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Abstract: Currently, there is a rapid trend in the production of airborne sensors consisting of multi-
view cameras or hybrid sensors, i.e., a LIDAR scanner coupled with one or multiple cameras to enrich
the data acquisition in terms of colors, texture, completeness of coverage, accuracy, etc. However, the
current UAV hybrid systems are mainly equipped with a single camera that will not be sufficient to
view the facades of buildings or other complex objects without having double flight paths with a
defined oblique angle. This entails extensive flight planning, acquisition duration, extra costs, and
data handling. In this paper, a multi-view camera system which is similar to the conventional Maltese
cross configurations used in the standard aerial oblique camera systems is simulated. This proposed
camera system is integrated with a multi-beam LiDAR to build an efficient UAV hybrid system. To
design the low-cost UAV hybrid system, two types of cameras are investigated and proposed, namely
the MAPIR Survey and the SenseFly SODA, integrated with a multi-beam digital Ouster OS1-32
LiDAR sensor. Two simulated UAV flight experiments are created with a dedicated methodology and
processed with photogrammetric methods. The results show that with a flight speed of 5m/s and
an image overlap of 80/80, an average density of up to 1500 pts/m? can be achieved with adequate
facade coverage in one-pass flight strips.

Keywords: UAV; hybrid system; multi-view; oblique camera; point density

1. Introduction

Unmanned aerial vehicles (UAV) are becoming increasingly popular, making them an
important tool for remote sensing applications [1-7]. This includes regular data collection
for indoor 3D mapping [8], natural hazards [9], topo-bathymetry [10,11], air pollution
monitoring [12,13], management of urban areas [14], etc.

The primary benefit of UAV platforms over conventional acquisition strategies is their
affordability and flexibility. According to the demands of the user, flexibility refers to the
ability to quickly adjust to various operational situations. Depending on the scope of the
problem and the application type, quite different solutions may be used. On the other hand,
cost-effective UAVs may accommodate any budget, from low-cost consumer solutions to
extremely pricey ones that include high-end sensors. This explains quite clearly why UAVs
have made (3D) mapping more accessible in many underdeveloped nations [15,16] or why
they are being used to monitor critical areas such as glaciers [17], mines [18], electrical
lines [19], and other man-built infrastructures [20].

The range of applications for employing UAV platforms for monitoring dynamic and
complex environments has recently increased thanks to the proliferation of platforms on
the market, the additional onboard devices, the faster and more reliable communication
methods, and the improved battery life. The next generation of UAV applications is quickly
approaching because of the advancement in real-time onboard processing [21] and the
development of autonomous and dependable systems [22].

Multi-sensor data integration is the newest development in terrestrial and aerial 3D
mapping applications, in addition to conventional imaging (passive) and range (active)
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sensors. The rapidly expanding market for hybrid mapping systems, which combine
complementing range and image sensors on a single (mobile) platform, serves as an
example of this. Rapidly expanding hybrid sensor technologies are entering the topographic
and urban aerial mapping markets, creating new possibilities for higher-quality geospatial
products [23]. According to this viewpoint, the simultaneous capture of the oblique images
and LiDAR data appears to have the capacity to significantly advance the field of aerial
(urban) mapping [24].

In fact, in recent years both aerial LiDAR (Light Detection and Ranging) and pho-
togrammetry have developed into cutting-edge methods for obtaining 3D-enriched geospa-
tial information products. Now, the prospective next step is to jointly leverage their
individual benefits into a unique “hybrid” system [25]. On the one hand, airborne LiDAR
offers very reliable terrain elevation information and multi-objective capabilities, allowing
for the acquisition and modeling of the bare ground while penetrating vegetation. Due to
these advantages, ALS (airborne laser scanning) has emerged as the most advanced map-
ping technique for the automated production of building models, 2.5D point clouds, and
digital terrain models [26,27]. On the other hand, improvements in photogrammetry and
computer vision, notably those connected to the creation of novel dense image matching
(DIM) techniques [28,29], have increased automation in the image-based 3D reconstruction
of a scene, with the intention of producing high-resolution DSMs (digital surface models).
Nowadays, point clouds created from images can have a spatial resolution equal to the GSD
(ground sample distance) of the source imagery and an ideal accuracy less than the GSD
level, provided that there is adequate redundancy and a sufficient geometrical structure
of the image rays. Additionally, the inclusion of oblique photos in the block enhances
the overall dense matching quality [30]. In fact, the rapidly developing field of airborne
oblique photogrammetry [31] has advanced geometric processing toward “true” 3D space,
enabling more thorough and accurate extraction of information in urban scenes [28,32-34].

While multi-view cameras for UAV platforms have also started to be commercially
accessible for UAV platforms (Table 1, Figure 1), the availability of hybrid sensors for UAVs
is still rare.

Table 1. Specifications of some commercial multi-view camera systems for UAV platforms.

Resolution Sensors Size Weight
Viewprouav VO305 305 MPx Full frame 20m x20m x 112mm -
Share 303S Pro 305 MPx Full frame 200 x 200 x 125 mm l4kg
DroneBase N5 120 MPx APS-C 160 x 160 x 85 mm 730 gr
ADTi Surveyor 5 PRO 120 MPx APS-C 105 x 150 x 80 mm 850 gr
Quantum-System D2M 130 MPx APS-C - 830 gr
JOUAV CA504R 305 MPx Full frame 270 x 180 x 154 mm 225kg

(b) (c) (d) (e) ()

Figure 1. Example of commercially available multi-view cameras for UAV platform (Table 1): View-
prouav (a), Shareuavtex (b), DroneBase (c), ADTi (d), Quantum-System (e), and JOUAV (f).

Paper Aims

The paper proposes and validates, through simulations, a UAV hybrid sensor com-
posed of five RGB cameras coupled with a LiDAR sensor for 3D mapping purposes. In
particular, the innovative aspects include:
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- anovel (simulated) low-cost, low-weight, hybrid, multi-view hybrid acquisition
system for UAV platforms (Sections 2.1-2.3);

- dedicated software for UAV flight planning with a hybrid sensor (Section 2.4);

- experiments with simulated data on two large urban scenarios (Section 3).

The remainder of the paper is organized as follows: Section 2 reports the proposed
hybrid system for 3D mapping applications with UAV platforms, including a flight planning
tool. Section 3 presents the experiments on and the analyses of two different simulated
scenarios. Section 4 provides a critical discussion of the proposed hybrid sensor, and
Section 5 concludes the paper.

2. Proposed Hybrid System for UAV Platforms

The simulated hybrid acquisition system for UAV platforms is composed of multiple
cameras and a LiDAR. The investigation does not tackle any GNSS/IMU sensors, but
the proposed hybrid system could be combined with any positioning sensor for direct
georeferencing [35-37] or RTK/PPP processing [38-40] purposes.

2.1. The Camera Components

Among the suitable RGB imaging devices, considering their (camera body and sensor)
size, weight, resolution, and prices, the following were selected (Table 2, Figure 2): a MAPIR
Survey3 [41] and a senseFly SODA [42]. They both fulfilled the planned characteristics
and were constrained to realize a low-cost, low-weight, multi-view imaging system for
UAV platforms.

Table 2. Main characteristics of the considered MAPIR and senseFly cameras.

Specification MAPIR Survey3W senseFly SODA

Focal length [mm] 8.25 10.6

Sensor [pixels] Sony Exmor R IMX1174032 x 3024 CMOS 17, 5472 x 3648

Pixel size [microns] 1.55 2.33

Field of view 87° 74°

Storage [GB] Max 128 GB Storage Based on external memory
Data exchange format PWM, USB, HDMI, and SD PWM, USB, HDMI, and SD
Shutter speed Global Shutter 1/2000 to 1 min Global Shutter 1/500-1/2000 s
Aperture /2.8 f/2.8-f/11

Dimensions 59 x 41.5 x 36 mm 75 x 48 x 33 mm

Weight 75.4 g with battery 8¢

Battery 1200 mAh Li-Ion (150 min) No internal battery, powered by drone
Price ca. EUR 400 ca. EUR 1500

(b) (c)
Figure 2. The chosen MAPIR Survey 3 (a), senseFly SODA (b), and Ouster OS1-32 (c).

2.2. The LiDAR Component

The second type of sensor in the proposed UAV hybrid system is LIDAR. Among
a variety of available LiDAR sensors, it was decided to select a multi-beam LiDAR to
guarantee a high coverage and density of points, a reasonable weight, an effective scanning
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range, and acceptable accuracy limits to keep the proposed hybrid system at a lower cost.
Following the in-depth analyses of [43], the Ouster OS1-32 LiDAR sensor was chosen. The
scanning sensor is a suitable candidate because of its higher productivity using 32 scanning
beams, the symmetric and wide field of view above/below the horizontal plane, and the
half weight of other similar sensors and, most importantly, because it is a digital LIDAR
(single-photon avalanche diode) [44]. This characteristic gives the advantage of having an
array scanning pattern (image alike) which enables the application of the image processing
techniques. Compared to the analogue-type LiDARs, no more calibration is required, and
more advantages will be gained, such as less sensitivity to temperature, smaller size, and
a higher data rate. Furthermore, the Ouster LiDAR already has an IMU of InvenSense
ICM-20948 included. The main specifications of the Ouster O51-32 LiDAR are shown
in Table 3.

Table 3. Main characteristics of the Ouster OS1-32 LiDAR sensor and its typical scanning ground

footprint (right).
LiDAR Sensor/System Ouster OS1-32
Max. Range <120 m@80% reflectivity
Typical Range Accuracy 1o +3 cm
Beam divergence 0.18° (3 mrad)
Beam footprint 22 cm@100 m

Scanning channels/beams

32 channels

Output rate pts/sec.

655,360

Laser Returns

1 per outgoing pulse

FOV-Vertical 45° (422.5°)
Rotation rate 1020 Hz
Angular resolution 0.35°-2.8°
LiDAR mechanism Spinning
LiDAR type Digital

Laser Wavelength 865 nm
Power consumption 14-20 w
Weight 455 ¢
Dimensions (diameter x height) 85 x 73.5 mm
Operating Temperature —20°C to +50 °C
Initial price ca. EUR 8000

Another multi-beam LiDAR that could be used in the suggested hybrid system is the
Quanergy M8 type, investigated in [43]. This LIDAR sweeps eight beams at a frequency
ranging from 5 to 20 Hz and offers a scanning range of 100 m@ 80% object reflectivity.
However, it has a 900 g weight, which should also be considered in order to not affect the
UAV payload.

2.3. The Integrated Hybrid System

The assembled hybrid system is shown in Figure 3, and its overall specifications are
given in Table 4. Considering that there is a bounding box to host all the sensors, the hybrid
system is supposed to weigh less than a kg and operate for up to 1 h. The design of the
hybrid system configuration is applied using the open-source tool Blender [5].
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Figure 3. Hybrid MAPIR + Ouster system showing its internal arrangement, dimensions, and foot-

print patterns on the ground (a); hybrid senseFly + Ouster system showing its internal arrangement,
dimensions, and footprint patterns on the ground (b).

Table 4. Overall characteristics of the integrated camera and LiDAR sensors.

LiDAR Ouster 51-32
Number of cameras 4 oblique + 1 nadir

24.6 cm x 21 cm x 8 em (MAPIR config.)

Dimensions 234 cm x 15.8 cm x 8 cm (SODA config.)
10.6 mm (SODA config.)

Focal length 8.25 mm (MAPIR config.)
. 12 MPx (MAPIR config.)

Megapixels 20 MPx (SODA config.)

Camera tilting 45° (or 30°)

Data exchange format USB Memory Stick

Expected operation time per charge >1h

Operational temperature range 0°Cto40°C

Mass <1 kg, with battery

Price EUR <10,000

The camera system is designed in a Maltese cross configuration, where four cameras
are tilted at 45° while the fifth camera is fixed at the nadir view. As the field of view (FOV)
of the senseFly is bigger than that of the Survey 3, there will be a larger footprint with some
overlap, as shown in Figure 3.

Both configurations, based on the MAPIR and SODA cameras, are designed carefully to
guarantee no self-occlusion and to keep the distance between them at a possible minimum.
The same applies to the placement of the Ouster LIDAR. The scanning ground footprint of
LiDAR is also shown in Table 4.

2.4. UAV Flight Planning Tool for Hybrid Systems

A prototype flight planning tool was built using MATLAB 2020 (Figure 4) (Available
online: https://github.com/Photogrammtery-Topics/flight-planning-tool-for-Hybrid-
UAV-system /wiki (accessed on 18 October 2022)). As with the UAV flight planning tools
presented in [43], the calculations are based on the selected flying altitude, flying speed,
overlap percentages, and camera settings. Furthermore, the area of interest is defined by a
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UAV Hybrid System Flight Planner

polygonal shapefile regardless of its complexity as it will be generalized into a minimum
rectangular bounding box. The tool can handle the flight plans of the two proposed hybrid
camera systems (either senseFly- or MAPIR-based) with a camera inclination angle of 45° or
30°. The tool can simulate the integration of the Ouster OS1-32 and also that of a Quanergy
M8 LiDAR, and it estimates the average point cloud density.

Calculate

s

Average error in LIDAR point cloud

Output mean error [cm] EI

c

"

N\

(@) (b)

Figure 4. The GUI of the developed flight planning tool for hybrid UAV-based sensors (a). The image
footprints plot for a given flight and sensor configuration (b).

The following output flight plan parameters are calculated:

The maximum and minimum image GSD;

The ground coverage of the multi-view images (Figure 4b);

The number of flight strips, waypoints per strip, and the total waypoints;
The separation distance between the adjacent flight strips;

The baseline between the two consecutive waypoints;

The estimated travel time;

The LiDAR scan footprint width and length;

The LiDAR effective scanning angles.

The suggested oblique views at 45° will entail an enlargement effect on the GSD
values. Accordingly, the GSD,,;, and GSD,y,y values are computed using the following
equations [45]:

. H  cos(B—t)
GSDin = pzxel.f + cosp 1
GSDax = GSD i w )
cosp

with

f =focal length,

H = flying height above the ground level,

t = inclination angle of the camera,

B = inclination angle to a certain image point.

The output flight plan parameters are calculated using the following equations [46]:

scale no. = (?) ®)

Gw = format width x scale no. 4)
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Gr = format length x scale no. ®)

B = Gy(1 —end lap %) (6)

SPD = G (1 — side lap %) (7)
o Warea

NFS = round (SPD +1> 8)

Larea

N = round (T + 2) 9)

Total waypoints = NFS x N (10)

W=2 tan(VFOV) H (11)

L =2,/(R?—H?) (12)

SFOV =2 tan~! (L?/Z) (13)

where

Larea, Warea: project area dimensions are defined as a rectangle with a length L and width W.
Gy: nadir image coverage along track.

Gr: nadir image coverage across track.

B : airbase distance between two successive waypoints.
SPD: separation distance between the flight strips.

NFS: number of flight strips rounded to positive infinity.
N : number of waypoints per strip.

R : scanning range of the LiDAR.

VFOV: vertical field of view of the LiDAR.

W: along-track LiDAR scanning width.

L: across-track swath width of the LiDAR scanning.
SFOV: effective scanning field of view.

Figure 5 is shown for a better understanding of the aforementioned flight parameters.

@ waypoints

Footprint

Figure 5. UAV flight planning design parameters illustration for both sensors used.

The algorithms to compute the flight planning parameters and the estimated LiDAR
point density are shown in Tables 5 and 6.
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Table 5. Pseudocode for the flight planning parameters.

Input: the ROI shapefile, camera and LiDAR parameters, required GSD.
Output: Flight plan parameters including;:

UAV waypoints and save them as an array in a folder.
Display planning results in the tool GUI
The plot of the footprints of the images

1. Check input options of the overlap, height, speed, inclination angle, portrait/landscape,
type of the camera, and marginal flight strips
Compute the min. and max. GSD and display them in the GUI
3. Call the function of the flight planner calculator:
Plot the ROI
Define if the ROl is either elongated NS or EW
Calculate the airbase B, no. of strips, no. of images, travel time, and the XYZ of the
waypoints

N

° Return

Table 6. Pseudocode for the estimation of the LiDAR point cloud on the ground.

° Input:

1.  The waypoints calculated from the flight planner in Table 1.
2. The LiDAR beams’ angular configuration and parameters.

Output: Estimation of the density of LIDAR points
Apply the computations:

1.  Define the ground object by a horizontal plane (DSM TIN-not applied in the
prototype).

For each beam j

For each scanning station i on the planned path

For each scanning beam

For each scanning angle [0°—angular resolution—360°]

Apply the LiDAR equation using the predefined orientation using polar coordinates
azimuth, elevation, and range

7. Check if the calculated scanning ray is intersecting the ground plane

8. Check visibility (in case of a DSM)

9.  Save scanning point XYZ

10.  Extract the scanning points located inside the ROI

11. Repeat

° Return

ARSI N

The tool also allows users to estimate the LiDAR point cloud average error using the
propagation of error calculations and a given waypoint uncertainty [47]. The propagation
of errors is useful to estimate one component of the accuracy of the sensor errors by
transforming the measured range and angles to the 3D coordinates Xj, Yj, Z;, as follows:

Xi = Xj + R.cos(Az).cos(V)
Y; = Y7 + Rusin(Az).cos(V) (14)
Zi =71 + Rsin(V)

where

R is the measured range distance from the sensor to the scanned point.

Az is the measured azimuth angle of the laser beam.

V is the measured vertical angle of the laser beam measured from the horizontal plane.
X1, Y1, and Z; are the coordinates of the LiDAR at time ;.
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An error propagation can be applied to Equation (14) using Jacobian Matrix ] to
estimate the errors of the scanned points in the point cloud, as follows in Equation (15):

Cco0.
oy (15)
fle‘z

2
0xi

nyz =] ZR,AZ,V J'=

C00.

where

YR Az : The variance-covariance matrix of the observed range and angles.
Y xyz : The variance—covariance matrix of the derived coordinates of point P; where
oxi%, OyiZ, 07 represent the variances of the coordinates, respectively.

3. Experiments and Analyses

To test the mapping capability and productivity of the proposed multi-view hybrid
system for UAV platforms, two simulated test flights were designed using the Blender
open-source tool [48]. For each test, using the simulated flight trajectories (Section 2.4), the
multi-view image datasets were rendered in Blender and then imported into Metashape [49]
for a bundle block adjustment and dense point cloud generation (Figure 6). In both of the
proposed camera systems (Section 2.3), the rendered images are assumed to be distortion-
free since they are simulated using ideal camera conditions. Furthermore, to have a robust
bundle adjustment with a lower number of blunders, only the tie points viewed in at least
three images are kept before optimizing the final orientation parameters. It is worthwhile
mentioning that a recommended shutter speed > 1/1250 is considered to have a motion
blur < half a pixel. The LiDAR scanning with the Ouster OS1-32 is then applied along the
image-based trajectory, assuming a maximum range of 100 m and a low target reflectivity
of the scanned objects. The point clouds from each sensor, together with the integrated
ones, are finally analyzed in terms of point density.

Flight Specs

v

Input Design Specifications

- Target Area.

- Required GSD

- Side lap %.

-End lap %

- Flying Height m.
- Flying Speed m/s

FLIGHT PLANNING FOR UAV HYBRID MAPPING SYSTEM

DESIGN REQUIREMENTS INPUT

Lidar Specs

Lidar Specifications

Designed Flight Plan

- Number of flight strips.

- Ground coverage of a nadir image

- Separation distance between strips.

- Air base distance

|/ |- Number and location of the flight waypoints.
- Estimated Max and Min GSD.

Imaging Specs

Camera Specifications

| Output

- Qutput Rate. - Focal length. " ) "

- Scanning Range m. - Pixel size. - Estlmate.d flight dura_hon.

- Rotation Frequency Hz. - Image format size. - Swath width of the LIDAR scan.
- Field of View FOV. - Shutter speed. - Est!mated point <_1enstty.

- Horizontal Resolution. - Tilt angles - Estimated scanning accuracy.

- Number of Beams.

UAV Flight

A®blender | AN

Multi-view Images| [LIDAR Point cioud

SfM Image orientation
Dense Image Matching DIM

Performance
Analysis

point cloud

Figure 6. Methodology workflow.
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3.1. Use Case #1—Launceston

The first 3D mapping test was simulated over the city of Launceston in Tasmania,
where a free 3D model was available [50]. An area of interest (AOI) of 150 by 170 m? was
selected and the flight plans were computed using the developed prototype tool described
in Section 2.4. The flight input parameters were chosen as follows:

flying height = 80 m

flying speed =10 m/s

end lap = 80% and side lap = 60%

For a highly accurate georeferencing and accuracy evaluation, five ground control
points (GCPs) and seven checkpoints (CPs) were distributed over the study area by placing
coded targets which could be automatically marked and measured (Figure 7).

Figure 7. Examples of the GCPs/CPs used in the photogrammetric adjustments of the simulated datasets.

3.1.1. SenseFly-Based Hybrid UAV Surveying

Given the flight input parameters and the camera specifications, the plan was to
capture a total of 475 images along five flight strips. The plan was for the flight strips to not
be parallel to the streets and buildings in the scene in order to have a better understanding
of the results (see also Discussions). The flight strips, footprints of the images, and the
flight plan are shown in Figure 8. The GSD of the nadir images is 1.8 cm while the oblique
views span from 6 to 22 cm.

Figure 8. Flight planning with the senseFly camera over Launceston: five strips and 475 multi-view images.



Drones 2022, 6, 314 11 of 21

The bundle block adjustment processing of the rendered images closed with a repro-
jection error of 0.75 pixels, a multiplicity of ca. 5, and a sparse point cloud of 421,000 points
(Figure 9a,b). The root mean square errors (RMSEs) on the GCPs and CPs are shown in
Table 7. A dense point cloud was created afterwards using Dense Image Matching (DIM)
methods, resulting in ca. 167 million points (Figure 9¢,d).

(b) (d)

Figure 9. Recovered camera poses and sparse point cloud for the simulated senseFly-based multi-
view image block (475 images) over Launceston (a,b). Derived dense point cloud (c,d).

Table 7. Accuracy analyses on the two simulated image datasets over Launceston and GCP/CP
distribution (right).

RMSE_ XY (mm) RMSE_Z (mm) Total RMSE (mm)

senseFly-based hybrid system (nadir GSD: 1.8 cm)

GCPs (5) 4.1 mm 1.3 mm 4.3 mm

CPs (7) 4.3 mm 1.8 mm 4.6 mm

MAPIR-based hybrid system (nadir GSD: 1.5 cm)

GCPs (5) 4.4 mm 1.0 mm 4.5mm

CPs (7) 3.7 mm 1.2 mm 3.8 mm

Following the same five imaging flight strips, the LIDAR scanning simulation was
applied using the OS1-32 sensor, with a maximum scanning range of 100 m and a rotation
frequency of 20 Hz. The simulated point cloud consists of ca. 15 million points. The density
of the point cloud is shown in Figure 10, where the red color indicates >200 pts/ m2.
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Figure 10. Density (radius = 50 cm) of the LiDAR-based point cloud created by the Ouster LIDAR
using the senseFly-based hybrid system over Launceston.

3.1.2. MAPIR-Based Hybrid UAV Surveying

Using the same AOI and flight planning input parameters and the MAPIR camera
specifications, the plan was to capture a total of 910 simulated images along seven over-

lapping strips (Figure 11). The GSD of the nadir images is 1.5 cm while the oblique views
(45 deg inclination) span from 3 to 8 cm.

Compute Photo Flight Plan
LIDAR Point Density (approx.)
2a

psisgm= 2, 8
o/no

Average e i UDAR pot ciu
Compute error

Output mean eeror fem)
Qo
L §

03

Figure 11. Flight planning with the MAPIR camera over Launceston: seven strips and 910 images.

The photogrammetric processing of the simulated multi-view images produced a
reprojection error of 0.73 pixels, with a multiplicity of ca. 5 and a sparse point cloud of
652,815 points (Figure 12a,b). The root mean square errors (RMSEs) on the GCPs and
CPs are shown in Table 7. A dense point cloud was created afterwards, resulting in ca.
202 million points (Figure 12¢,d).

Following the same seven flight strips planned with the MAPIR multi-view camera
system, the LiDAR scanning was applied and a point cloud of ca. 21 million was produced
using the OS1-32 scanner. The density of the point cloud was computed and visualized,
with the red color indicating >200 pts/m? (Figure 13).
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(b) (d)

Figure 12. Recovered camera poses and sparse point cloud for the simulated MAPIR-based multi-
view image block (910 images) over Launceston (a,b). Derived dense point cloud (c,d).

TG

Figure 13. Density (radius = 50 cm) of the LiDAR-based point cloud created by the Ouster scanner
using the MAPIR-based hybrid system over Launceston.

3.2. Use Case #2—Dortmund

The second 3D mapping experiment was simulated over the city of Dortmund (Ger-
many), selecting an area of interest (AOI) of 100 x 200 m? where the flight plans were
computed using the developed prototype tool (Section 2.4). The available 3D data are part
of the ISPRS/EuroSDR benchmark presented in [51]. In this test, a higher image overlap
and a slower flight speed were selected to mimic a more realistic UAV mission planning for
3D modeling tasks. Accordingly, the flight input parameters were selected as follows:

o flying height =80 m
e speed =5m/sec
e end lap = 80% and side lap = 80%
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Moreover, for this use case, a set of six ground control points (GCPs) and nine checkpoints
(CPs) were distributed over the study area by placing coded targets in the rendered scene.

3.2.1. SenseFly-Based Hybrid UAV Surveying

Given the AOQ], the flight input parameters, and the camera specifications, the plan
was to capture a total of 665 images along five flight strips. The flight strips, the footprints
of the images, and the flight plan are shown in Figure 14. The GSD of the nadir images is
1.8 cm while the oblique views span from 6 to 22 cm.

UAV Hybrid System Flight Planner i
oot : - - ' I e N

[ X )

‘dortmund  *

Figure 14. Flight planning with the senseFly camera over Dortmund: five strips and 665 images.

The processing of the 665 simulated multi-view images successfully recovered the
camera poses, with a reprojection error of 0.67 pixels, a multiplicity of ca. 16, and a sparse
point cloud of 202,871 points (Figure 15a,b). The root mean square errors (RMSEs) on the
GCPs and CPs are shown in Table 8. Afterwards, a dense point cloud was created, resulting
in ca. 202 million points (Figure 15¢,d).

(b) (d)

Figure 15. Recovered camera poses and sparse point cloud for the simulated senseFly-based multi-
view image block (665 images) over Dortmund (a,b). Derived DIM point cloud (c,d).
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Table 8. Accuracy analyses on the two simulated image datasets over Dortmund and GCP/CP

distribution (right).

RMSE_ XY (mm) RMSE_Z (mm) Total RMSE (mm)

senseFly-based hybrid system

GCPs (6) 2.8 mm 0.5 mm 2.9 mm

CPs (9) 3.7 mm 1.8 mm 4.1 mm

MAPIR-based hybrid system

GCPs (6) 2.3 mm 2.4 mm 3.3 mm

CPs (9) 4.6 mm 3.3 mm 5.7 mm

Following the same five flight strips that were planned based on the senseFly multi-
view camera, the LIDAR scanning was applied, and a point cloud of ca. 37 million points
was produced using the OS1-32 scanner. The density variation of the simulated point cloud
is shown in Figure 16, with the red color indicating >200 pts/ m2.

UAV Hybrid System Flight Planner

oput

Endisp % Sdeiso % oy

Fying haight ] LDAR e

Fiyng Speed ms 705132 Mb
URlandscape 7 URPorait  ROSION<20Hs Max Range=5om
Aad Marginal Strps. 7 Piot image foopert.

 Inctination_sngle 45069 ingust waypont uncerinty [l
Inchirabon_angle 10deg. Range enor=3 am. ngur enor0 03 deg

Mapping RO are3 shaouid be i 3 shapefisformat

Fiignt Pian output
LOAR Scanteng(m} | - Toalimages | 10
‘Singie Imape Waath [m|

Sogeimagelenaiml . Gso_mnfem
MNumber of Strips. - 5SD_max fem]
Seips Separaton [m}

ArBase B m]

Calcuiste

Figure 16. Density (radius = 50 cm) of the LiDAR-based point cloud created by the Ouster scanner
using the senseFly-based hybrid system over Dortmund.

3.2.2. MAPIR-Based Hybrid UAV Surveying

Given the flight input parameters and the camera specifications, a total of ten strips
and some 1250 multi-view images were planned and captured. The flight strips, the
footprints of the images, and the flight plan are shown in Figure 17. The GSD of the nadir
images is 1.5 cm while the oblique views span from 3 to 8 cm.

‘Compute Photo Flight Plan
LIDAR Point Density {approx |
L)

pissqm= {a, wf
o'm

Avesae et 1 LOAR pori ciout
Compute error

Output mean error fem]

LN
b

T

Figure 17. Flight planning with the MAPIR camera over Dortmund: ten strips and 1250 overlapping

multi-view images.
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The bundle block adjustment processing of the rendered MAPIR images over Dort-
mund closed with a reprojection error of 0.84 pixels, a multiplicity of ca. 13, and a sparse
point cloud of 390,801 points (Figure 18a,b). The root mean square errors (RMSEs) on the
GCPs and CPs are shown in Table 8. A dense point cloud was created after that with the
DIM algorithms, resulting in ca. 159 million points (Figure 18c,d).

(b) (d)

Figure 18. Recovered camera poses and sparse point cloud for the simulated MAPIR-based multi-
view image block (1250 images) over Dortmund (a,b). Derived dense point cloud (c,d).

Using the same ten flight strips planned for the MAPIR multi-view camera system,
the OS1-32 LiDAR scanning was applied and a point cloud of ca. 52 million points was
produced (Figure 19).

Figure 19. Density (radius = 50 cm) of the LiDAR-based point cloud created by the Ouster LIDAR
using the MAPIR-based hybrid system over Dortmund.
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4. Discussions

The proposed hybrid system for the UAV platforms could clearly be a step forward
for the mapping community. The two proposed versions feature different ground coverage
due to the different camera specifications. With respect to the aerial hybrid systems, the
image’s GSD has a considerable variation between the nadir and the oblique views due to
the fixed focal lengths of the chosen cameras. The bundle block adjustments reveal a higher
ray multiplicity in the Dortmund dataset due to its higher side lap and slower flying speed.
Similarly, the Dortmund dataset has a higher density of the LIDAR points (Table 9) with
regard to the DIM cloud due to the reduced flying speed (5 m/s). Nevertheless, such issues
do not hamper the creation of the dense and accurate point clouds by both of the proposed
hybrid systems—as quantitatively shown in the results.

Table 9. Summary of the generated and integrated sample point clouds with the proposed hybrid
systems for UAV platforms.

First test Second test
senseFly + Ouster MAPIR + Ouster senseFly + Ouster MAPIR + Ouster

Total DIM points 3,165,250 5,516,791 7,523,625 10,818,103

Total LiDAR points 1,100,675 1,692,890 9,593,969 14,289,084

Total Integrated 4,265,925 7,209,681 16,912,628 25,107,187

Density DIM 469 + 81 pts/m? 804 + 121 pts/m? 338 + 77 pts/m? 496 + 120 pts/m?
Density LiDAR 188 4 67 pts/m? 296 + 102 pts/m? 659 + 340 pts/m? 1050 + 544 pts/m?
Density Integrated 619 + 120 pts/m? 1039 + 178 pts/m? 877 + 359 pts/m? 1329 + 575 pts/m?

The integration of the camera- and LiDAR-based point clouds visibly show the advan-
tages brought by a hybrid sensor in urban areas (Table 9). As shown in Figure 20, a fagcade
slide was arbitrarily selected on a large building in the Dortmund dataset and the densities
of the DIM, LiDAR, and hybrid (integrated) point clouds were computed.

an%CADE SECTION DENSITY PLOT FOR EACH POINT CLOUD (;).SCADE SECTION DENSITY PLOT FOR EACH POINT CLOUD

—DiM
—— Ouster
[ Hytwid

Density point/m2

-2 0 2 4 6 8 10 12 14 16 2 L] 2 4 6 8 10 12 14 16
FACADE ELEVATION IN METERS FACADE ELEVATION IN METERS

Figure 20. Plots of density profiles on a building facade in Dortmund.

The clear benefit of the proposed hybrid system on the vertical structure is evident.
Similarly, the DIM and LiDAR were complementary in some areas where, e.g., the image
overlap was not adequate or the LiDAR points did not reach the scene (Figure 21). In both
cases, it should be noted that the LiDAR acquisitions were performed based on the flight
planning for the images.
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Figure 21. Photogrammetric point cloud (left) and LiDAR point cloud (right) with highlighted areas
of complementarity between the two datasets.

Comparing Figures 9 and 12 (as well as Figures 15 and 18), we can notice how the
MAPIR-based configuration delivers much denser point clouds due to the larger number
of strips. Furthermore, the integration with the photogrammetric point clouds allows the
closure of the gaps and also delivers dense results on vertical objects. For illustration, the
main building in the scene of the second test was selected to compare the point densities
in the three collected point clouds of the LIDAR and DIM and when they are integrated
together using both suggested hybrid sensors (Figure 22).

=1

(a) LIDAR (b) DIM
Mapir + Ouster

SenseFly + Ouster

1
4 3

i

S

(a) LIDAR (b) DIM (c) Hybrid

Figure 22. A comparison of the point density and improvement after integrating point clouds from
LiDAR and DIM. For both hybrid sensors, the point clouds shown have the same minimum and
maximum limits.
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5. Conclusions

The paper proposed a novel hybrid system for the UAV platform. The proposed data
acquisition system is composed of five RGB cameras and a LIDAR sensor. Using a dedicated
flight planning tool (shared with the community at https://github.com/Photogrammtery-
Topics/flight-planning-tool-for-Hybrid-UAV-system-accessed on 18 October 2022), the
flying strips, multi-view image acquisition, and LiDAR scanning can be planned and
simulated. The acquired and processed data revealed that the proposed hybrid system
is highly suitable for 3D mapping purposes in urban scenarios. The integrated point
clouds also show very high density in cluttered and vertical areas, with ground accuracies
acceptable for mapping and cartographic purposes. The system could make 3D modeling
easier and more automated, reducing processing time and paving the road for the fast and
automated upgrading of the existing city models.

So far, the integration of the image- and range-based point clouds is a pure merging,
but smart data fusion could be applied in order to refine the final 3D surveying product.

The proposed hybrid sensors could also include a multispectral camera (instead of
the RGB nadir view) in order to couple the geometric data with the spectral information,
which is useful, e.g., for vegetation mapping, 3D NDVI map production, etc. With respect
to LiDAR, the OS1-32 digital scanner was suggested; however, the proposed hybrid system
can be adapted to place different LIDAR types, such as Livox, Quanergy M8, Velodyne
Puck, etc.
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