; Chen, R. A

Distributed Task Scheduling Method

Based on Conflict Prediction for Ad

Hoc UAV Swarms. Drones 2022, 6,

356. https://doi.org/10.3390/

drones6110356

Academic Editors: Diego

González-Aguilera and Vincent A.

Cicirello

Received: 1 October 2022

Accepted: 11 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Distributed Task Scheduling Method Based on Conflict
Prediction for Ad Hoc UAV Swarms
Jie Li * and Runfeng Chen

College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China
* Correspondence: lijie09@nudt.edu.cn

Abstract: UAV swarms have attracted great attention, and are expected to be used in scenarios, such
as search and rescue, that require many urgent jobs to be completed in a minimum time by multiple
vehicles. For complex missions with tight constraints, careful assigning tasks is inseparable from the
scheduling of these tasks, and multi-task distributed scheduling (MTDS) is required. The Performance
Impact (PI) algorithm is an excellent solution for MTDS, but it suffers from the suboptimal solution
caused by the heuristics for local task selection, and the deadlock problem that it may fall into an
infinite cycle of exchanging the same task. In this paper, we improve the PI algorithm by integrating
a new task-removal strategy and a conflict prediction mechanism into the task-removal phase and the
task-inclusion phase, respectively. Specifically, the task-removal strategy results in better exploration
of the inclusion of more tasks than the original PI by freeing up more space in the local scheduler,
improving the suboptimal solution caused by the heuristics for local task selection, as done in PI. In
addition, we design a conflict prediction mechanism that simulates adjacent vehicles performing
inclusion operations as the criteria for local task inclusion. Therefore, it can reduce the deadlock
ratio and iteration times of the MTDS algorithm. Furthermore, by combining the protocol stack with
the physical transmission model, an ad-hoc network simulation platform is constructed, which is
closer to the real-world network, and serves as the supporting environment for testing the MTDS
algorithms. Based on the constructed ad-hoc network simulation platform, we demonstrate the
advantage of the proposed algorithm over the original PI algorithm through Monte Carlo simulation
of search and rescue tasks. The results show that the proposed algorithm can reduce the average time
cost, increase the total allocation number under most random distributions of vehicles-tasks, and
significantly reduce the deadlock ratio and the number of iteration rounds.

Keywords: UAV swarms; distributed scheduling; mobile ad hoc networks

1. Introduction

In recent years, UAV swarms have attracted great attention due to their low cost, de-
centralized layout, and a certain degree of scale, and are expected to be used in post-disaster
search and rescue, pollution monitoring and traceability, cargo sorting and delivery, and
other fields. In contrast to the simple bionic clustering behaviors such as migration, forag-
ing, nesting, hunting, and resistance achieved by the stigmergy-based swarm algorithms,
the complex missions in the above real-world application need the UAV swarms work
together to assign tasks and schedule them, which cannot be separated from multi-agent
scheduling [1].

Multi-agent scheduling is a classical combinatorial optimization problem [2]; therefore,
obtaining the global optimal solution is computationally intensive [3]. Earlier studies used
a centralized approach to generate and distribute plans for all vehicles by using a central
server capable of gathering system-wide information (situational awareness), either on
the ground (the fleet’s ground control terminal) or on one of the agents selected as the
master [4]. In this approach, the overall objective function of the concern problem can be

Drones 2022, 6, 356. https://doi.org/10.3390/drones6110356 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6110356
https://doi.org/10.3390/drones6110356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://doi.org/10.3390/drones6110356
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6110356?type=check_update&version=1

Drones 2022, 6, 356 2 of 17

explicitly minimized or maximized based on the collection of all vehicle information on a
central server. Therefore, their main advantage lies in the ability to optimize the overall
objective function (and thus obtain the approximate optimal solution) by some heuristic
algorithms, such as genetic algorithm (GA), ant colony algorithm (ACO), particle swarm
optimization (PSO) [5], or the metaheuristic approach [6], etc. However, they have several
disadvantages for the low-cost swarm [7]: First, the computational requirements are high
because the computational operations are placed on a central server for global optimization
of the multi-agent scheduling problem; Second, each agent is required to communicate with
the central server, and all vehicles need to communicate their situational awareness (SA)
to the central server, which will bring a heavy communication burden. Third, centralized
approaches are prone to single points of failure [8].

To this end, the swarm can only resort to decentralized approaches [9–13], which
could increase the mission range and remove the single points of failure. They are roughly
divided into three implementation approaches: redundant central computing, optimization-
based approach and market auction approach. Redundant central computing instantiates
the centralized scheduler on each vehicle in order to achieve distribution [14–16]. These
approaches often assume perfect communication links with unlimited bandwidth, since
every vehicle must have the same SA. Inconsistencies in SA can lead to allocation conflicts
because each vehicle will perform a centralized optimization using a different information
set. Optimization-based approach utilize distributed constraint optimization, game theory,
metaheuristics, or other optimization techniques (distributed GA, distributed PSO and
so on) to obtain higher optimization performance and computational efficiency [16–18].
However, these methods rely on high frequency and high speed data exchange. Market
auction approach is where vehicles bid on tasks in a greedy strategy, the higher bidder
wins the task, and the suboptimal solution can be obtained through multiple rounds of
bidding [3,19,20]. In these types of algorithms, vehicles bid on tasks with values based solely
on their own SA. Even if there are inconsistencies in their SA, they can naturally converge
to a conflict-free solution. When UAV swarm perform tasks, the spatial positions of UAVs
change rapidly, and slow task scheduling means that the generated schedulers is invalid,
which puts forward higher requirements for the timeliness of the algorithm. Compared
with the two other approaches, the market auction approach has higher computational
efficiency, and lower communication requirements and is more suitable for UAV swarm
because of its local greedy strategy and simple consensus rules.

The consensus-based bundle algorithm (CBBA) [19] and the performance impact
algorithm (PI) [3] are two of the most representative market auction methods, and many
methods in this field are derived from them. Both CBBA and PI essentially take the
‘significance’ of a task to its assigned agent as the basis for selecting and scheduling tasks,
reflecting the value or cost of the task for the global optimization objective. The main
difference is that PI uses the native significance as the auction price to achieve better
overall optimization performance; The CBBA introduces additional bundling sets and
diminishing marginal gain (DMG) pricing mechanisms to ensure that auctions are not
deadlocked. It has been shown that CBBA produces the same solution as the centralized
sequential greedy procedures, and guarantees 50% optimality, and can ensure that the
auction process is deadlock-free, but at the cost of global optimality, because it essentially
distorts the native value of the bidding task [21]. In contrast, PI auctions are based on
native significance, which achieves better overall optimization, but has more iterations. It
also faces frequent deadlock problems (i.e., two or more UAVs occasionally get caught in
an infinite cycle of exchanging the same tasks), which can only be broken out of the loop by
truncating the auction process, resulting in the blocking of the optimization process. By
analyzing the advantages and disadvantages of the two algorithms, this paper considers
whether the global optimality of the problem can be further improved, and the bidding
rounds and deadlock probability can be reduced, which is of great benefit to UAV swarm
task scheduling.

Drones 2022, 6, 356 3 of 17

In addition to the algorithm, another issue that cannot be ignored is the commu-
nication model on which the algorithm verification is based. Decentralized scheduling
methods rely on the communication network to complete negotiation or arbitration to
resolve task conflicts. As far as we know, most algorithms assume perfect communication
with topologically fully connected, unrestricted bandwidth, and ideal channels. There are
also some algorithms tested under different topological connection, such as Zhao et al. [3]
use row, star, circular and mesh networks to simulate different communications scenarios
to test the PI algorithm. Johnson et al. [22] compare the asynchronous consensus-based
bundle algorithm (ACBBA) and CBBA in the fully connected network and row topology;
Ismail et al. [23] use a simple disk communication model to compare the decentralized
hungarian-based approach (DHBA) and the consensus-based auction algorithm (CBAA);
In the past two years, a few scholars have begun to pay attention to the performance
differences of decentralized scheduling methods under different channel transmission
characteristics such as channel attenuation and packet loss. For example, Nayak et al. [24]
compare the performance of CBAA, ACBBA, DHBA, PI, and the hybrid information and
plan consensus (HIPC) based on Bernoulli, Gilbert-Elliot and Rayleigh fading communi-
cation models; Carrillo et al. [25] use Rayleigh attenuation model to evaluate the current
communication level, which is used to select the scheduling algorithm that best fits it. From
the above investigation, if the communication factors are considered, the simulation tests
of the decentralized scheduling algorithm are based on the transmission characteristics
of communication channels, which are mainly divided into two aspects: one is to assume
different network topologies and compare the algorithm iteration rounds (the difference
caused by neighboring message propagation); the other is to simulate the channel state
such as packet loss and evaluate the performance of the algorithm (such as the allocation
number, time cost, etc.). Real-world networking communication should not only consider
the underlying physical transmission characteristics, but also the working process of the
upper-layer communication protocol stack. More reasonable network communication
simulation should combine the two, which is one of the work to be considered in this paper.

A distributed task scheduling method with better global optimization performance,
fewer iteration rounds, and lower deadlock probability is of great benefit to the real-world
applications such as search-and-rescue. This paper modifies the baseline PI algorithm by
respectively integrating a new removal strategy and a conflict prediction operator into the
tasks removal phase and inclusion phase of the algorithm. The main contributions are
as follows.

(1) In the proposed method, a new task removal strategy is adopted to release more
space of the scheduler to explore the addition of new tasks, so as to improve the overall
optimization. Then, a conflict prediction operator is added to the task inclusion phase of
the algorithm to reduce the number of iterations and the probability of deadlock.

(2) By integrating the communication protocol stack of the upper layer network and the
physical transmission model of the bottom layer, an ad-hoc network simulation platform is
constructed, which is closer to the real world communication, and serves as the supporting
environment for the performance testing of decentralized scheduling algorithms.

(3) Monte Carlo simulation experiments on the ad-hoc network simulation platform
were carried out, and a large number of results show that, compared with PI, the pro-
posed method can reduce the average time cost and increase the total allocation number
under most of the random distributions of vehicles and tasks, and significantly reduce the
deadlock ratio and the number of iteration rounds.

The rest of this paper is organized as follows. Section 2 briefly describes the distributed
task scheduling problem and existing market-based methods. Section 3 presents a dis-
tributed task scheduling method based on conflict prediction. Section 4 presents the ad hoc
network protocol stack and channel transmission simulation model. Section 5 discusses the
performance of the algorithm. Finally, Section 6 concludes the paper.

Drones 2022, 6, 356 4 of 17

2. Preliminaries
2.1. Problem Formulation

As shown in Figure 1, consider a variety of heterogeneous UAVs performing a search
and rescue mission, the purpose is to cooperate with each other to rescue a number of
survivors discovered, who require food supplies or medical provisions [3]. Each survivor
must be visited by one UAV before a certain point in order to be deemed rescued, followed
by the duration of the rescue. Every UAV always follows a minimum time path to visit all
of the unvisited survivors allocated to it, while not required to return to its initial location.

t5

3000

-3000

0

Y
-6000

-6000

0

-3000

3000

0

500

1000

1500

2000

X

T
im
e

υ1
υ2

t1t3

t4

t2

1

t2

Unallocated

Time

t3

t5

travel time of

a drone

t3t1

t2 t4

t5

2

t4

t1

the latest start

time of a task

duration of

a task

(a) (b)

Figure 1. Schematic diagram of scenario, where v1 executes tasks t1, t3 in turn to provide food, v2

executes t2, t4 to supply medicine, with remaining task t5 unallocated. (a) the dots represent tasks,
dashed lines represent available time periods for tasks, red rectangles represent deadlines for task
start, solid lines with arrows represent task schedulers and diamond patterns represent the duration
of task execution. (b) corresponding task timelines, where the red dotted lines indicate the tasks’
latest start time, the diagonal boxes indicate the transition time of the vehicles, the color-filled box
indicates the duration of task execution.

The scenarios similarities with the traveling salesman problem (TSP), a well-known
NP-hard combinatorial optimization problem. The objectives considered here are com-
parable to the constraints of two variants of the TSP: the team orienteering problem with
time windows (TOPTW) [26] and the K-traveling repairmen problem (K-TRP) [27]. These
objectives and constraints are applicable to a variety of scenarios such as those found in
target tracking, pick-up and delivery, logistics, and any scenario that requires many urgent
jobs to be completed in a minimum time by multiple vehicles. One challenge in using a
swarm is to scheduling them to perform tasks while optimizing one or more objectives, for
example, to minimise the average waiting time before their rescue, and to maximize the
number of rescued survivors.

To formulate the problem mathematically, a set of n heterogeneous UAVs are defined
by V = [ν1, ν2, . . . , νn], and a set of m tasks are defined by T = [t1, t2, . . . , tm]. Each UAV νi
selects the candidate tasks from T and sequences them to form its scheduler pi respecting
time constraints. Whether a task is candidate for an UAV depends on two aspects: one is
whether the UAV can undertake this type of task, which is limited by the fact that low-cost
UAVs usually only have single task capability; another aspect is whether the task is within
the limited range of the vehicle. The optimization objective J of the scheduling problem
is to minimize the average waiting time under the premise of allocating as many tasks
as possible:

J = min
1
m

n

∑
i=1

|pi |

∑
k=1

ci,k(pi) (1)

in which the time cost of a task tk in pi, defined as ci,k(pi), is the predicted waiting time
taken by the UAV to arrive at the location of the task tk. This time includes the duration
of earlier tasks in pi and travel time to and from those earlier tasks, but does not include

Drones 2022, 6, 356 5 of 17

the duration of the execution of tk. The objective of minimizing waiting time measures the
cost of a task scheduling as the time it takes to start serving the task from the start of the
drone’s schedule, i.e., the total time the survivor must wait before being attended to. |pi| is
the number of assigned tasks for νi.

The corresponding constraints are listed below:
|pi| ≤ Ni, ∀i ∈ {1, . . . , n}
pi ∩ pj = ∅, ∀i 6= j ∈ {1, . . . , n}
z⋃
i

pi ⊆ T, ∀i, z ∈ {1, . . . , n}

ci,k(pi) ≤ spi,K
, ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , m}

(2)

where the first constraint represents the capacity Ni of the vehicle νi. The second constraint
ensures that each task is assigned to at most one vehicle or left unassigned because it is
beyond the capabilities of all vehicles. The validity of scheduling is guaranteed by the
third constraint where any scheduler’s combination is a subset of the task set T. The fourth
constraint guarantees that ci,k(pi) of vehicle νi initiating the kth task in its scheduler pi
should be before the task deadline spi,K

.

2.2. Scheduling with the Market-Based Approach

In general, the market auction approach consists of two phases: the task inclusion
phase and the communication and consensus phase. In the first phase, each UAV recursively
inserts tasks locally in a greedy strategy until the capacity of the vehicle is reached. In the
second phase, the UAV shares its local scheduler with neighbors and resolves allocation
conflicts based on a consensus rule. The two phases alternate repeatedly until no further
changes are made to the schedules of all vehicles.

During the task inclusion phase, the UAV measures the impact of inserting each
candidate task tq on the cumulative time cost of tasks already in its schedule pi, called
significance, to determine which task should be included in pi. The specific process for
calculating the marginal significance of inserting tk at each position l in pi is as follows:

ω⊕k (pi, tk) =
|pi |

min
l=1

|pi |+1

∑
z=l

ci,z(pi⊕ltk)−
|pi |

∑
z=l

ci,z(pi) (3)

where ⊕l indicates that the task tq is inserted into the lth position of pi. Since the inserted
task tq only affects the start times of its subsequent tasks in pi, the formula calculates the
cumulative time delay of the lth task and the tasks after it. A list to store the marginal
significance of each task is kept on each UAV and is defined as γ⊕i =

[
w⊕1 , . . . , w⊕m

]
for νi.

After the marginal significance of all candidate tasks have been computed, νi selects
for inclusion the task whose marginal significance can improve upon task’s significance
the most. A marginal siginificance of tk in pi lower than the siginificance of tk’s owner
νj indicates that the overall cost can be reduced if tk is reallocated to vi. The maximum
difference is computed as maxm

k=1{γi,k − γ⊕i,k} > 0, in which the significance γi,k of task tk
in scheduler pi is defined as follows.

w	k (pi, tk) =
|pi |

∑
z=b

ci,z(pi)−
|pi |

∑
z=b+1

ci,z(pi 	 tk) (4)

where b is the position of task tk in vi’s scheduler, and pi 	 tk denotes pi with tk removed.
The significance of a task tk is referred to formally as w	k and each UAV stores the vector
γi =

[
w	1 , . . . , w	m

]
.

During the communication and conflict resolution phase, each UAV shares its sched-
ulers with neighbors and resolve conflicting allocations. As two or more UAVs may be
assigned the same task, the consensus procedure introduced in [19] is used to resolve these

Drones 2022, 6, 356 6 of 17

conflicting assignments. A lower significance indicates a more optimal schedules, therefore
UAVs with a higher significance for a conflicting assignment release the task.

3. Method
3.1. Basic Idea

In contrast, with its superiority in optimization performance, PI is the best benchmark
method for solving distributed scheduling problems. However, as mentioned above, it still
has room for improvement in optimization, efficiency and frequent deadlocks (i.e., two or
more UAVs occasionally get caught in an infinite cycle of exchanging the same tasks). In
this section, we modify it to achieve an overall improvement in optimality, an improvement
in deadlock problems, and a reduction in the number of iterations. Here, we follow the
two-stage algorithm framework of the market auction method. Without loss of generality,
we begin with the communication and consensus phase of an intermediate iteration to
illustrate the basic idea of the proposed method.

In the communication and consensus phase, PI resolves conflicts by iteratively deleting
tasks that failed in the previous round, item by item. Whenever a task is deleted, the
algorithm updates the significance of the remaining underbid tasks, causing them to
decrease. If the updated significance is lower than the winning price of the task in the
previous round, the original task to be deleted will be preserved. In fact, this method of
iteratively updating the significance of the remaining failed tasks has two disadvantages:
first, the failed tasks in the last round of bidding may still remain in the local scheduler,
which makes it difficult to absorb more tasks in the adjacent task inclusion phase, which
restricts the increase of the total task allocation; second, the conflicting assignment is not
completely resolved. Failed tasks remain in the local scheduler and cannot be removed
until later rounds, which potentially increases the number of iterations. This is essentially a
trade-off between exploration and utilization [28]. Although PI achieve good optimization
with native significance, its conservative removal strategy restrict the exploration ability of
the algorithm. To this end, this article eliminates the step of iteratively updating significance
and includes freeing up more local scheduler space for subsequent tasks. To this end, this
article removes the iterative update importance operation to free up more local scheduler
space, which helps to absorb more tasks in the adjacent task inclusion phase.

In the task inclusion phase, PI iteratively includes tasks item by item by comparing
the marginal significance of the task to be inserted with the bid price of the task. This
method can not only achieve lower overall task cost by exchanging existing tasks among
swarms, but also realize the insertion of new tasks to obtain more assigned tasks. Through
communication, each UAV obtains the local scheduling tasks of other vehicles in the last
iteration cycle (which is also the information input for conflict resolution). Based on this, it
can predict the included operations of other UAVs in this cycle and judge whether their
included tasks are the same as those of the local vehicle in advance. And calculate their
marginal significance to determine whether the task is inserted locally. This strategy is
expected to reduce the iteration rounds by resolving conflicts in advance. In addition, PI
is faced with deadlock problem, that is, two or more vehicles are often in an infinite loop
exchanging the same task. Preliminary experiments of running PI show that it mostly
occurs between adjacent auction rounds. The above strategy can also avoid some deadlock
problems that occur in adjacent rounds. To this end, this paper alleviates the deadlock
problem by mutually predicting the task inclusion operations of the current rounds of the
respective UAVs to decide whether a task should be added.

Next, we use the following schematic example to illustrate the above basic idea.

Example 1. As shown in Figure 2, without loss of generality, it is assumed that two vehicles use a
greedy algorithm to select and schedule four tasks of a1, b1, c1, d1 and b2, a2, c2, d2 in the previous
scheduling cycle, where subscripts 1 and 2 are used to distinguish the vehicles to which they belong.
For the task removal phase, after the communication of bids, referring to the consensus rule table,
the two vehicles directly remove the tasks with no dominant price and get schedules a1, c1 and b2, c2

Drones 2022, 6, 356 7 of 17

respectively. For the task inclusion phase, each vehicle predicts each other for one scheduling cycle
as the basis for judging and inserting tasks. Vehicle 1 was originally intended to contain the task
f , but it is not inserted because it is predicted in advance that vehicle 2 will also contain this task
through the predictor, and f2 is smaller than f1. To this end, vehicle 1 still tries to insert other
tasks e, g on the basis of paths a1, c1, and obtains the schedule e1, a1, c1 at the end of this round
of iterations. Vehicle 2 successfully contains the task f and finally gets the schedule b2, f2, g2, d2,
because it predicts that f1 is greater than f2.

g2

 communicationa1 b1 c1 a2b2 c2

a1

d1 d2

c1 b2 d2

a1 c1e1

T
a

sk
 r

e
m

o
va

l
p

h
a
se

T
a

sk
 i

n
cl

u
si

o
n

 p
h

a
se

Vehicle 1 Vehicle 2

 consensus

i j i j

removing
tasks

gfe

f1 > f2

a1 c1 f1
b2 d2f2

b2 d2f2

unassigned tasks

i j i j

 consensus

removing
tasks

including
tasks

including
tasks

f1

Figure 2. Diagram of distributed task scheduling method based on conflict prediction.

The specific algorithm design process is given below.

3.2. Task Removal

This subsection focuses on the design of the task removal strategy as shown in
Algorithm 1. As described by the aforementioned basic idea, the significance γi of the
tasks in the task list of a vehicle should be transmitted to other vehicles νj, j = 1, . . . , n, j 6= i
in order to notify them of removing the corresponding tasks from their scheduler, updating
local significance list γ�i and to get the significance further decreased. Similar as in PI, a
vehicle list βi = [βi,1, . . . , βi,m]

T and a local significance list β�i = [β�i,1, . . . , β�i,m]
T are also

utilized in assistance with updating a proper global significance list, in which βi notes
the global assigned vehicle βi,k to each task tk (k = 1, . . . , m) known by vehicle νi, and β�i
represent similar descriptions that are local to vehicle νi. If a vehicle receives a significance
smaller than the one it has produced for a particular task already in its task list, this task
is then required to be removed from the task list (Line 1). Next, find a set of tasks to be
deleted from the task list via di ← pi[β

�
i [pi] 6= i], where the formula in square brackets is

used to find the task index of the failed bid for vehicle νi recorded in the local vehicle list
β�i (Line 2). Finally, the time cost of the remaining tasks in pi and the significance of the
remaining tasks in di are then updated due to the removal of tasks (Line 3). The algorithm
then moves to the task inclusion phase as described previously.

Drones 2022, 6, 356 8 of 17

Algorithm 1 Task removal procedure running on vehicle νi

Input: the global significance list γi, the global vehicle list βi, scheduler pi, local signifi-
cance list γ�i , local vehicle list β�i , the vehicle index i

Output: the updated pi, γ�i , β�i
1: Perform the consensus procedure to update local significance list γ�i and local vehicle

list β�i .
2: Remove tasks belonging to di ← pi[β

�
i [pi] 6= i].

3: Update time costs ci,κ(pi) and significance γ�i for the rest of tasks in pi respectively.

3.3. Task Inclusion

This subsection presents an iterative task inclusion strategy based on conflict pre-
diction. The UAV take the significance of the winner of each task in the previous round
as the benchmark when they remove or include tasks. In other words, this part of the
benchmark information could be already outdated. To deal with this problem, a prediction
operation is added into the inclusion phase of PI to predict the inclusion loop operations
that other vehicles are performing simultaneously. The details of the process are shown in
Algorithm 2.

Algorithm 2 Task inclusion procedure running on vehicle νi

Input: the local scheduler pi, the global significance list γi, the global vehicle list β�i , the
vehicle index i

Output: the updated pi, γi and βi
1: Initialize the set Ξ to be null, p̃j ← pj, γ̃�j ← γj, for νj where j ∈ N ; j 6= i; gj,i(t) = 1.
2: while |pi| ≤ Ni do
3: Compute the marginal significance list γ⊕i,q according to Equation 3, for the tasks tq,

q ∈ {1, . . . , m}
/

Ξ.
4: if maxq∈{1,...,m}/Ξ{γ�i,q − γ⊕i,q} > 0 then
5: tq∗ ← arg maxq∈{1,...,m}/Ξ{γ�i,q − γ⊕i,q} with corresponding position l∗ ←

arg ω⊕q (pi, tq∗).
6: γ̂i,q∗ ← Predictor(tq∗ , i,N ; p̃j, γ̃�j).
7: if γ�i,q∗ < γ̂i,q∗ then
8: Insert task tq∗ into pi at position l∗.
9: Update vehicle list’s entry β�i,l∗ ← i.

10: Update time costs ci,κ(pi) for the tasks followed after tq∗ in pi.
11: end if
12: else
13: break.
14: end if
15: Ξ← Ξ ∪ {tq∗}.
16: end while
17: Update significance γi,q and vehicle list βi,q, for all q ∈ 1, . . . , m.
18: return pi, γi, βi.

First, define an empty set Ξ for storing tasks that cannot be inserted or tasks that have
been inserted, and copy the scheduler pj and significance list γj of adjacent vehicles to p̃j

and γ̃�j , respectively (Line 1), where νj, j ∈ N ; j 6= i; gj,i(t) = 1 indicates that the vehicle
νj is interconnected with νi. Second, determine whether the current scheduler still has
capacity to insert new tasks (Line 2), and if so, computing the marginal significance list γ⊕i,q
for the tasks tq, q ∈ {1, . . . , m} but q /∈ Ξ according to Equation (3) (Line 3). Next, the tasks
are then continuously added to the scheduler pi one after another (Lines 4–14) by each time
satisfying the criteria,

max
q∈{1,...,m}/Ξ

{γ�i,q − γ⊕i,q} > 0 (5)

Drones 2022, 6, 356 9 of 17

and leading to the largest reduction of the overall time cost with the new task

tq∗ ← arg max
q∈{1,...,m}/Ξ

{γ�i,q − γ⊕i,q} (6)

at position l∗ ← arg ω⊕q (pi, tq∗) in the task list.
Unlike PI, before vehicle νi inserts the task tq∗ at position l∗, we add a step (Line 6):

an operator ‘predictor’ is used to simulate adjacent vehicles νj, j ∈ N ; j 6= i; gj,i(t) = 1
executes inclusion operation, to determine if the task tq∗ will also exist in the scheduler of
the adjacent vehicle νj, and if so, compare the marginal significance γ⊕i,q∗ of task tq∗ with the
least predicted significance γ̂i,q∗ of the adjacent vehicles. If γ�i,q∗ < γ̂i,q∗ , indicating that the
significance of tq∗ on νi is smaller, then the task tq∗ will be confirmed to insert into vehicle
νi’s scheduler pi, otherwise the insertion will be abandoned (Lines 7–11). Details about the
predictor will be described in Section 3.4.

Once the task tq∗ is indeed inserted, the l∗th element of the local vehicle list β�i,l∗ is set
as i (Line 9), and ci,κ(pi) for the tasks followed after tq∗ in pi need to be updated (Line 10).
Before inserting the next task, add the task tq∗ that may have been inserted or abandoned to
the set Ξ to avoid being reconsidered next time (Line 15). Finally, the significance list γi on
the vehicle νi needs to be updated according to Equation (3) before this phase is completed.

The whole algorithm stops when no changes can be made both in the task inclusion
phase and in the task removal phase for a while.

3.4. Predictor

The predictor will simulate a round of task removal and task inclusion operations for
all adjacent vehicles, and determine whether the task intended to be included exists in the
updated path of the adjacent vehicles. If so, the return value is the marginal significance of
the input task on a certain vehicle, which is the smallest among all adjacent vehicles. The
specific process as shown in Algorithm 3 is:

Algorithm 3 Predictor procedure running on vehicle νi

Input: the task intended to be removed tq∗ , the vehicle index i, the set N ; paths p̃j, the
local significance γ�j , for νj, where j ∈ N ; j 6= i; gj,i(t) = 1.

Output: the predicted significance γ̂i,q∗ of task tq∗ .
1: Initialize γ̂i,q∗ to a large initial value.
2: for each vehicle νj, where j ∈ N ; j 6= i; gj,i(t) = 1 do
3: [p̃j, γ̃�j , β̃�j]← Removal(γj, β j, p̃j, γ̃�j , β̃�j , j).

4: [p̃j, γ̃�j , β̃�j] ← Inclusion(p̃j, γ̃�j , β̃�j , j) that do not contain the prediction operation
(corresponding to lines 6 and 7 of Algorithm 2).

5: if tq∗ ∈ p̃j and γ̃�j,q∗ < γ̂i,q∗ then
6: γ̂i,q∗ ← γ̃�j,q∗
7: end if
8: end for
9: return γ̂i,q∗ .

First, define a predicted significance γ̂i,q∗ for task tq∗ on vehicle νi and initialize it
to a large initial value (Line 1). Then, traverse all adjacent vehicles νj, where j ∈ N ; j 6=
i; gj,i(t) = 1 (Line 2), and sequentially call Algorithm 1 (Line 3) and Algorithm 2 (Line 4)
to simulate each vehicle νj to complete a round of the task removal and task inclusion
operations, thereby obtaining the predicted scheduler p̃j and the marginal significance γ̃�j .
It is worth noting that, to avoid infinite nesting of predictions, the include operation here
will not include the prediction operation as shown in Algorithm 2, lines 6 and 7. Finally, it
is judged whether the task tq∗ intended to be included exists in the predicted scheduler p̃j.

Drones 2022, 6, 356 10 of 17

If so, the predicted marginal significance γ̃�j,q∗ is compared with γ̂i,q∗ , and the smaller one is
assigned to γ̂i,q∗ .

4. Communication Models
4.1. Distributed Implementation

We use a mobile ad hoc network (MANET) as a wireless communication facility
between multiple drones. Ad-hoc networks are a special case of wireless networks in
which each node acts as a router or access point by itself, without the help of infrastructure.
With its characteristics of supporting mobile nodes, no network infrastructure, convenient
network construction, self-organization, and good robustness, it is very suitable for the
technical requirements of UAV swarms networking.

The specific implementation approach of the proposed method under networking
conditions is as follows (as shown in Figure 3): (1) Construct a networking simulation
platform mainly composed of the protocol stack and channel simulation, in which the
protocol stack mainly adopts the transport layer protocol, network layer protocol and
data link layer protocol running on the actual physical system, and channel simulation
mainly simulates the loss of imperfect communication channels such as packets, delay,
and noise floor. (2) Realize background operations for creating or destroying virtual
network nodes, importing and forwarding external service data to virtual nodes, providing
service data distribution interruption management, and calculating path loss based on
node locations. (3) Implement the graphical user interface (GUI) to provide users with
interface access functions such as system control, node control, and link configuration of
the virtual network. (4) Each scheduler equipped with a replica of the proposed method is
placed on the corresponding vehicle and communicates with other schedulers by binding
virtual network nodes to negotiate the overall scheduling of the entire system.

Remark. Since the proposed method adopts a synchronous communication protocol,
an additional synchronization signal is added when the service data is packaged for mutual
waiting between scheduling rounds.

MANET

G
U

I

System
control

Channel Simulation

Packet
loss

Create or destroy

virtual nodes

Background operations

Calculates path dissipation

between nodes based on

node locations

Import and forward external

business data to virtual

nodes

Virtual Node Data

Distribution Interruption

Management

Node
control

Link
config

Delay
Noise
floor

MAC Protocol

Virtual Node j

Routing Protocol

UDP

MAC Protocol

Virtual Node k

Routing Protocol

UDP

MAC Protocol

Virtual Node i

Routing Protocol

UDP

Initialize node i

User-defined Vehicle i

Bind virtual node i

Packet and send business

data to neighboring vehicles

Receive and unpack data

from neighboring vehicles

Iteratively call Algo.1 and

Algo.2 until convergence

Wait for sync signal and

trigger communication

Figure 3. Schematic diagram of the distributed synchronization scheduling algorithm test platform
based on MANET.

4.2. Protocol Stack

The core of MANET is the protocol stack, which mainly includes the MAC protocol of
the data link layer, the routing protocol of the network layer, and the TCP/UDP protocol of
the transport layer.

The MAC protocol is responsible for the management of network access and node
resource utilization and is a key factor for the network to achieve high performance.

Drones 2022, 6, 356 11 of 17

Commonly used MAC protocols are Carrier Sense Multiple Access with Collision Avoid
(CSMA/CA), Time Division Multiple Access (TDMA), and so on. Literature [29] shows
that the end-to-end delay and network throughput of CSMA/CA protocol increase with
the increase of the number of network nodes; while the end-to-end delay and network
throughput of TDMA protocol remain stable. That is to say, compared with CSMA/CA,
TDMA has shorter end-to-end latency and higher throughput when the number of nodes
is large. Then, for scalable UAV swarms, we prefer to choose TDMA as the MAC protocol
for mobile ad hoc networks.

Routing protocols are roughly divided into the prior protocols (or table-driven proto-
cols) and the reactive protocols (or on-demand routing protocols). The former requires each
node to maintain a routing table, which is updated instantly when the network topology
changes. Since there is no need to search for a route, the transmission delay is small, but the
maintenance cost of the route is relatively large. Common protocols include Destination
Sequenced Distance Vector (DSDV), Wireless Routing Protocol (WRP), Better Approach
To Mobile Ad-Hoc Networking (batman), etc. The latter is a protocol for finding routes
before transmission. Since there is no need to maintain the routing table, the overhead of
maintaining the protocol is small, but the transmission delay is relatively large. Common
protocols include Dynamic Source Routing (DSR), Ad hoc On-Demand Distance Vector
Routing (AODV), Temporally Ordered Routing Algorithm (TORA), etc. This work selects
the batman-adv protocol, which runs on the data link layer in the form of a Linux kernel
module, to realize data transparent transmission through MAC addressing instead of
traditional IP addressing. This routing protocol is suitable for drone swarms, which usually
have requirements on the power consumption and size of the ad-hoc network electronics.

For the transport layer protocol, we tend to choose UDP (User Datagram Protocol) in
broadcast mode instead of TCP (Transmission Control Protocol). Although TCP provides
reliable data transmission, we use UDP as it allows for broadcasting which is inherently
efficient for consensus algorithms. Furthermore, ref. [30] shows that consensus times for
CBBA under TCP and UDP unicast mode are far longer compared to UDP broadcast.

4.3. Communication Channel Simulation

We characterize imperfect physical communication channels by packet loss, latency,
and noise floor. Reference [24] compares Bernoulli [31], Gilbert-Elliot (G.E.) [32,33] and
Rayleigh Fading [34] models to simulate packet loss between nodes. These models account
for path loss, fading, burst errors, and bandwidth saturation inherent in many communica-
tion channels. The Bernoulli model uses the parameter p (0 ≤ p ≤ 1) to set the probability
that the destination node successfully receives the message from the source node; the
G.E. model can be used to simulate the packet loss caused by bit errors and bandwidth
saturation; the Rayleigh fading model predicts the attenuation of the received signal by
assuming that the signal’s amplitude will vary according to a Rayleigh distribution. We
adopt the Rayleigh fading model to simulate imperfect communication environments as it
comes closer to modeling realistic environments compared to Bernoulli or Gilbert-Elliot.
The Rayleigh Fading model decides whether to discard a message by judging whether the
total received power PR of the destination node is less than the user-specified sensitivity
threshold PS. The total received power is obtained with the formula PR = PT − PL, where
PT is the transmitted power and PL is the total attenuation, which is given by PL = PF + PPL.
PF stands for random path fading, which is a process in which the wireless signal attenuates
and changes due to the interference of objects in the environment (such as buildings, trees,
etc.). These objects cause the wireless signal to travel along multiple paths, each of which
experiences different offsets in amplitude, frequency, and ultimately creates constructive
or destructive interference at the receiver. To quantify PF, an inverse discrete Fourier
transform (IDFT) is usually used to obtain a Rayleigh random variable sequence, which is
then sampled, and the resulting power value is converted to a decibel value as PF. PPL is
the path loss due to distance with the formula PPL = PL0 + 10γlog10

(
d
/

d0
)

where d is the
current distance between nodes, γ is the path loss exponent, and PL0 is the path loss at the

Drones 2022, 6, 356 12 of 17

reference distance d0. Latency is achieved by stuffing packets into the delayed work path
when the underlying data is exchanged.

5. Results and Discussion

This section analyzes and compares the Monte Carlo simulation results of the proposed
method compared to the PI algorithm based on the MANET simulation platform.

5.1. Scenario and Environmental Setup

The scenarios adopted in this paper are consistent with that of literature [3,8]. The
setup uses a rescue team equally split that two vehicles need to rescue two types of
survivors, who are likewise equally split into two types that require food and medicines,
respectively. Parameters related to the scenario are summarized in Table 1 and are explained
as follows. The vehicles are randomly distributed in a 10 km × 10 km × 0 km ground space,
where the vehicles’ speeds are assumed to be constant and are set to 30 m/s and 50 m/s,
respectively. The tasks take place in a 3-D space spanning 10 km × 10 km × 1 km, with
coordinates drawn from uniform distributions randomly. The medicine tasks last for a
duration of 300 s and the food tasks last for 350 s. The deadlines for starting each rescue
are uniformly distributed on a timeline between the 0 and 2000 s. Given the random
initialization of tasks and vehicle locations and deadlines, sometimes it is impossible for
some tasks to be started by any vehicle before their deadlines. In these simulations, all the
task information is available to all the vehicles up front.

Table 1. Parameters related to the simulation scenario.

Properties Medicine Food

Vehicle speed 30 m/s 50 m/s
Vehicle initial position [10 km × 10 km × 0 km] [10 km × 10 km × 0 km]

Task duration 300 s 500 s
Task deadline [0, 2000]s [0, 2000]s
Task location [10 km × 10 km × 1 km] [10 km × 10 km × 1 km]

All algorithms are evaluated in a simulation environment built based on the ad-
hoc network model of Section 4, as shown in Figure 4. Among them, UDP, dynamic
TDMA, and Batman-adv are used to form a protocol stack, the Bernoulli model is used to
simulate packet loss, and the Rayleigh Fading model is used to simulate distance-based
path attenuation. Delayed work paths for TDMA to simulate delays. Unlike previous
works that simulate varying communication with different network topologies (such as
a row, star, circular, mesh, etc.), this paper assumes a full mesh topology, in which every
vehicle attempts to communicate with every other vehicle by continuously broadcasting
messages. This assumption facilitates the discovery of performance differences due to
applying the proposed method as opposed to changing the vehicles’ network topology.
Parameters related to the communication are summarized in Table 2.

Table 2. Parameters related to communication simulation.

Properties Values

Network topology range 15 Km
Bandwidth transmission 2 Mbps

Networking mode dynamic TDMA
Transmitted power PT 30 dB

Sensitivity threshold PS −25 dB
Path loss PL0 at d0 = 1 1 40 dB
Path loss exponent γ 2 2.5

1 Calculated using the Friis propagation model [35] assuming a 2.4 GHz signal commonly used in many commu-
nication networks. 2 Simulate semi-urban to rural environments (γ ranges between 2 to 6 with 2 for uncluttered
space and 6 for densely obstructed urban areas [36]).

Drones 2022, 6, 356 13 of 17

Figure 4. Simulation platform based on the ad-hoc network model.

5.2. Results and Analysis

This section presents the simulation results of using the proposed method denoted
as PI-Predict and PI to solve the above search-and-rescue problem, and analyzes the
advantages of the algorithm from the perspectives of global optimization and convergence.
We use the Monte Carlo method to implement random simulations, where each method
under the same condition of every p ∈ {2, . . . , 6} and n ∈ {6, 8, . . . , 20} is tested 1000 times.
p is the ratio of the number of tasks and drones, and n is the number of drones.

The optimization of the algorithm is discussed below, including the average time cost
and the total number of assignments. Figure 5 shows the reduction ratio of the average time
cost of PI-Predict relative to PI under the same allocation number with bars representing
40 sets of samples under different combinations of p and n. The positive bar indicates that
the decrease ratio of the average time cost is higher than the increase ratio. The opposite is
true for negative bar. The reason why the average time cost increases rather than decreases
is that it is affected by the distribution of vehicles-tasks. Affected by the distribution of
vehicles-tasks, the scheduling results generated by the proposed strategy have certain
randomness. From the 40 data sets, 28 data sets show that the proposed method can
achieve lower average time cost with more distribution of vehicles-tasks. From the overall
trend, when pis small, the number of tasks that can be assigned is limited, the performance
of the algorithm varies greatly with different random distribution and algorithm strategy
change, The optimization of scheduling results is also different. For example, when p = 2,
there is little difference in the number of positive and negative bars, which is caused by
randomness; When the number of tasks that can be assigned increases with the increase of
p, PI-Predict shows a more stable trend of improving the optimization performance, and
the proportion of improvement is larger. For example, when p = 6, the color proportion
in the positive bar shows an increasing trend, indicating that PI-Predict provides a stable
performance improvement.

In addition to the average time cost, PI-Predict increases the number of assigned tasks
under most of the random distributions of vehicles-tasks. From the 40 groups of Monte
Carlo simulation data generated by different combinations of p and n in Figure 6, it can be
seen that PI-predict can bring different degrees of increase in the allocation number. Due to
the randomness of scheduling results caused by the random distribution of vehicles-tasks,
it is natural that the allocation number may decrease rather than increase. The color bar in
the figure represents the proportion of simulation times with increasing allocation number
in 1000 simulations under a certain combination of p and n, and the gray part of the
bar represents the proportion of simulation times with decreasing allocation number (for
example, when p = 2 and n = 6, the growth ratio is about 20% and the reduction ratio is
less than 10%, implying that the remaining 70% of allocation number remains unchanged).
In terms of the overall trend, with the increase of p, the number of tasks that can be assigned
increases, and the number of tasks assigned also increases accordingly. When p is the same,

Drones 2022, 6, 356 14 of 17

as n increases, the number of tasks that can be assigned will also increase, and the number
of tasks assigned will also increase.

Average time cost decreasement ratio of PI-Predict relative to PI (%)

p=2 p=3 p=4 p=5 p=6
-50

-40

-30

-20

-10

0

10

20

30

40

50

d
e
c
re

a
s
e
m

e
n
t
ra

ti
o
 (

%
)

agent num

6

8

10

12

14

16

18

20

Figure 5. Average time cost reduction ratio of PI-Predict relative to PI.

Allocation numbers increase ratio of Pi-Predict relative to PI

p=2 p=3 p=4 p=5 p=6
0

10

20

30

40

50

60

70

in
c
re

a
s
e

 r
a

ti
o

 (
%

)

agent num

6

8

10

12

14

16

18

20

Figure 6. Allocation numbers increase ratio of PI-infer-conv relative to PI.

Next, we discuss the efficiency of the algorithm, including the deadlock ratio and the
number of iterations.

Figure 7 summarizes the deadlock ratios of PI and PI-Predict under different p, which
are calculated by the ratio of the number of deadlocks to the number of Monte Carlo
simulations. Among them, the number of deadlocks is the sum of all deadlock cases in
the range of n ∈ {2, 4, . . . , 20}, and the number of Monte Carlo simulations is 1000. The
potential reason for the reduction of the deadlock ratio is that the iterative inclusion strategy
based on conflict prediction can eliminate the deadlock that occurs between two adjacent
rounds, but it cannot do anything about the deadlock beyond the adjacent rounds, which
can usually only be tackled with deliberate algorithm truncation.

Drones 2022, 6, 356 15 of 17

p=2 p=3 p=4 p=5 p=6
0

2

4

6

8

10

12

14

16

18

20

n
o

n
-c

o
n

v
e

rg
e

n
t

ra
ti
o

 (
%

)

7.475

11.775
12.4

13.45

11.5

7.475

11.775
12.4

13.45

11.5

5.5
6.3

5.85 5.75

4.225

5.5
6.3

5.85 5.75

4.225

Deadlock ratio of PI-Predict compared to PI

Method

PI

PI-Predict

Figure 7. Deadlock ratio of PI-Predict compared to PI.

Figure 8 shows the box plots of the iterations number for PI and PI-Predict under the
condition of p = 6. The statistical results of the algorithm are similar when p is equal to
other values, and will not be repeated here. As can be seen from the figure, the number of
iterations of PI-Predict has been greatly reduced compared to PI, which is caused by the
conflict prediction mechanism. It is worth noting that both algorithms have outliers when
the number of iterations is equal to 100, which is the number of algorithm truncations we
set to deal with the deadlock problem.

n=6 n=8 n=10 n=12 n=14 n=16 n=18 n=20

20

40

60

80

100

it
e
ra

ti
o
n
 n

u
m

b
e
rs

p=6

Methods

PI

PI-Predict

Figure 8. Box plots of iterations number for PI-Predict compared with PI.

From the above analysis and discussion, compared with PI, the proposed method can
reduce the average time cost and increase the total allocation number under most of the
random distributions of vehicles and tasks, and significantly reduce the deadlock ratio and
the number of iteration rounds.

6. Conclusions

This paper modifies the baseline PI algorithm by integrating a new removal strategy
and a conflict prediction operator into the tasks removal phase and inclusion phase of
the algorithm respectively. The proposed method iterates between a communication and
consensus phase, and a task inclusion phase, the first phase being used to include tasks into
a vehicle’s scheduler while the latter being responsible for the consensus on significance
of tasks for each vehicle and for removing the tasks that have been taken over by other
vehicles. In the communication and consensus phase, the removal strategy frees up more
local space, making it possible for more new tasks to be added. This essentially increases
the exploratory nature of the algorithm to improve the overall optimality of the multi-task
scheduling problem. In the task inclusion phase, the conflict prediction can reduce the

Drones 2022, 6, 356 16 of 17

number of iterations by predicting the task removal and task inclusion operation of neighbor
vehicles synchronously, predicting and resolving potential allocation conflicts in advance.
Furthermore, the operator can also avoid some deadlock that occur in adjacent rounds
and reduce the deadlock ratio, which is of great benefit to UAV swarm task scheduling.
Finally, Monte Carlo simulation experiments on the ad-hoc network simulation platform
were carried out, and a large number of results show that, compared with PI, the proposed
method can reduce the average time cost and increase the total allocation number under
most of the random distributions of vehicles-tasks, and significantly reduce the deadlock
ratio and the number of iteration rounds.

In the future, the main following research directions will be: first, focusing on explo-
ration and utilization, to carry out special research on algorithm performance; Secondly, the
consensus rules of combinatorial optimization under communication constraints would be
studied [37]. Third, the algorithm verification of communication or flight control hardware
in loop should be carried out at appropriate time.

Author Contributions: Conceptualization, J.L. and R.C.; methodology, J.L.; software, J.L.; validation,
R.C.; investigation, J.L.; writing—original draft preparation, J.L.; writing—review and editing, R.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Science and Technology Innovation 2030-Key Project of
‘New Generation Artificial Intelligence’ under Grant 2020AAA0108200.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, X.; Yang, S.; Guo, Z.; Lian, M.; Huang, T. A Distributed Dynamical System for Optimal Resource Allocation over

State-Dependent Networks. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2940–2951. [CrossRef]
2. Korsah, G.A.; Ayorkor, G.; Stentz, A.; Dias, M.B. A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res.

2013, 32, 1495–1512. [CrossRef]
3. Zhao, W.; Meng, Q.; Chung, P. A Heuristic Distributed Task Allocation Method for Multivehicle Multitask Problems and Its

Application to Search and Rescue Scenario. IEEE Trans. Cybern. 2015, 46, 902–915. [CrossRef]
4. Geng, N.; Meng, Q.; Gong, D.; Chung, P.W. How Good are Distributed Allocation Algorithms for Solving Urban Search and

Rescue Problems? A Comparative Study With Centralized Algorithms. IEEE Trans. Autom. Sci. Eng. 2019, 16, 478–485. [CrossRef]
5. Ganguly, S. Multi-objective distributed generation penetration planning with load model using particle swarm optimization.

Decis. Mak. Appl. Manag. Eng. 2020, 3, 30–42. [CrossRef]
6. Stanković, A.; Petrović, G.; Ćojbašić, Ž.; Marković, D. An application of metaheuristic optimization algorithms for solving the

flexible job-shop scheduling problem. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 13–28. [CrossRef]
7. Zhang, K.; Collins, E.G., Jr.; Shi, D. Centralized and distributed task allocation in multi-robot teams via a stochastic clustering

auction. ACM Trans. Auton. Adapt. Syst. 2012, 7, 21:1–21:22. [CrossRef]
8. Whitbrook, A.; Meng, Q.; Chung, P. A novel distributed scheduling algorithm for time-critical multi-agent systems. In Proceedings

of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2
October 2015.

9. Bandyopadhyay, S.; Chung, S.J.; Hadaegh, F.Y. Probabilistic and Distributed Control of a Large-Scale Swarm of Autonomous
Agents. IEEE Trans. Robot. 2017, 33, 1103–1123. [CrossRef]

10. Omidshafiei, S.; Agha–Mohammadi, A.A.; Amato, C.; Liu, S.Y.; How, J.P.; Vian, J. Decentralized control of multi-robot partially
observable Markov decision processes using belief space macro-actions. Int. J. Robot. Res. 2017, 36, 231–258. [CrossRef]

11. Chen, C.-H.; Chou, F.-I.; Chou, J.-H. Optimization of robotic task sequencing problems by crowding evolutionary algorithms.
IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 6870–6885. [CrossRef]

12. Kim, S.; Moon, I. Traveling salesman problem with a drone station. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 42–52. [CrossRef]
13. Xin, B.; Wang, Y.; Chen, J. An efficient marginal-return-based constructive heuristic to solve the sensor-weapon-target assignment

problem. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 2536–2547. [CrossRef]
14. Chen, W.; Wang, D.; Li, K. Multi-user multi-task computation offloading in green mobile edge cloud computing. IEEE Trans. Serv.

Comput. 2018, 12, 726–738.

http://doi.org/10.1109/TNSE.2022.3174098
http://dx.doi.org/10.1177/0278364913496484
http://dx.doi.org/10.1109/TCYB.2015.2418052
http://dx.doi.org/10.1109/TASE.2018.2866395
http://dx.doi.org/10.31181/dmame2003065g
http://dx.doi.org/10.31181/oresta20303013s
http://dx.doi.org/10.1145/2240166.2240171
http://dx.doi.org/10.1109/TRO.2017.2705044
http://dx.doi.org/10.1177/0278364917692864
http://dx.doi.org/10.1109/TSMC.2021.3104862
http://dx.doi.org/10.1109/TSMC.2018.2867496
http://dx.doi.org/10.1109/TSMC.2017.2784187

Drones 2022, 6, 356 17 of 17

15. Mnif, S.; Elkosantini, S.; Darmoul, S.; Said, L.B. An immune network based distributed architecture to control public bus
transportation systems. Swarm Evol. Comput. 2019, 50, 100478. [CrossRef]

16. Mudrova, L.; Hawes, N. Task scheduling for mobile robots using interval algebra. In Proceedings of the 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 383–388.

17. Testa, A.; Rucco, A.; Notarstefano, G. Distributed mixed-integer linear programming via cut generation and constraint exchange.
IEEE Trans. Autom. Control. 2019, 65, 1456–1467. [CrossRef]

18. Camisa, A.; Notarnicola, I.; Notarstefano, G. Distributed primal decomposition for large-scale milps. IEEE Trans. Autom. Control.
2021, 67, 413–420. [CrossRef]

19. Choi, H.-L.; Brunet, L.; How, J.P. Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 2009, 25,
912–926. [CrossRef]

20. Buckman, N.; Choi, H.-L.; How, J.P. Partial replanning for decentralized dynamic task allocation. In Proceedings of the AIAA
Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 0915.

21. Johnson, L.; Choi, H.L.; Ponda, S.; How, J.P. Allowing non-submodular score functions in distributed task allocation. In
Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012.

22. Johnson, L.; Ponda, S.; Choi, H.; How, J. Improving the Efficiency of a Decentralized Tasking Algorithm for UAV Teams with
Asynchronous Communications. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, ON,
Canada, 2–5 August 2010.

23. Ismail, S.; Liang, S. Decentralized hungarian-based approach for fast and scalable task allocation. In Proceedings of the 2017
International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017.

24. Nayak, S.; Yeotikar, S.; Carrillo, E.; Rudnick-Cohen, E.; Jaffar, M.K.M.; Patel, R.; Azarm, S.; Herrmann, J.W.; Xu, H.; Otte, M.
Experimental comparison of decentralized task allocation algorithms under imperfect communication. IEEE Robot. Autom. Lett.
2020, 5, 572–579. [CrossRef]

25. Carrillo, E.; Yeotikar, S.; Nayak, S.; Jaffar, M.K.M.; Azarm, S.; Herrmann, J.W.; Otte, M.; Xu, H. Communication-aware multi-agent
metareasoning for decentralized task allocation. IEEE Access 2021, 9, 98712–98730. . [CrossRef]

26. Alighanbari, M.; How, J.P. Decentralized task assignment for unmanned aerial vehicles. In Proceedings of the 44th IEEE
Conference on Decision and Control, Seville, Spain, 12–15 December 2005; pp. 5668–5673.

27. Dionne, D.; Rabbath, C.A. Multi-UAV decentralized task allocation with intermittent communications: The DTC algorithm. In
Proceedings of the 2007 American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 5406–5411.

28. Kwa, H.L.; Kit, J.L.; Bouffanais, R. Balancing Collective Exploration and Exploitation in Multi-Agent and Multi-Robot Systems: A
Review. Front. Robot. AI 2022, 8, 771520. [CrossRef]

29. Dong, Y.; Dong, Y.; Xiaojia, X.; Jie, L.; Zhenyi, L. Research on Ad-hoc Network for UAV Swarm Based on OPNET Simulation.
In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 28–31
October 2020; pp. 678–686. [CrossRef]

30. Rantanen, M.; Mastronarde, N.; Hudack, J.; Dantu, K. Decentralized task allocation in lossy networks: A simulation study. In
Proceedings of the 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON),
Boston, MA, USA, 10–13 June 2019; pp. 1–9.

31. Otte, M.; Kuhlman, M.J.; Sofge, D. Auctions for multi-robot task allocation in communication limited environments. Auton. Robots
2020, 44, 547–584. [CrossRef]

32. Gilbert, E.N. Capacity of a burst-noise channel. Bell Syst. Tech. J. 1960, 39, 1253–1265. [CrossRef]
33. Elliott, E.O. Estimates of error rates for codes on burst-noise channels. Bell Syst. Tech. J. 1963, 42, 1977–1997. [CrossRef]
34. Zheng, Y.R.; Xiao, C. Simulation models with correct statistical properties for Rayleigh fading channels. IEEE Trans. Commun.

2003, 51, 920–928. [CrossRef]
35. Khattak, R.; Chaltseva, A.; Riliskis, L.; Bodin, U.; Osipov, E. Comparison of wireless network simulators with multihop

wireless network testbed in corridor environment. In International Conference on Wired/Wireless Internet Communications; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 80–91.

36. Rappaport, T.S. Wireless Communications: Principles and Practice; Prentice Hall PTR: Hoboken, NJ, USA, 1996; Volume 2.
37. Komareji, M.; Shang, Y.; Bouffanais, R. Consensus in topologically interacting swarms under communication constraints and

time-delays. Nonlinear Dyn. 2018, 93, 1287–1300. [CrossRef]

http://dx.doi.org/10.1016/j.swevo.2018.12.004
http://dx.doi.org/10.1109/TAC.2019.2920812
http://dx.doi.org/10.1109/TAC.2021.3057061
http://dx.doi.org/10.1109/TRO.2009.2022423
http://dx.doi.org/10.1109/LRA.2019.2963646
http://dx.doi.org/10.1109/ACCESS.2021.3096229
http://dx.doi.org/10.3389/frobt.2021.771520
http://dx.doi.org/10.1109/ICCT50939.2020.9295859.
http://dx.doi.org/10.1007/s10514-019-09828-5
http://dx.doi.org/10.1002/j.1538-7305.1960.tb03959.x
http://dx.doi.org/10.1002/j.1538-7305.1963.tb00955.x
http://dx.doi.org/10.1109/TCOMM.2003.813259
http://dx.doi.org/10.1007/s11071-018-4259-1

	Introduction
	Preliminaries
	Problem Formulation
	Scheduling with the Market-Based Approach

	Method
	Basic Idea
	Task Removal
	Task Inclusion
	Predictor

	Communication Models
	Distributed Implementation
	Protocol Stack
	Communication Channel Simulation

	Results and Discussion
	Scenario and Environmental Setup
	Results and Analysis

	Conclusions
	References

