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Abstract: As the number of old bridges increases, the number of bridges with structural defects is also
increasing. Timely inspection and maintenance of bridges are required because structural degradation
is accelerated after bridge damage. Recently, in the field of structural health monitoring, a bridge
inspection using an unmanned aerial vehicle system (UAS) is receiving a lot of attention. In this paper,
UAS-based automatic damage detection and bridge condition evaluation were performed on existing
bridges. From the process of preparing for inspection to the management of inspection data, the entire
bridge inspection process was performed through field tests. The necessary element techniques for
each stage were explained and the results were confirmed. Finally, UAS-based results were compared
with conventional human-based visual inspection results. As a result, it was confirmed that the
UAS-based bridge inspection is faster and more objective than the existing technology. Therefore, it
was confirmed that the automatic bridge inspection method based on unmanned aerial vehicles can
be applied to the field as a promising technology.

Keywords: bridge inspection; unmanned aerial system; automatic damage detection; damage map-
ping; condition assessment

1. Introduction

Bridges are core infrastructures directly connected to the safety of the people and
require continuous maintenance and investment at the government level. In order to
effectively maintain the bridge, it is necessary to prevent damage by preemptively taking
precautions against factors affecting the common life of the bridge. Missing the golden time
of bridge maintenance can cause a huge economic burden to repair and improve perfor-
mance. Therefore, it is economical to respond early if defects, damages or deteriorations are
found through bridge inspection. Recently, issues related to the safety problems of bridges
have increased due to the aging and collapse of bridges, and a lot of the budget has been
invested in solving them. In the U.S., the MAP-21 (Moving Ahead for Progress in the 21st
Century) [1] policy was established to manage the infrastructures based on performance
evaluation in 2012, and the FAST Act (Fixing America’s Surface Transportation Act) [2]
policy was proposed in 2016. After implementing MAP-21, FAST Act consolidated trans-
portation investment programs to reduce investment redundancy and increase efficiency,
and increased investment in the maintenance of existing infrastructures. In Japan, main-
tenance guidelines for improving the safety and performance of bridges were developed
through the ‘Management Council for Infrastructure Strategy’ in 2013, and ‘Infrastructure
Systems Export Strategy [3]’ was proposed in 2014 to maintain bridges. In addition, In the
UK and Germany, ‘National Infrastructure Plan (2010) [4]’ and ‘The 2030 Federal Transport
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Infrastructure Plan (2016) [5]’ were established for infrastructure improvement and man-
agement, respectively. In Korea, ‘Special Act on the Safety Control of Public Structures’ was
established in 1997 to conduct safety inspections and maintenance of bridges. In this way,
many countries are investing in managing infrastructures, and efficient bridge maintenance
studies are being conducted.

Recently, the most active research in the field of bridge maintenance is to evaluate
the condition of the bridge quickly and accurately using an unmanned aerial vehicle
(UAV) and imaging devices. The unmanned aircraft system (UAS) which consists of a
UAV, an imaging device for damage collection, and sensors for system operation, has
many advantages and is expected to solve limitations of the conventional manpower-based
bridge inspection method. In other words, a UAS makes the bridge inspection process safer
and faster and makes it possible to efficiently manage the bridge. A UAS can approach
the top of the tower, cables, and spot of members, which are difficult to reach, without
vehicle control. In addition, collected images can be detected and objectively quantified
using image processing techniques (IPTs) and deep learning to ensure the reliability of
bridge inspection. The main advantage of IPTs is the ability to detect and classify most of
the damages (e.g., crack, corrosion, and efflorescence) on the surface of the bridge. Damage
detection using IPTs has been mainly studied for cracks, which are the most structurally
influential indicators of concrete bridges among various damages. Cracks on the image
represent a sharp change of image brightness and can be detected mathematically through
edge-detection techniques [6,7]. In order to identify cracks in bridges, Abdel-Qader et al. [8]
compared the performance by applying four edge-detection techniques, which are fast
Haar transform (FHT), fast Fourier transform, Sobel, and Canny. Hutchinson et al. [9]
detected the crack by statistically finding the optimal parameter set of the edge-detection
algorithms and Nguyen et al. [10] proposed edge detection using 2D geometric features
for cracks with tree-like branches. However, the traditional methods using IPTs require
designing filters or finding optimal parameters for detecting cracks. Moreover, there is a
limitation in that it is difficult to quickly analyze a large number of images collected from
a vision sensor with a UAV. Therefore, recently, deep learning-based damage detections
that can classify specific objects and estimate their location in the images without image
filters and parameters have been widely used. Deep learning has already been found to
exceed the performance of IPTs in detecting objects and estimating their location using
images. Vision-based structure damage detection using deep architecture is accompanied
by advances in the field of deep learning. Initially, convolutional neural networks (CNNs)
using sliding windows were used for crack detection [11,12]. However, since CNN requires
high computational costs, it was difficult to detect quickly. In addition, early research
studies were time-consuming and required the cost to collect enough damage images for
the training of deep learning. To overcome this problem, a deep learning technique based
on transfer learning that can update a new object using a well-trained network from a
large image set has been proposed [13]. After that, various damages were considered, and
different deep learning networks were used depending on the purposes (i.e., high accuracy,
fast speed, low computational cost, segmentation, etc.) [14–17].

The need for bridge maintenance efficiency and the improvement of image analysis
performance has been an opportunity for the UAS-based bridge inspection research to
be activated, and pilot tests have been conducted in many countries [18–22]. In the early
stages, only a single image was captured with a vision sensor by approaching the UAS at
a specific point where damage is suspected. In addition, Kim et al. [23] used a commer-
cial drone to perform aging concrete bridge inspection according to a general procedure
(i.e., background model generation through pre-flight, crack detection using deep learning,
crack quantification using IPTs, and damage display). In recent years, bridge inspection
studies have been conducted to build more complex and difficult tasks by using UAS
equipped with various sensors. However, recent studies have faced major challenges that
were unthinkable when inspecting bridges using a UAS. Jung et al. [24] divided UAV-based
bridge inspection procedures into pre-inspection, main inspection, and post-inspection
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phases and considered the role of each phase. Other UAS-based bridge inspection studies
include location estimation of a UAV in GPS-shaded areas, 3D background model gen-
eration, and image quality improvement [25–27]. However, there are not many studies
comparing the results of the manpower-based inspection and UAS-based bridge inspection
directly. Yoon et al. [28] conducted a study comparing UAS-based bridge inspection results
and human visual inspection results through three-dimensional image coordinates, but
focused only on comparing the location of the damage.

This paper deals with the results of UAS-based bridge inspection and condition as-
sessment conducted in the research project. The UAS-based bridge inspection technologies
developed in the research project were carried out as the basis of the UAS-based Bridge
Management System (U-BMS) for the bridge management department of the government
to perform bridge inspection tasks and make decisions. In this research project, hardware
technologies such as a UAV for bridge inspection, a ground control system (GCS), an
autonomous flying platform using various sensors (i.e., IMU, GPS, camera, 3D LiDAR),
and an IoT-based image coordinate estimation system were developed. In addition, the
software part developed damage detection and classification using IPTs and deep learning,
3D model generation using the point cloud method, image quality evaluation and improve-
ment, and bridge condition assessment techniques. This paper focused more on the results
of the bridge inspection than on the hardware part.

This paper has the following contributions in relation to UAS-based bridge inspection
and condition assessment. One of the primary contributions is to carry out all stages of UAV-
based bridge inspection procedures from the planning stage to the condition assessment
stage. As bridge inspection using UAVs received attention, many studies were conducted
and element technologies were developed. However, there are still limitations to putting
the technologies into practical use in-service bridges [24,29–31]. This research project solved
the challenge problems through field tests, and it has great meaning in automating and
integrating the bridge inspection procedure. Another contribution is to compare the results
of UAS-based automatic bridge inspection with human-based visual inspection results.
For efficient bridge management, objective structural damage detection is required. In this
study, the damage of the target member in the bridge was measured, and the results of
UAS-based automatic damage detection and appearance damage map were compared with
the existing visual inspection results. Through this, it was confirmed that the UAS-based
bridge inspection and condition assessment method has objective results. It is judged that
such research results can be utilized for practical inspection of UAS-based structures in the
future. This study has novelty and contribution in that it derives the results of the entire
inspection process while performing field tests for each stage of the UAS-based bridge
inspection according to the inspection procedure. Additionally, by comparing the results of
the UAS-based bridge inspection with the human-based inspection results, we were able
to confirm the performance. Finally, there is a contribution in that it suggests a method to
manage UAS-based bridge inspection data and utilize inspection history.

The rest of this paper is organized as follows. Section 2 briefly describes the UAS-based
bridge inspection procedure and key techniques considered in this study. In Section 3, the
results of the pilot test are presented. Comparison results with manpower inspection are
discussed in Section 4. Finally, a conclusion of the findings is presented in Section 5.

2. UAS-Based Bridge Inspection Procedure and Developed Technologies

This section introduces the bridge inspection procedure and element technologies
developed for UAS-based bridge inspection. The UAS-based bridge inspection procedure
is not much different from the manpower-based method, but in this study, it was divided
into pre-inspection, main inspection, and post-inspection. In addition, each phase is
divided into detailed steps, and the contents of the mission are explained. It also explains
which task uses U-BMS. Moreover, the developed technologies in this research project are
briefly explained.
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2.1. UAS-Based Bridge Inspection Procedure with U-BMS

The UAS-based bridge inspection procedure was divided into detailed tasks for
each phase as shown in Figure 1. The pre-inspection phase is a process of planning
and preparing before the main inspection. Therefore, the target bridge, inspection type
(i.e., regular inspection, precise inspection, and precise safety diagnosis) and inspection
date are determined. Then, the existing inspection information of the target bridge is
analyzed. This step can be performed in the office through the U-BMS developed in this
study. If there is no information, this step is to generate a 2D/3D background model
of the bridge using preliminary flight. Finally, the inspection scenario and flight path
are planned. The main inspection phase is performed at the site of the bridge, and the
UAS-based bridge inspection including UAS setup and flight condition check is performed.
In general, the post-processing of the collected inspection data is performed in the office,
returning from the field of the bridge. If a missing inspection area is identified off-site,
time and cost should be lost for re-inspection. Therefore, the main inspection in the field
is considered to estimate image coordinates through multi-metric sensing and coordinate
transformation for missing area detection in the field. Finally, in the post-inspection phase,
the overall process for damage detection and visualization is performed. In addition,
the condition of the member level and the bridge level is evaluated based on the results
of damage identification. As shown in Figure 1, several steps are performed on the U-
BMS for UAS-based bridge inspection. U-BMS consists of bridge video analytic (U-BVA),
bridge information management (U-BIM), and bridge inspection (U-BI) modules. U-BMS
can conduct cloud-based data management and visualization, real-time bridge condition
assessment, and connecting with existing BMS. It can efficiently support bridge inspection
in various mobile environments through responsive web technology.

Figure 1. UAS-based bridge inspection procedure: (Step No.)† indicates U-BMS utilization

2.2. UAS for Bridge Inspection

When using a commercial drone to inspect the bridge, there are many limitations in
performing the mission. For bridge inspection, a UAS capable of flying for a long time
(i.e., at least 30 min) with a high-performance camera and sensors is required. In addition,
it is necessary to secure a communication distance (i.e., at least 3 km) for safety connection
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between a GCS and a UAS, and wind resistance capacity against gusts (i.e., maximum
10 m/s) is required. Therefore, a quad-rotor type UAV was developed to be suitable for
bridge inspection in this study. Basically, a gimbal that can rotate 90 degrees up and down
for checking the bridge deck was mounted, and the UAV was designed to reduce the
interference between the gimbal and the propellers. The UAV’s flight controller used a
Pixhawk 2, equipped with a mini PC (i.e., Intel i7 NUC), 3D LiDAR (i.e., Velodyne Puck
lite), and LTE modem for location estimation and autonomous flight. Figure 2 shows
a customized UAV equipped with various sensors. The location recognition algorithm
was used by improving the graph-based SLAM algorithm. Graph-based SLAM expresses
the position and movement of the UAV with nodes and edges like a graph. Here, the
node means the pose of the UAV, and the edge between the two nodes is the odometry
information between the positions of the UAV and is called a constraint. Therefore, the
UAV moves and creates nodes and constraints using odometry information. It acquires
information in 3D space through pre-flight and recognizes the same location through newly
acquired data and information in the main flight. Moreover, the position is estimated
by adding a constraint between non-contiguous nodes and optimizing the graph. It has
been improved by constructing the visual inertial mileage using the camera and IMU and
generating a normal distribution transformation using 3D LiDAR to generate the base
node [32,33]. As a result, it was possible to secure the stability of the basic node generation
and to perform autonomous flight on the bridge deck. In this study, a flight path was
generated by converting 3D into 2.5 dimensions (i.e., 2D and height) in consideration of
the speed and computational power of creating a path in a 3D environment. In addition,
the Teensy board on the camera stores the GPS obtained from the location recognition
algorithm, 1D LiDAR for measuring distance, and IMU from the gimbal. Therefore, the
position coordinate of the image could be estimated through transformation for each
coordinate system. This can be used for missing area detection, which will be described in
the next subsection, as well as obtain information on each pixel size of the image. As a result,
information on the size of the detected damage can be derived from the acquired images.

Figure 2. Developed UAS for bridge inspection (a) Front View (b) Rear View.

2.3. Missing Area Detection and Image Quality Assessment

The center coordinate of the images collected from the UAS can be calculated through
the transformation of the homogeneous coordinate system. Figure 3 shows the schematic
of the estimation method of image coordinates.
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Figure 3. The schematic of the estimation method of image coordinates.

The first coordinate transformation can be conducted through the location information
and the IMU data of UAS and can be moved to the gimbal considering the position of
the sensor installation. After that, the camera coordinate connected with the gimbal is
converted using another IMU data of the gimbal. Finally, the working distance information
obtained from the 1D LiDAR enables coordinate conversion to an image center point [24,28].
The result of estimating the coordinates of the image can be utilized in the quantification
of the detected damage as it allows us to determine the pixel size within the RoI (Region
of Interest). In addition to missing area detection, there is another procedure that must be
performed between bridge inspection and damage detection procedures. This is to evaluate
the quality of the images obtained from the UAS. Image quality is affected not only by the
stability of the UAV but also by various environments such as wind and light. In particular,
when the UAS photographs the surface in close proximity to the bridge, the image quality
problem is represented by motion blur due to UAS’s vibration, insufficient shutter speed,
and errors in camera focus. Since motion blur causes a decrease in the sharpness of an
RGB image, the level can be evaluated by checking the change in the gradient value of
gray intensity. Therefore, an image quality assessment (IQA) index can be derived from
considering characteristics of motion blur as follows [24]

SGVk =
M

∑
i=1

N

∑
j=1

√
(Gk(i, j)− Gk(i, j + 1))2 + (Gk(i, j)− Gk(i + 1, j))2

√
M2 + N2

(1)

where SGVk denotes the quality assessment score of the k-th image, and M and N denote
horizontal and vertical pixel numbers of the image, respectively. In addition, Gk represents
the gray-intensity function of the k-th image. This criterion can evaluate relatively low-
quality image frames even if there is no reference image.

2.4. Deep Learning-Based Damage Identification

After the bridge inspection on-site, the next procedure is to identify damages including
classification, localization, and quantification. As already mentioned, there are limitations
to processing a huge amount of collected image data with IPTs only. Therefore, in this
study, two deep learning algorithms were used. This is because the specific value and
area for damages are simultaneously utilized in order to determine the condition grade
of the member. Therefore, the Mask Region-based CNN (i.e., Mask R-CNN) [34] and the
faster R-CNN [35] among deep learning algorithms were applied to classify the damage
classes on concrete and steel bridges (Figure 4). First, a dataset for each type of damage
can be obtained using all available resources to train various damages. The training image
set for the concrete structure considered six damage classes such as crack, efflorescence,
breakage, water leak, material segregation, and rebar exposure. In addition, five damage
classes (i.e., corrosion, crack, bolt, defect welding and paint peeling) were considered
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in the steel element. The dataset for the deep learning was divided into approximately
4000 images for training and 700 images for validation, respectively. The next step is to
label the damage. Faster R-CNN outputs the region for damage, and Mask R-CNN outputs
in the form of masking damage. Mask R-CNN adds a mask branch that predicts a pixel-unit
segmentation mask for each RoI based on Faster R-CNN. To identify the width or length
of cracks, pixel-level masking of damage is very effective. This is because damage can be
quantified in consideration of the pixel size calculated in the image coordinate estimation
process. However, the area of damage in the case of a network crack should be calculated
for evaluating bridge conditions, so it is advantageous to detect the box shape for the
damage. The third step is to train the network with labeled images. In the training, feature
extraction in the images and updating the weights in the network are conducted using
the backpropagation method. Deep learning networks of the R-CNN family do not train
only with prepared images. The damage classes can be added to well-trained networks
using transfer learning. Transfer learning used a labeled dataset of various classes such as
car, bird, house, etc. Therefore, the network can extract basic features such as line, shape,
shadow, etc., and the entire network is updated to classify the damages by connecting the
prepared damage images to the last fully connected layer in the network. This is efficient
when the number of images for training is not sufficient. The transfer learning-based deep
learning method is also quite good. The deep learning model learned in this study was
evaluated to have an accuracy between 85% and 100% and a recall rate between 70% and
100% depending on the class of damage. Although it had high accuracy and recall for most
of the damage, it was confirmed that the recall was lowered when several damage classes
were in the same area.

Figure 4. Deep learning-based damage detection.

2.5. Bridge Condition Assessment

When damages are identified, a condition assessment of structural members and
bridges is performed. Depending on the condition grade of the bridge, the method and
budget for reinforcing repairs will be different. Therefore, the condition status of the bridge
is evaluated according to the criteria for each damage and the damage area compared to
the total member area. Each country has criteria for classifying the status of bridges from
4 to 10 levels as shown in Table 1 [36]. The bridge condition class describes the damage
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and condition of the bridge, and it is used as a basis for making decisions on repair and
reinforcement. In general, a deterioration evaluation should be included in order to finally
determine the bridge condition. In the case of Korea, durability due to carbonation and
chloride is included. This study shows that UAS can be used as an auxiliary role rather than
performing all inspection procedures. Therefore, only surface damage using visual images
was considered. In addition, superstructures (e.g., deck slabs, girders, cables, etc.) and
substructures (e.g., piers, pylons, etc.) that can be inspected using UAS were considered.
Although UAS plays a limited role in the bridge inspection procedure, positive effects can
be expected in terms of time, cost, and safety.

Table 1. Criteria for classification of bridge condition by domestic and foreign institutions.

Country Bridge Condition Classification

Korea A,B,C,D,E
FHWA(USA) N, 0∼9
France A∼F
PWRI(Japan) I,II,III,IV,OK
Canada 1∼6
Australia 1∼4

In general, bridge inspection is performed considering the importance of the structural
element. Deck slabs are a structural element that directly affects the safety of bridges.
In the case of concrete deck slabs, cracks are first divided into a one-way crack and a
two-way crack (i.e., network crack). In addition, a second evaluation of deterioration
and damage is performed. Finally, the lowest grade of the condition assessment for both
damages is selected as the grade of the individual structural member. Figure 5 shows
the procedure for condition assessment of concrete members (i.e., bridge deck slab). As
shown in Table 1, in the case of Korea, the bridge condition grades are given from A to E
grade. However, in this study, damage detection performance aimed to quantify the crack
of approximately 0.3 mm, so both D and E grades were omitted from the flowchart. In
fact, because the condition of the D-grade bridge is very serious, it is difficult to service.
In addition, repair and reinforcement are urgently needed rather than visual inspection.
For reference, the evaluation criterion for a crack in a PSC girder is more stringent because
the probability of cracking is less than that of a concrete girder due to the effect of the
tendon. When the width of the crack is more than 0.2 mm and less than 0.3 mm, grade
C and less than 0.2 mm are considered grade B. However, in the case of piers, general
concrete evaluation criteria are used. In the case of steel bridges, the grade is determined
by taking the damage of the member and the connection part as the first evaluation item
and the surface deterioration as the second item. Steel bridges, unlike concrete bridges,
are considered to have structural defects when cracks are detected. Therefore, evaluation
items for the condition of members are deformation, breakage, loosening and dropping
of connecting bolts, defects in welds, corrosion, and paint peeling. Actually, the condition
grade of structural members considered durability for the salt damage, but only the results
of the appearance inspection were used in this study.
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Figure 5. Bridge condition assessment.

3. Field Test

This section discusses the field test results performed in this study. In consideration
of accessibility and safety, the target bridge was selected as the D Bridge in Gangwon
province, Korea, as shown in Figure 6. The D bridge is a structure in which 10 steel
boxes and 10 PSC box girders are combined, with a width of 11.0 m and a total span of
2000 m. The span of the test bed is the area where the PSC and steel box are connected
as shown in the figure, and the corresponding piers (i.e., pier 29–31) were targeted. Task
definition is performed on U-BMS and can input basic task information (i.e., target bridge,
date, inspection type), inspector and UAS information, and inspection scope as shown
in Figure 7. The preliminary information analysis and preparation step are carried out
considering the existence of bridge information. In addition, the inspection scenario and
flight path are planned.

Figure 6. Inspection bridge.
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Figure 7. Task definition on the U-BMS (re-produced image due to language).

In the case of the D bridge, it was constructed approximately 30 years ago, but it is
a well-managed B-grade bridge that has bridge information with appearance inspection
results. Although there were drawings or damage information on the bridge, a preliminary
flight was performed to obtain a 3D/2D model of the bridge considering that there was
no bridge information. In the preliminary flight, images were collected for 3D model
generation taking into account the longitudinal and lateral overlap, and as shown in
Figure 8, a 3D point cloud-based background model of the bridge was generated using
Pix4D. The 3D point cloud technique can extract and match feature points from geo-tagged
images containing the UAS information (i.e., location, pose), and the 3D model is made by
mesh and texture. Digitizing the 3D/2D background model of the bridge is an essential
task to manage data and make decisions on the U-BMS. It can also be used to draw a
bridge damage map. The final step in the pre-inspection phase is preparation for the main
inspection. This step confirms the UAS-based bridge inspection scenario and flight path. If
the record of performing UAS-based bridge inspection in the past is on the U-BMS, it can be
used or modified, otherwise, a new record must be created. Lastly, the UAS setup and flight
path setup are performed prior to the main flight for bridge inspection. UAS setup includes
inspection of sensors installed on the UAV for flight and camera setup. In this study, a
high-resolution DSLR camera (i.e., Sony alpha 9) with a lens (i.e., ZEISS Batis 85 mm f/1.8)
was used. The camera and lens were determined considering the minimum pixel size that
can be obtained when the distance between the target member and the UAS is 2 to 3 m. In
addition, the JPEG format and RAW data were simultaneously stored on the high-speed SD
memory card in order to improve the quality of the image in the future. For mapping and
localization, the Robot Operating System (ROS) read the 3D point cloud map obtained from
the preliminary flight with a 3D LiDAR. In addition, 3D path designation is performed
considering the size of the UAS and obstacles. Finally, the flight preparation is completed
after the inspection path is transmitted to the mini PC mounted on the UAS through the
LTE network. The main flight proceeds according to the UAV location estimation technique
mentioned in Section 2.2 and the optimal path set in advance. Figure 9 shows the UAV
trajectory in the field test. Based on the 3D point cloud map, it can be confirmed that the
UAV flight along the pre-considered waypoint in Figure 9a. In general, the lower part of
the deck on a bridge is not well received by GPS. This can be confirmed through the red
line in Figure 9b. Nevertheless, the reason why the UAV was able to fly under the deck
stably was that the location of the UAV was estimated using SLAM technology. Figure 9b
shows the trajectory comparison with raw GPS and estimated location using the SLAM
under the deck slab of the D bridge. In the area where GPS is well received, the results
of GPS raw data and SLAM-based location estimation are similar, and the error is small
even with the pre-made graph construction. However, since GPS shading occurs under the
bridge, the red line, which is the result of GPS mapping, appears to deviate from the flight
path, and the blue line, indicating the location estimation result, shows the stable position
of the UAV on the flight path.
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Figure 8. Point cloud-based 3D modeling for target bridge.

Figure 9. UAV trajectory in field test (a) Flight trajectory along pre-considered waypoints (b) UAV
trajectory comparison.

As a final phase of the main inspection phase, the missing area detection and image
quality assessment mentioned in Section 2.3 were performed on-site. In most bridge
inspection studies with UAS, this step is not considered. After returning from the field,
if a missing area or low-quality image is found in the critical inspection area, a proper
evaluation cannot be performed and the experiment must be repeated. Therefore, it is
necessary to carry out the corresponding process on-site. In the experiment, considering
the stable flight speed of the UAV, the frame per second (FPS) of the camera was set to
10, and the overlap rate between frames was 50%. Figure 10 shows the result of missing
area detection using 270 images for the front side of the pier. By performing missing area
detection based on image coordinate estimation at the field of the bridge, it was confirmed
that UAS-based bridge inspection covered the target inspection area. If the missing area
is detected, the supplementary inspection is performed by additional flying to cover the
inspection range. Then, the image quality assessment is conducted for the improved images
using IPTs. Figure 11 shows the image quality assessment results for 100 images acquired
through UAS. Image enhancements in this step took into account motion blur, illumination,
and noise, which frequently occur in UAS-based bridge inspection images. As a result of
using the basic image processing algorithm, it was confirmed that the image was improved
by three times or more compared to the original images. However, some images do not
appear to have improved much because the image quality evaluation index developed
in this study is related to motion blur affected by the vibrations of the UAS. In the image
quality index, it was not possible to confirm the improvement of the image quality, but it
was confirmed that the quality was improved by visually checking these images. These
results demonstrate the need to diversify the index when evaluating the quality of images
acquired from UAS.
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Figure 10. Missing area detection for the pier.

Figure 11. Image quality assessment of measured images.

After securing data for damage detection and bridge condition evaluation on-site,
the post-inspection phase is carried out. This step is carried out in the office and consists
of image quality improvement, automatic damage detection, damage expression and
management, and bridge condition grading. First, an image processing algorithm is used to
improve the quality of an image that has received an appropriate score in the image quality
evaluation step, and deep learning-based automatic damage detection was performed to
detect and quantify damage on the bridge surface. As mentioned in Section 2 for damage
detection, six damage classes were considered for concrete and five damage classes for steel.
However, no special damage other than small corrosion was found in the steel box span
considered in this study. This is a result of strict standards and management for damage to
steel box bridges in Korea, but in the case of steel, it is difficult to detect because the cracks
appear bright and shiny as the cracks are filled with microcracks [37]. Therefore, it is very
difficult to detect cracks in the steel box even with a visual inspection, so special equipment
is used. This paper deals with PSC girders and piers as they compare visual inspections
and UAV-based inspections. In this study, two deep learning algorithms were used to
detect surface damage. First, Faster R-CNN was used to check the extent of two-way cracks
and damage. Since this method represents a box for the detected object, the area for the
range can be calculated. Another method used Mask R-CNN to detect damage. In this
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method, the detected object is displayed in masked form, and the corresponding pixel can
be counted. Based on the information about the coordinates and pixel size of the image in
Step 6, you can determine the number of pixels for the width and length of the damage in
the masked damage. Thus, the detected damage can be quantified in mm. In this study,
RoI was considered to detect a crack width of 200 mm, and the pixel size was obtained
according to the distance between the UAS and the target structure. In this study, various
types of damage that can occur in bridges were found by learning and it was confirmed
that it can detect even the smallest damage well.

4. Validation and Discussions

In order to perform the UAS-based inspection and the manpower-based appearance
inspection on the target bridge, the manpower-based inspection was performed with a
ladder truck as shown in Figure 12. The manpower inspection consisted of a ladder truck
driver and two bridge inspection experts, and the bridge inspection was performed through
visual inspection. In addition, the inspection of the UAS-based bridge was performed by a
UAS pilot and co-pilot.

Figure 12. Bridge inspection comparison experiment.

For comparison of the two inspection methods, an experiment was performed on the
same member, and the area where the railing structure was installed above the pier was
excluded from the inspection for safety reasons. Figures 13 and 14 show examples of human-
based visual inspection and UAS-based bridge inspection results for concrete piers and steel
box spans, respectively. In the figure, the gray area indicates the inspection exclusion area,
the green box indicates the damage that matches the human inspection result, and the blue
box indicates the damage that was not found by the human inspection but was additionally
detected by the UAS-based bridge inspection. As a result, the UAS-based inspection
results found all damage detected through the human-based visual inspection results,
and efflorescences were additionally detected. The reason for the additional detection of
efflorescence was that the color of the concrete surface was changed and efflorescence was
in progress, which was confirmed by bridge inspection experts. This shows that damage
progress can be detected through UAS-based bridge inspection. In addition, it can be



Drones 2022, 6, 355 14 of 18

confirmed that the detailed shape of the crack, which was difficult to express specifically
with the conventional visual inspection method, can be expressed as shown in Figure 13.
In this study, the objective of this study was to quantify the 0.3mm crack corresponding to
the C grade in the relative evaluation grade of the concrete bridge. This requires keeping
the UAS close to the structure, which results in a small field of view (FOV). Therefore, it is
difficult to confirm the shape of a long crack with only one image. Moreover, extracting
feature points from multiple images and stitching them is not easy. In this study, to solve
this problem, the damage was connected using the coordinates of the four vertices of
the image. In the results of the UAS-based check-in Figure 13, the inset represents the
results of this check. In steel box girder, corrosion of steel and bolts, painting peeling, and
steel member deformation were detected as shown in Figure 14. However, since the steel
member deformation was not included in the damage detection range in this study, it was
not confirmed in the UAS-based bridge inspection results. In the results, both inspection
methods did not detect cracks in the steel bridge. If a crack is found in the steel bridge, it is
judged to have a significant structural defect and cannot be serviced. For this reason, most
steel bridges in service are practically free of cracks. However, even if there are cracks, it
will be difficult to detect fine cracks using general vision-based object detection. In addition,
the steel member is coated by paint, so it is impossible to detect the cracks inside. To solve
this problem, an attached-type UAV equipped with a laser module and a thermal imaging
camera was developed and applied to apply active-thermography in this project. However,
the results of these techniques are omitted because an attached-type UAS is not the scope
of this paper.

Figure 13. Comparison results in case of the pier(P-31).

Figure 14. Comparison results in the case of the steel box girder.
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In the results of the damage map, the damage to the steel box girder and the concrete
span did not significantly affect the bridge damage grade. Therefore, only the damage
detected in the pier was quantified and shown in Table 2. In the table, the same damage
as the result of the manpower test is indicated by the same number as in Figure 13, and
the damage additionally detected in the UAS test is indicated by an alphabet, and the
width(mm) and length(mm) of the crack were denoted by cw and L, respectively. As can be
seen in the table, the human-based visual inspection result has a rough value up to the first
decimal place. However, UAS-based crack inspection results have more detailed values
compared to human inspection. Additionally, UAS-based bridge inspections revealed four
more damages (i.e., a©, b©, c©, and d©) more than the visual inspection for the same pier.
One additional crack was found at the bottom of the pier, and the other three efflorescences
were detected. Among them, efflorescence was calculated by multiplying the number of
pixels and the size of the detected mask because it is calculated as the area(A,m) of damage
corresponding to the evaluation of the bridge condition. In addition, the reason for the
detection of efflorescence was confirmed to be due to the occurrence of discoloration on the
concrete surface as mentioned above. However, efflorescence was confirmed by a bridge
inspection expert, and it shows that maintenance can be performed in advance using the
proposed damage detection method, although further studies may be needed. Other PSC
girders, deck slabs and piers appeared similar to those shown in the damage maps and
Table 2.

Table 2. Damage quantification of the pier.

Manpower-Based Inspection UAS-Based Inspection

ID Quantification ID Quantification

1© cw = 0.3 mm, L = 2000 mm 1© cw = 0.26 mm, L = 916.5 mm
2© cw = 0.3 mm, L = 3000 mm 2© cw = 0.29 mm, L = 2602.8 mm
3© cw = 0.3 mm, L = 4000 mm 3© cw = 0.29 mm, L = 749.1 mm
4© cw = 0.3 mm, L = 500 mm 4© cw = 0.29 mm, L = 3694.6 mm
5© cw = 0.3 mm, L = 1000 mm 5© cw = 0.27 mm, L = 898.1 mm
6© cw = 0.2 mm, L = 1500 mm 6© cw = 0.27 mm, L = 2011.8 mm
7© cw = 0.2 mm, L = 1000 mm 7© cw = 0.29 mm, L = 1064.9 mm
8© cw = 0.3 mm, L = 1000 mm 8© cw = 0.28 mm, L = 2893.5 mm

a© A = 0.2 m2

b© A = 0.8 m2

c© A = 0.04 m2

d© A = 0.98 m2

Finally, bridge condition assessment was performed targeting the area shown in
Figure 6. The PSC girder is between piers 29 and 30, and the steel girder is between piers
30 and 31. Table 3 shows the bridge condition grade determined based on the results of
the damage map for the target bridges. The PSC girder was graded as C due to cracks
exceeding 0.3 mm, and the steel girder was graded as B due to corrosion and paint loss
area, and the width of the cracks identified in the three piers including pier 31 showing the
damage map in Figure 13 was 0.3 mm or less. Nevertheless, pier 30 and pier 31 were graded
C because the surface damage area was between 2–10% as shown in Figure 5. In order to
determine the bridge condition grade in the bridge maintenance manual and regulations,
the durability evaluation of the structure should be included in South Korea. Therefore, it
is difficult for UAS-based bridge inspection results to replace the existing manpower-based
bridge maintenance system. However, it can replace visual inspection and is expected to be
able to efficiently perform bridge inspection.
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Table 3. Bridge condition assessment.

Manpower-Based Inspection UAS-Based Inspection

Member Grade Member Grade

PSC Girder C PSC Girder C
Steel Girder B Steel Girder B
Pier 29 B Pier 29 B
Pier 30 B Pier 30 C
Pier 31 B Pier 31 C

5. Conclusions

This paper compared the results of the UAS-based bridge inspection and the manpower-
based inspection through the test bed. To this end, in consideration of the existing bridge
inspection procedures, field tests and performance evaluations were performed in accor-
dance with the UAS-based bridge inspection detailed procedures. As UAS-based bridge
inspection received a lot of attention, many studies on key technologies have been con-
ducted, but studies that performed the entire bridge inspection procedure are lacking, so
this study has contributed. The bridge inspection procedure was roughly divided into
pre-inspection, main inspection, and post-inspection, and detailed steps were considered
for each phase. In the pre-inspection phase, necessary information for bridge inspection
was secured and preparations were made for flight. In the main inspection phase, images
of the bridge surface were collected using UAS, image coordinate estimation, missing area
detection, and image quality evaluation were performed. Finally, in the post-inspection
phase, image quality improvement, deep learning-based damage detection, and damage
quantification were performed. Moreover, U-BMS was developed to visualize, store and
manage the damage data obtained from the test. Finally, a bridge condition assessment was
performed based on the results of the UAS-based bridge inspection. The UAS was devel-
oped to perform inspections in the GPS shadow area of the bridge, and stability was secured
through position and posture estimation technology. In this study, manpower-based bridge
inspection was performed using bridge inspection experts to verify and compare the results
of UAS-based bridge inspection. As a result, the UAS-based test was able to quantify the
damage with more accurate values compared to the human-based inspection, and it was
possible to detect the early stage of the damage process. Due to this difference, some of
the piers considered in this study had different bridge condition grades. As a result of
performing an actual measurement to evaluate the difference between the two results,
it was confirmed that the UAS-based bridge inspection has feasibility. However, bridge
inspection and management are different, and it is difficult to determine the durability
evaluation of a bridge with UAS. However, UAS-based bridge inspection is expected to
be complementary to each other because it is fast, cost-effective, and enables objective
damage detection.
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