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Abstract: Segmentation from point cloud data is essential in many applications, such as remote
sensing, mobile robots, or autonomous cars. However, the point clouds captured by the 3D range
sensor are commonly sparse and unstructured, challenging efficient segmentation. A fast solution for
point cloud instance segmentation with small computational demands is lacking. To this end, we
propose a novel fast Euclidean clustering (FEC) algorithm which applies a point-wise scheme over
the cluster-wise scheme used in existing works. The proposed method avoids traversing every point
constantly in each nested loop, which is time and memory-consuming. Our approach is conceptually
simple, easy to implement (40 lines in C++), and achieves two orders of magnitudes faster against the
classical segmentation methods while producing high-quality results.

Keywords: point cloud; instance segmentation; fast clustering

1. Introduction

The point cloud is a typical data structure deemed natural and intuitive to represent
geometric space information in specific scenarios, ranging from a pen on a table to illus-
trating the world. People acquire this kind of data mainly by reconstruction from pairs
of 2D images, or directly utilizing LiDAR devices (often mounted on backpacks, vehicles,
drones, or aircraft). However, raw point cloud data are not always ready for use due to
redundant information, uneven distribution, and object occlusion [1]. As shown in Figure 1
that point cloud segmentation is a common approach to tackle this issue by classifying
point clouds with similar properties. Hence, point cloud segmentation becomes essential
in 3D perception (computer vision, remote sensing) and 3D reconstruction (autonomous
driving, virtual reality). For example, a robot should identify obstacles nearby to interact
with and move around the scene [2]. Achieving this goal requires distinguishing between
distinct semantic labels and various instances with the same semantic label. Thus, it is
crucial to investigate the problem of point cloud segmentation.

1.1. Related Works

There is a substantial amount of work that targets acquiring a global point cloud and
segmenting it off-line which can be classified into four main categories:

1.1.1. Edge-Based Method

The most important procedure for Edge-based approaches is finding boundaries of
each object section. Zucker and Hummel [3] extends edged detection methods from two-
dimension (2D) to three-dimension (3D) level in geometrical way. This notion hypothesizes
that the 3D scene can be divided by planes, and finding the edges is an intrinsic optimal way
to get units. Then the segmentation problem simply to edge detection according to gradient,
thresholds, morphological transform, filtering, template-matching [4–8]. Öztireli et al. [9]

Drones 2022, 6, 325. https://doi.org/10.3390/drones6110325 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6110325
https://doi.org/10.3390/drones6110325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-4443-4367
https://doi.org/10.3390/drones6110325
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6110325?type=check_update&version=3


Drones 2022, 6, 325 2 of 18

introduce a parameter-free edge detection method with assistance of kernel regression.
Rabbani et al. [10] summarise that this kind of method could be divided into two stages,
namely border outlining and inner boundary grouping. However, the main drawback of
edge-based methods is under-effective in noisy data [8].

FEC

Input unorganized point cloud Segmentation result

Figure 1. Unorganized point cloud instance segmentation results of proposed method FEC on
one KITTI sequence [11] with 27 million points. FEC outperforms the existing segmentation
approaches [10,12] with over 100× speedup rates.

1.1.2. Region Growing Based Method

Region growing (RG)-based methods focus more on extracting geometrical homoge-
neous surfaces than detecting boundaries. The assumption is that different parts of ob-
jects/scenes are visually distinguishable or separable. Generally speaking, these methods
make point groups by checking each point (or derivatives, like voxels/supervoxels [13,14])
around one or more seeds by specific criteria. So researchers advocating RG-based method
developed several criteria considering orientation [10,15], surface normal [10,16,17] , cur-
vatures [18], et al. Li et al. [19] explore the possibility to apply RG algorithm to multiple
conclusion cases (i.e., leaf phenotyping) and proves to be feasible. Typically, the conven-
tional regional growth algorithm employs the RANSAC algorithm to generate seed spots.
Considering internal features of point clouds, Habib and Lin [20] randomly select seeds
and segment multi-class at once. Dimitrov and Golparvar-Fard [21] propose an RG-based
method, which filters seed candidates by roughness measurement, for robust context-free
segmentation of unordered point clouds based on geometrical continuities. However, the
selection strategy of seed points is crucial cause if means to the computing speed and over-
or under-segmentation [13]. In addition, these approaches are highly responsive to the
imprecise calculation of normals and curvatures close to region borders [22].

1.1.3. Clustering Based Method

The clustering algorithms segment or simplify point cloud elements into categories
based on their similarities or euclidean/non-euclidean distances. As a result, k-means [23],
mean shift [24], DBSCAN [25], and euclidean cluster (EC) extraction [12] were employed on
this task. The k-means clustering aims at grouping point data into k divisions constrained
by average distances [26]. Since point cloud data is often acquired unevenly, k-means
is an ideal tool to remove redundant dense points [27]. Kong et al. [28] introduces a k-
plane approach to categorize laser footprints that cannot be accurately classified using
the standard k-means algorithm. DBSCAN assumes density distribution is the critical
hint for deciding sample categories as dense regions, making it noise-resistant [25]. Even
so, the DBSCAN method suffers from high memory capacity requirements for storing
distance data between points. Chehata et al. [29] improve normal clustering methods to a
hierarchical one, which is shown to be suitable for microrelief terrains. In order to compress
point clouds without distortion and losing information, Sun et al. [30] demonstrate a
3D range-image oriented clustering scheme. Although the clustering-based methods are
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simple, the high iterate rate of each point in the point cloud leads to a high computation
burden and defeats efficiency.

1.1.4. Learning Based Method

While deep learning-based methods often provide interesting results, the understand-
ing of the type of coding solutions is essential to improve their design in order to be used
effectively. To alleviate the cost of collecting and annotating large-scale point cloud data,
Zhang and Zhu [31] propose an unsupervised learning approach to learn features from an
unlabeled point cloud dataset by using part contrasting and object clustering with deep
graph convolutional neural networks (GCNNs). Xu et al. [32] incoprate clustering method
with the proposed FPCC-Net specially for industial bin-picking. PointNet [33] is the first
machine learning neural network to deal with 3D raw points, and senstive to each points’
immediate structure and geometry. Other current methods use deep learning directly on
point clouds [34–37] or projections into a camera image [38] to segment instances in point
clouds. Learning-based methods provide in an indoor scene but commonly suffer from
long runtime and process large-scale point clouds.

1.2. Motivations

Although classical segmentation approaches mentioned above achieve promising
segmentation results, one main drawback is huge computation-consuming, restricting their
application to real-world, large-scale point cloud processing. To overcome this deficiency,
we summarized two main strategies existing to accelerate the point cloud segmentation:

1.2.1. GPU vs. CPU

Conventional segmentation methods depend on the CPU’s processing speed to run
computations in a sequential fashion. Buys and Rusu [39] provide GPU-based version of
EC [12] in the PCL [40] library and further extended by Nguyen et al. [41] who achieve
10 times speedup than the CPU-based EC.

Despite the fact that GPU enables faster segmentation, it is not practical for hardware
devices with limited memory capacity and computation resources, such as mobile phones
and small robotic systems (e.g., UAV), not to mention the steep price.

1.2.2. Pre-Knowledge vs. Unorganized

Taking advantage of pre-knowledge about the point cloud such as layer-based orga-
nized indexing in LiDAR data [42], relative pose between the LiDAR sensor, or point cloud
in each 3D scan(frame) [43] accelerate segmentation speed. These assumptions provided by
the structured point cloud hold in specific scenarios such as autonomous vehicle driving.

However, these premises are not available in many applications since not all the point
cloud data are generated from the vehicle-installed LiDAR. For example, airborne laser
scanning, RGB-D sensors, and image-based 3D reconstruction supply general organized
data instead, making the pre-knowledge approaches [42,43] fail.

From the discussion above, we found out that an efficient and low-cost solution to general
point cloud segmentation is vital for real-world applications but absent from research
literature.

1.3. Contributions

As shown in Table 1, we attack the general point cloud segmentation problem and
place an emphasis on computational speed as compared to the works that are considered
state-of-the-art. The process of segmentation is proposed to be completed in two parts by
our approach: (i) ground points removal and (ii) the clustering of the remaining points
into meaningful sets. The proposed solution underwent extensively rigorous testing on
both synthetic and real data. The results provided conclusive evidence that our method is
superior to the other existing approaches. A fast segmentation redirects precious hardware
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resources to more computationally demanding processes in many application pipelines.
The following is a condensed summary of the contributions that this work makes:

• We present a new Euclidean clustering algorithm to the point could instance segmen-
tation problem by using point-wise against the cluster-wise scheme applied in existing
works.

• The proposed fast Euclidean clustering (FEC) algorithm can handle the general point
cloud as input without relying on the pre-knowledge or GPU assistance.

• Extensive synthetic and real data experiments demonstrate that the proposed solution
achieves similar instance segmentation quality but 100× speedup over state-of-the-art
approaches. The source code (implemented in C++, Matlab, and Python) is publicly
available on https://github.com/feihuzhang/LiDARSeg.

Table 1. Summary of the related works.

Ref [37] [44] [42] [43] [39] [35] [34] [12] [10] [16] [18] [18] FEC (Ours)

GPU-free X X X X X X X X

Unorganized
point cloud X X X X X X X X

2. Materials and Methods

Our method concludes two steps: (i) ground points removal and (ii) the clustering of
the remaining points.

2.1. Ground Surface Removal

Cloud points on the ground constitute the majority of input data and reduce the
computation speed. Besides, the ground surface affects segmentation quality since it
changes input connectivity. Therefore, it is essential to remove the ground surface as a
pre-processing. Many ground points extraction methods such as grid-based [45] and plane
fitting [44] have been used in existing works. The cloth simulation filter (CSF) [46], which
is robust on complicated terrain surfaces, was the one that we decided to utilize to extract
and eliminate ground points for this research.

2.2. Fast Euclidean Clustering

Similar to EC [12], we employ Euclidean (L2) distance metrics to measure the proximity
of unorganized points and aggregate commonalities into the same cluster, which can
describe as:

min‖Pi − Pi′‖2 > dth (1)

where Ci = {Pi ∈ P} is a distinct cluster from C′i =
{

P′i ∈ P
}

, and dth is a maximum
distance threshold.

Algorithm 1 describes the algorithmic processes and illustrates them with an example
displayed in Figure 2. Note that the proposed algorithm uses point-wise scheme, which
loop points with the input numbering order against the cluster-wise scheme used in EC
and RG. The deployment of the proposed FEC is simple, requiring only 40 lines of code
written in C++.

Time complexity. The complexity of constructing the kd-tree in the Big-O notation
format is O(3N log N), where N is the input size of the total point number in {P}. The cost
of main loop is O(N2ν), where ν is an constant number determined by the 3D point density
ρ and the neighbor radius threshold dth as ν = 4

3 πdth
3ρ. Since N2ν > 3n log N, thus the

overall cost is O(N2ν).

https://github.com/feihuzhang/LiDARSeg
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Algorithm 1: PROPOSED FEC
Input:
• pi ∈ P: unorganized point cloud
• dth: the neighbor radius threshold
• Thmax: the max number of neighbor points

Output:

• P.lab: point cloud data with labels

// Initialization:
P.lab← 0: initialize all point labels as 0;
segLab← 1: Segment label ;
Constructing kd-tree for P;
// Main loop:
foreach pi .lab in P do

if pi .lable = 0 then
PNN = FindNeighbor(pi ,dth);
if ∃Nonzero(PNN.lab) then

minSegLab = min(Nonzero( PNN.lab),SegLab);
else

minSegLab = SegLab;
end
// Segment merge loop:
foreach pj in PNN do

if pj.lab > minSegLab then
foreach pk .lab in P do

if pk .lab = pj.lab then
pk .lab = minSegLab;

end
end

end
end
SegLab ++;

end
end
return point labels
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Figure 2. An example of FEC to point cloud segmentation. Note that FEC utilizes point-wise scheme
with point index order.
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2.3. Efficiency Analysis

The running time of the proposed FEC algorithm is analyzed in comparison to two
different segmentation methodologies (i.e., RG [10] and EC [12]) on several typical examples
in order to gain an understanding of the algorithm’s effectiveness. This result intuitively
explains the observations in our experiments that the FEC has significant advantages in
terms of efficiency against others.

Setting. We assume a point cloud {P} with n clusters {Cl | l ∈ [1, n]}. The number
of points in {Ci} is mi. Without losing the generality to investigate the limits of running
time of EC, RG, and FEC, we draw three extreme distribution cases as shown in Figure 3.
kn represents the number of operations on all points in the inner loop of the algorithm,
which is affected by the size of the point cloud. ksc represents the number of searches for
the kd-tree, which is affected by the number of clusters. Without loss of generality, we
verify the value ranges of k in three extreme situations: Case 1, all points are merged into
one cluster; Case 2, each point belongs to a cluster; Case 3, all points are distributed on
a line. In all three cases, the value of ksc is significantly less than kn. While according to
the Equation (3), the running time of RG and EC is positively correlated with kn, and the
running time of FEC is only affected by ksc. Note that all three algorithms use a triple
nested loop. Thus, we denote the single kd-tree search Ω(.) takes t1 time while the other
O(1) cost processes take t2, such as value assignment. The function for counting numbers
is denoted by π(.). Since FEC generates clusters by merging sub-clusters, we assume Θ(Cl)
is the function to get the sub-cluster sets.

Time consuming. With such a setting, the processing time of EC, RG, and FEC on
{P} are:

tEC = Nt1 + knt2
tRG = Nt1 + 2knt2

tFEC = ksct1 + kscNt2

with,
2N − 2n 6 kn < N2

1 6 ksc ≤ N − n
(2)

where kn and ksc defined as:

kn =
n

∑
l=1

π(Ω( ∑
∈{Cl}

Pi)), ksc =
n

∑
l=1

π(Θ(Cl)) (3)

Note that EC and RG loop every point in Ci and thus constantly consume Nt1. Alter-
natively, FEC calls the number of sub-clusters times Ω(.), depending on the numbering
order.

Case 1 Case 2 Case 3

Figure 3. Values of kn and ksc in three extreme cluster distribution cases. Case 1 (maximus dth):
ksc = 1, kn = N2; Case 2 (minimus dth): ksc = N − n, kn = 2N − 2n; Case 3 (all points aligned in a
line): ksc =

1
2 (N − n), kn = 2N − 2n.

In the inner loops, EC and RG check if the neighbourhood points meets the criterion
(minimum distance for EC, normal and curvature for RG) to be added into Cl , and leads to
knt2 and 2knt2 respectively. While FEC needs to loop whole {P} with Nt2 consuming in
every sub-cluster merging.

To analyze the efficacy of the aforementioned three algorithms, we investigate the
ratio between the total running time of the suggested FEC and that of the others:
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tFEC

tRG <
tFEC

tEC =
ksc(t1 + Nt2)

Nt1 + knt2
<

ksc(t1 + Nt2)

Nt1 + Nt2
< 1 (4)

• In general setting, ksc � N which makes tFEC

tRG < tFEC

tEC ≈ ksc
N � 1 and lifting efficiency

of FEC over EC and RG.
• By substituting the lower bound of kn and upper bound of ksc in Equation (2) into tEC,

tRG and tFEC, FEC is faster than EC and RG even with the extreme setting.

We interpolate the improvement of FEC raised by the point-wise scheme against the
cluster-wise scheme used in EC and RG. This difference leads to significantly fewer calls to
kd-tree search Ω(.) in the first loop.

3. Experiments and Results
3.1. Method Comparison

In our experiments, the proposed method FEC was compared to five state-of-the-art
point cloud segmentation solutions:

• EC: Classical Euclidean clustering algorithm [12] implemented in PCL library [40]
(EuclideanClusterExtraction function).

• RG: Classical region growing based point cloud segmentation solution [10] imple-
mented in PCL library [40] ( RegionGrowing function).

• SPGN: Recent learning-based method [34] which is designed for small-scale indoor
scenes (https://github.com/laughtervv/SGPN, Salt Lake City, USA).

• VoxelNet: Recent learning-based method [35] which learns sparse point-wise features
for voxels and use 3D convolutions for feature propagation (https://github.com/
steph1793/Voxelnet, Salt Lake City, USA).

• LiDARSeg: State-of-the-art instance segmentation [37] for large-scale outdoor LiDAR
point clouds (https://github.com/feihuzhang/LiDARSeg, Paris, France).

Note that the value of dth and Thmax were set as the same to EC, and RG. For a fair
comparison, we remove the ground points in the point cloud (Section 2.1) and then use
them as the input for EC, RG, and FEC.

3.2. Metrics Evaluation

We provide three metrics (average prevision, time complexity, space complexity) to
demonstrate that the proposed FEC outperforms baselines on efficiency without penalty to
effectiveness.

• Average precision: The average precision (AP) is a widely accepted point-based met-
ric to evaluate the segmentation quality [37], as well as similar to criterion for COCO
instance segmentation challenges [47]. The equation for AP can be presented as:

AP =
TP

TP + FP
(5)

where TP is true positive, and FP is false positive. We use 0.75 as the point-wise
threshold for true positives in the following experiments.

• Complexity: Both running time and memory consumption of real data experiments
are designed to evaluate the time complexity and the space complexity. Our method
was executed on a 32GB RAM, Intel Core I9 computer and compared to two other
classical geometry-based methods: EC and RG. The NVIDIA 3090 GPU was utilized
to evaluate both the learning-based methods SPGN and VoxelNet.

3.3. Synthetic Data

In this experiment, we evaluate the performances of EC, RG, and FEC respectively on
synthetic point cloud data with increasing scale. Note that we generate unorganized points
where the state-of-the-art learning-based methods SPGN, VoxelNet, and LiDARSeg which
use single LiDAR scan as input, are not feasible in such setting.

https://github.com/laughtervv/SGPN
https://github.com/steph1793/Voxelnet
https://github.com/steph1793/Voxelnet
https://github.com/feihuzhang/LiDARSeg
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3.3.1. Setting

We first divide 3D space into multiple voxels, and then generate clusters (segments)
by filling m 3D points evenly inside the randomly selected n voxels. Under such a setting,
we can control the cluster number by varying the value of n. Similarly, the cluster density
can be determined by varying the value of m. Besides, we can also simulate clusters with
different uniformities by changing the strategy of filling 3D points into voxel from even to
random (even filling followed by random shift with variance σ). Note that we randomly
set the 3D point index to make the synthetic an unorganized point cloud.

3.3.2. Varying Density of Cluster

In this experiment, we increase the density of synthetic data from 10 to 500 under
varying total cluster numbers from 100 to 2200. As illustrated in Figure 4, the running
time of both RG and EC grew significantly with increasing cluster densities under varying
cluster numbers. An interesting observation is that the growth curve of RG is linear while
EC provides exponential growth and overtakes the running time with a density of cluster
larger than 500. In contrast, the proposed method FEC provides stable running times which
are at least 100× faster performance over EC and RG with increasing density (number of
points in unit volume) of each cluster.

RG EC FEC

Figure 4. Running time for EC (yellow), RG (red) and FEC (green) with increasing density of different
number of cluster.
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3.3.3. Varying Number of Clusters

In this experiment, we fix the density of clusters to 200, and increase the number of
clusters from 100 to 1900. Figure 5a demonstrates that the running time of EC and RG grow
dramatically with an increasing number of clusters from milliseconds level to hundred
seconds level. In contrast, FEC runs significantly faster with < 1 s performance under all
configurations.

（a） （b）

Figure 5. Running time for EC (yellow), RG (red) and FEC (green) with increasing number of clusters
(a), and non-uniformity (b) of each cluster.

3.3.4. Varying Uniformity of Cluster

We alter the uniformity of each cluster in this experiment by simulating an increasing
number of normal distribution sub-clusters. The results in Figure 5b reveal that the unifor-
mity of the cluster obviously drags the running time of EC and RG with a hundredfold
increase. In contrast, the uniformity of the cluster has slightly affected FEC without sig-
nificant growth in running time. Besides, as shown in Figure 6 that the proposed method
achieve fastest and stable performance with the increasing number of cluster and cluster
density jointly.

Figure 6. Running time for EC (yellow), RG (red) and FEC (green) with increasing dual-mixing of
cluster number and density.

3.3.5. Segmentation Quality

In the synthetic data experiment, we observe that all three geometry-based methods
EC, RG, and FEC provide segmentation precision approximate to 1 without significant
difference.
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3.4. Real Data

In this experiment, we evaluate the performance of all methods on a publicly avail-
able dataset, namely, KITTI odometry task [11] with point-wise instance label from se-
manticKITTI [48].

Following the instructions of [34,35,37], we trained the SPGN, VoxelNet and Li-
DARSeg using semanticKITTI. Thus, we compare the proposed method FEC against to
classical geometry-based approaches EC, RG and learning based solutions SPGN, Voxel-
Net, LiDARSeg in 12 sequences of semanticKITTI.

3.4.1. FEC vs. Geometry-Based Methods on KITTI

We tested the EC, RG and the proposed FEC on real point cloud datasets from KITTI
odometry point cloud sequence [11] with two common segmentation styles in practice,
namely:

• Inter-class segmentation: the input for inter-class segmentation is a point cloud
representing a single class, such as car, building, or tree, for example. Following the
completion of the classification step, instance segmentation is carried out in a manner
that is distinct for each of the classes.

• Intra-class segmentation: as input, intra-class segmentation utilizes multiple-class
point clouds. In such a mode, the original LiDAR point cloud is utilized as input
without classification.

Efficiency. As shown in Table 2 that quantitatively FEC achieves an average of 50×
speedup against existing method EC and 100× RG under intra-class segmentation mode
on 12 sequences form #03 to #11. In inter-class mode, FEC achieves average 30× and 40×
speedup for car and building segmentation, 10× and 20× speedup for tree segmentation
against to EC and RG. Besides, an interesting observation is that the running time of
the three methods on #03 and #11 is nearly 2–3 times longer against the rest sequences
under the intra-class mode. This is raised because the total number of instances in #03 and
#11 is more extensive than the others, especially the tiny objects such as bicycles, trunks,
fences, poles, and traffic signs. Since the geometry-based approaches will call more cluster
processes in the loop with many small instances, thus, RG, EC, and FEC take much more
running time on #03 and #11 sequences over the others.

Table 2. Experimental results on point clouds from KITTI vision benchmark [11]. Running time (in
seconds s) of EC, RG and FEC on 11 sequences (#00-11 from odometry task) based on inter-class and
intra-class styles are reported [in seconds]. Best results are shown in green.

Dataset
(Point Number) Mode Class

(Point Number) EC [12] (s) RG [10] (s) FEC [Ours] (s)

#00
(1,498,667)

intra-class - 414 780 140

inter-class
car (55,048) 23.0 26.9 0.5

building (131,351) 13.0 58.1 1.3
tree (351,878) 51.9 167.0 9.9

#01
(1,249,590)

intra-class - 289.4 651.0 103.3

inter-class
car (62,469) 21.7 30.0 0.5

building (204,911) 26.3 95.9 2.2
tree (455,519) 150.3 232.7 6.3

#02
(1,406,316)

intra-class - 323.2 721.3 105.9

inter-class
car (85,528) 37.7 42.0 0.87

building (209,704) 21.1 98.3 2.4
tree (476,077) 118.1 242.2 23.3

#03
(1,714,700)

intra-class - 931.1 908.1 90.4

inter-class
car (89,337) 31.9 42.4 2.8

building (210,300) 21.4 97.8 2.39
tree (582,929) 167.1 298.6 17.2
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Table 2. Cont.

Dataset
(Point Number) Mode Class

(Point Number) EC [12] (s) RG [10] (s) FEC [Ours] (s)

#04
(1,324,991)

intra-class - 313.6 682.6 82.1

inter-class
car (89,646) 36.1 43.9 0.9

building (212,195) 98.2 99.3 2.33
tree (653,342) 292.4 335.9 18.0

#05
(1,239,293)

intra-class - 319.3 631.3 44.0

inter-class
car (96,472) 45.8 48.2 0.9

building (241,977) 173.6 122.7 2.6
tree (658,529) 127.3 335.1 21.0

#06
(1,276,859)

intra-class - 319.3 631.3 44.0

inter-class
car (99,480) 39.5 48.3 0.9

building (241,977) 36.0 124.0 3.1
tree (679,665) 158.9 345.8 25.5

#07
(1,556,851)

intra-class - 413.1 801.3 123.5

inter-class
car (102,205) 38.8 51.0 1.0

building (274,741) 195.1 134.6 3.4
tree (751,354) 156.6 383.3 32.2

#08
(1,828,399)

intra-class - 265.7 417.3 49.1

inter-class
car (113,404) 33.5 54.2 1.8

building (307,844) 55.4 156.8 3.9
tree (754,161) 189 395.9 26.3

#09
(1,116,058)

intra-class - 225.7 563.5 62.7

inter-class
car (115,489) 36.0 55.8 1.3

building (296,751) 55.9 153.53 3.8
tree (828,874) 229.3 428.6 35.1

#10
(1,172,405)

intra-class - 280.4 598.5 59.9

inter-class
car (115,617) 39.4 55.8 1.0

building (311,047) 43.0 152.9 3.9
tree (841,600) 230.4 431.2 24.8

#11
(2,002,769)

intra-class - 948.2 1062.9 120.9

inter-class
car (127,417) 51.7 61.6 1.3

building (337,911) 48.6 166.6 4.3
tree (870,785) 274.7 447.1 23.2

Memory-consuming. As shown in Table 3 that the proposed FEC consume only one
third and half of memory against to EC and RG.

Table 3. Running time (in seconds), memory-consuming (in MB), and AP (average precision defined
by [37]) over 11 sequences in KITTI [11] odometry task are reported. Best and second best results are
shown in green and blue.

Method

Time

Memory (MB) AP (%)
Intra-Class

Inter-Class

Car Building Tree

EC 387.8 36.3 65.7 195.6 211 65.8
RG 706.0 46.7 121.7 337.0 145 61.1
FEC 87.8 1.2 3.0 21.9 89 65.5

Effectiveness. As shown in Table 3 quantitatively, all three geometry-based methods
provide similar instance segmentation quality with AP larger than 60%. Specifically, EC
provides the best segmentation accuracy at 65.8% while the proposed FEC achieves a
slightly lower score at 65.5%. The qualitative segmentation results are shown in Figure 7
with sequence #00 and #11 as two examples. It verifies our statement that our method and
baseline methods provide similar segmentation quality globally. Interestingly, we found out
that the proposed FEC provides better segmentation quality in handling details segment.
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As shown in Figure 8, for the points on the tree, which are sparer and nonstructural than
the other classes, EC and RG often suffer from over-segmentation and under-segmentation
problems. For example, in the second row of Figure 8, the three independent trees are
clustered into the building by EC and RG while FEC successfully detects them. In summary,
as shown in Table 3 demonstrates that our method achieves significant improvement in
efficiency while without penalty to the performance (quality).

EC RG FEC
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Figure 7. Qualitative segmentation results of EC, RG and FEC on KITTI odometry dataset [11]
sequence #00 and #11.
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Figure 8. Details and highlights of segmentation results of EC, RG and FEC on KITTI odometry
dataset [11] sequence #00 and #11.

3.4.2. FEC vs. Learning-Based Methods on KITTI

In this experiment, we compare the proposed method FEC to state-of-the-art learning-
based solutions on sequence #00-#11 of the KITTI odometry dataset [48]. We trained the
learning approaches SPGN [34], VoxelNet [35] and LiDARSeg [37] semanticKITTI label-
ing [48], and evaluated the running time and average precision (AP) defined in [37]. Note
that all the learning-based methods were tested with GPU while the geometry solutions
EC [12], RG [10], and FEC run with CPU only.

Data input. Note that in the Section 3.4.1 we use the point cloud of the whole se-
quence as input to three geometry-based methods. However, such large scale input is not
feasible to the state-of-the-art deep learning based approaches for instance segmentation
or 3D detection, namely, SGPN, VoxelNet, and LiDARSeg. Thus, in this experiment, we
alternatively spilt the 12 sequences in the KITTI odometry dataset into a single scan as
input. Besides, we also report the performances of EC and RG.

Training and hardware. Particularly, we use the ground-truth point-wise instance label
from semanticKITTI panoptic segmentation dataset [48] to train textbfSGPN, VoxelNet,
and LiDARSeg with a Nvidia 3090 GPU while forcing the CPU-only mode for EC, RG and
proposed FEC.

Efficiency. Please note that since LiDARSeg [37] is designed for segmenting the single
LiDAR scan, thus the running time we recorded below is the average process time of
each scene instead of the whole sequence. As shown in Table 4 that FEC achieves 5×
speed up against to EC, VoxelNet and LiDARSeg, 10× to RG, and 20× to SPGN. Since
all the geometry-based methods require ground surface removal as pre-process, thus for
a fair comparison, the time-consumings of ground surface detection and removal have
been considered in the total running time. It is important to notice that FEC relies on
CPU calculation only while all the learning-based approaches are accelerated with GPU in
inference without mentioning the huge time-consuming in the training stage.

Effectiveness. As shown in Table 4 that quantitatively all three geometry-based meth-
ods EC, RG and FEC achieve similar instance segmentation quality with AP around 62%.
Note that the segmentation accuracy of geometry-based approaches is even slightly better
than the leaning-based ones with AP at 59% of LiDARSeg, 55.7% of VoxelNet and 46.3% of
SPGN. The qualitative comparisons are shown in Figure 9 with 2 scans in sequence #00
as examples. We can observe that the proposed solution FEC method provides similar
segmentation quality as the state-of-the-art learning-based method LiDARSeg.
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Table 4. Comparisons to state-of-the-art learning based solutions sequence #00-#11 of KITTI odometry dataset [48]. Note that since LiDARSeg [37] is designed for
segmenting the single LiDAR scan, thus the running time we reported is the average process time of each scene instead of the whole sequence. Best results are
shown in green.

Sequence
GPU: Nvidia 3090X1 CPU: Intel I9

SPGN [34] (ms) VoxelNet [35] (ms) LiDARSeg [37] (ms) FEC [Ours] (ms) RG [10] (ms) EC [12] (ms)

#00 1510.9 442.7 470.2 140.8 780.8 414.6
#01 1705.4 454.1 471.9 103.3 651.0 289.4
#02 1605.6 427.4 504.8 105.9 721.3 323.2
#03 1875.3 380.6 386.0 90.4 908.1 931.1
#04 1523.2 469.0 506.2 82.2 682.7 313.7
#05 1675.0 453.4 383.1 44.0 631.4 319.3
#06 1749.4 606.8 481.1 71.7 653.7 318.5
#07 1496.2 460.1 439.9 53.6 801.4 123.6
#08 1816.3 644.2 452.7 49.1 417.3 165.8
#09 1509.2 472.7 465.9 62.8 563.5 225.8
#10 1558.0 396.4 485.6 60.0 598.5 280.4
#11 1485.6 362.9 422.0 121.0 1062.9 948.3

Average time (ms) 1625.8 464.2 455.8 87.9 706.0 387.8

AP (%) 46.3 55.7 59.0 63.2 61.0 63.1
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LiDARSeg FEC

Figure 9. Comparisons to state-of-the-art learning based solution LiDARSeg [37] on KITTI odometry
dataset [48] with semanticKITTI labeling [48]. Note that LiDARSeg [37] only applies to a single
LiDAR scan as input instead of a long sequence.

4. Discussion

If FEC is faster?
Both the synthetic (Section 3.3) and real data (Section 3.4) experiments demonstrate

that the proposed FEC outperform the state-of-the-art geometry-based and learning-based
methods with a significant margin. Specifically, our method is an order of magnitude faster
than RG [10] and nearly 5 times faster than EC [12]. Besides, without GPU acceleration,
FEC is nearly 5 times faster LiDARSeg [37], 6 times faster than VoxelNet [35], and nearly
20 times faster than SPGN [34].

If FEC losses accuracy?
One may have concern that if FEC will lose segmentation accuracy in order to ac-

celerate the processing speed. Both the synthetic (Section 3.3) and real data (Section 3.4)
experiments verify that FEC provides similar segmentation quality as the conventional
geometry-based methods RG [10], EC [12], and even slightly better than the learning-based
solutions LiDARSeg [37], VoxelNet [35] and SPGN [34]. Thus, we point out that the pro-
posed solution FEC achieves significant improvement in efficiency while without penalty
to the performance (quality).

Why FEC is faster?
Based on the intuitive analysis in the Section 2.3, we interpret the FEC brings signifi-

cant improvement , n efficiency mainly due to the point-wise scheme over the cluster-wise
scheme used in existing works RG [10] and EC [12]. Such a novel point-wise scheme leads
to significantly fewer calls to kd-tree search in the loop, which is the key to reducing the
running time significantly.

Where we can use FEC?
The proposed solution FEC is a GPU-free faster point cloud instance segmentation

solution. It can handle general point cloud data as input without relying on scene scale
(e.g., single LiDAR scan) or structure pre-knowledge (e.g., scan line id). Thus, we can apply
FEC to large-scale point cloud instance segmentation in various 3D perception (computer
vision, remote sensing) and 3D reconstruction (autonomous driving, virtual reality) tasks.
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5. Conclusions

This paper introduces an efficient solution to a general point cloud segmentation task
based on a novel algorithm named faster Euclidean clustering. Our experiments have
shown that our methods provide similar segmentation results but with 100× higher speed
than the existing approaches. We interpret this improved efficiency as using the point-wise
scheme against the cluster-wise scheme in existing works.

Future work. The current implementation of FEC is based on a serial computation
strategy. Since the point-wise scheme contains multiple associations between the outer and
inner loops, thus the parallel computation strategy could be applied to FEC for a potential
acceleration.
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