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Abstract: Object detection is important in unmanned aerial vehicle (UAV) reconnaissance missions.
However, since a UAV flies at a high altitude to gain a large reconnaissance view, the captured objects
often have small pixel sizes and their categories have high uncertainty. Given the limited computing
capability on UAVs, large detectors based on convolutional neural networks (CNNs) have difficulty
obtaining real-time detection performance. To address these problems, we designed a small-object
detector for UAV-based images in this paper. We modified the backbone of YOLOv4 according to the
characteristics of small-object detection. We improved the performance of small-object positioning by
modifying the positioning loss function. Using the distance metric method, the proposed detector can
classify trained and untrained objects through object features. Furthermore, we designed two data
augmentation strategies to enhance the diversity of the training set. We evaluated our method on a
collected small-object dataset; the proposed method obtained 61.00% mAP50 on trained objects and
41.00% mAP50 on untrained objects with 77 frames per second (FPS). Flight experiments confirmed
the utility of our approach on small UAVs, with satisfying detection performance and real-time
inference speed.

Keywords: small-object detection; backbone design; object positioning; object classification; UAV
flight experiment

1. Introduction

Nowadays, Unmanned aerial vehicles (UAVs) play an important role in civil and
military fields, such as system mapping [1], low-attitude remote sensing [2], collaborative
reconnaissance [3], and others. In many applications, reconnaissance tasks are mostly
based on UAV airborne vision. In this case, the detection and recognition of ground targets
is an important demand. However, when the UAV flies at high altitudes, the captured
object occupies a relatively small pixel scale in UAV airborne images. It is a challenge
to detect such small objects in complex large scenes. Additionally, due to the limited
computing resources in UAVs, many large-scale detection models based on server and
cloud computing are not suitable for online real-time detection of small unmanned aerial
vehicles. In this case, achieving fast and accurate small-object detection using the onboard
computer becomes challenging. This paper mainly focuses on the detection of small objects
in UAV reconnaissance images.

Combining with the flight characteristics of small UAVs and the computing capability
of onboard processors, this paper selects a neural-network-based model as the basic de-
tection model. To the best of our knowledge, most of the current detection algorithms for
UAVs use one-stage detectors [4]. One of the state-of-the-art detectors among the one-stage
detectors is YOLOv4 [5]. The YOLOv4 object detector integrates various classic ideas [6–9]
in the field of object detection and works at a faster speed and higher accuracy than other
alternative detectors. We choose YOLOv4 as the benchmark detector. The YOLOv4 detector
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was proposed and trained using a common dataset [10] covering various objects. However,
the objects in the field of UAV reconnaissance that we are concerned with are limited in
category, such as cars, aircraft, and ships. There are many instances of subdividing these
limited categories of targets, but current object detection training sets rarely care about all
types of objects. Therefore, objects that have not appeared in the training set are difficult
to recognize in the UAV reconnaissance image during the inference stage, which is also a
major challenge for UAV object detection. Generally, these objects are small in the vision of
UAVs. When the flight altitude of the UAV is different, the image pixels of the same object
are also different. Since YOLOv4 is a multi-scale detector, we improve YOLOv4 to make
it more suitable for small-object detection in UAV reconnaissance images. Furthermore,
the images of the same scene obtained by the UAV are different under different flight
weather conditions.

To solve the above challenges, we proposed a small-object detection method that is
applied to UAV reconnaissance. Our contributions are described as follows:

1. We propose two data augmentation methods to improve the generalization of the
algorithm on the scene;

2. We design a backbone network that is suitable for small-object detection and modify
the positioning loss function of the one-stage detector to improve detection accuracy;

3. We design a metric-based object classification method to classify objects into sub-
classes and detect objects that do not appear in the training phase, in other words, un-
trained objects.

The remainder of this manuscript is structured as follows. Section 2 introduces
some related works of object detection algorithms. Section 3 formulates the detector
structure for UAV untrained small-object detection and introduces the improved algorithm.
Experimental results are presented in Section 4 to validate the effectiveness of our proposed
method. Section 5 concludes this paper and envisages some future work.

2. Related Works
2.1. Small-Object Detection Algorithm

Most of the state-of-the-art detectors are based on deep-learning methods [11]. These
methods mainly include two-stage detectors, one-stage detectors, and anchor-free detectors.
Two-stage detectors first extract possible object locations and then perform classification
and relocation. The classic two-stage detectors include spatial pyramid pooling networks
(SPPNet) [9], faster region-CNN (RCNN) [12], etc. The one-stage detectors perform classifi-
cation and positioning at the same time. Some effective one-stage detectors mainly include
the single shot multi-box detector (SSD) [13], You Only Look Once (YOLO) series [5,8,14,15],
etc. Anchor-free detectors include CenterNet [16], ExtremeNet [17], etc. These methods do
not rely on predefined anchors to detect objects. In addition, some scholars have introduced
transformers into the object detection field, such as detection with transformers (DETR) [18]
and vision transformer faster RCNN (ViT FRCNN) [19], which have also achieved good
results. However, the detection objects of the general object detectors are multi-scale. They
are not designed for small-object detection specifically.

Small-object detection algorithms can be mainly divided into two kinds. One is to
improve the detection performance of small objects with multiple scales in a video or image
sequence. The other is to improve the detection performance of small objects with only a
scale in an image. The improved detection methods of small objects with multiple scales
mainly include feature pyramids, data augmentation, and changing training strategies.
In 2017, Lin et al. proposed feature pyramid networks (FPN) [20], which improves the
detection performance effect of small objects by fusing high-level and low-level features
to generate multi-scale feature layers. In 2019, M. Kisantal et al. proposed two data
augmentation methods [21] for small objects to increase the frequency of small objects
in training images. B. Singh et al. designed scale normalization for image pyramids
(SNIP) [22]. SNIP selectively backpropagates the gradients of objects of different sizes,
and trains and tests images of different resolutions, respectively. The research object of
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these methods is multi-scale objects, which cannot make full use of the characteristics of
small objects. The approaches that only detect small objects with a scale are mainly of three
kinds: designing networks, using context information, and generating super-resolution
images. L. Sommer et al. proposed a very shallow network for detecting objects in aerial
images [23]. Small-object detection based on network design is few and immature. J. Li et al.
proposed a new perceptual GAN network [24] to improve the resolution of small objects to
improve the detection performance. In this paper, we focus on algorithms that are suitable
for small-object detection in UAV reconnaissance images.

2.2. Object Detection Algorithm for UAV

The object detection algorithms used in UAVs are mainly designed based on the
requirements of the task scenarios. M. Liu et al. proposed an improved detection algorithm
based on YOLOv3 [8]. The algorithm first optimizes the Res-Block and then improves the
darknet structure by increasing the convolution operation. Y. Li et al. proposed a multi-
block SSD (MBSSD) mechanism [25] for railway scene monitored by UAVs. MBSSD uses
transfer learning to solve the problem of insufficient training samples and improve accuracy.
Y. Liu et al. proposed multi-branch parallel feature pyramid networks (MPFPN) [26] and
used a supervised spatial attention module (SSAM) to focus the model on object information.
MPFPN conducted experiments on a UAV public dataset named VisDrone-DET [27] to
prove its effectiveness. These algorithms are combined with UAV application scenarios,
but are all based on classic methods. They cannot work well when inferencing against
untrained small objects.

3. Proposed Method

In this paper, we focus on small objects in images from the aerial view of UAVs. The
proportion of object pixels in the image is less than 0.1% and the objects to be detected
include objects that have not appeared in the training set. Current deep-learning-based
object detection algorithms depend on a large amount of data. Therefore, we design an
approach to expand the dataset in the proposed detection framework. In addition to
the classic methods such as rotation, cropping, and color conversion, we propose two
data augmentation methods—background replacement and noise adding—to improve
the generalization of the detection algorithm. Background replacement gives the training
images more negative samples to make the training set have a richer background. Noise
adding can prevent the training model from overfitting the object.

After preprocessing the training images, the image features need to be obtained
through the backbone network. We choose YOLOv4 [5], which has a good trade-off
between speed and accuracy, as the benchmark algorithm for research. Common backbones
in object detection algorithms are used to detect multi-scale objects. The receptive field
of the backbone module is extremely large. In YOLOv4, the input of the backbone called
CSPDarknet53 [7] is 725× 725. However, the number of pixels of the small object in the
image generally does not exceed 32× 32. For small-object detection, the backbone does not
need such a large receptive field. Therefore, the common backbone needs to be modified to
apply to small object detection.

The YOLO series algorithms have three outputs, whether it is an object, which category
it belongs to, and the bounding box coordinates of the object. These outputs are calculated
by the same feature map. However, the convergence direction of the object positioning
and object classification is not consistent. For example, the same object may have different
coordinate positions, but the same coordinate position may have different objects. From this
perspective, object positioning and object classification cannot use the same features. One
of the research ideas of the proposed algorithm is to use different methods to deal with
object positioning and object classification separately. This can avoid influence between
positioning and classification.

As the input and output sizes of convolution neural networks (CNNs) are determined,
the YOLO series algorithms can only detect a fixed number of objects. In order to recognize
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untrained categories of objects, we extract the object features from feature maps and design
a metric-based method to classify objects. When the algorithm is trained, the classification
loss and the positioning loss are backpropagated at the same time.

The overall structure of the proposed detector is shown in Figure 1. The data aug-
mentation module uses methods such as background replacement and noise adding to
change the training data to obtain better training performance. The backbone network
extracts the multi-layer features in the image for object positioning and object classification.
The object positioning module uses high-level features to obtain the center point coordi-
nates, width and height of the object. The object classification module uses the positioning
results to extract object features and then judges the category of the object by distance
measurement. Finally, the detection result are obtained by combining the positioning and
classification calculation.

Figure 1. Structure of the proposed small-object detection method, including data augmentation,
backbone network and object positioning and object classification modules.

3.1. Image Augmentation

We analyze two main reasons for insufficient datasets. One is that the background
in the image is relatively monotonous and the other is that the object state is relatively
monotonous. Aimed at these two reasons, we propose two methods to increase the image
number of the database, as shown in Figure 2.

The purpose of background replacement is to reduce the impact of background sin-
gularity in UAV-based images. We randomly crop some areas in images that are not in
the training set to cover areas in training images that do not contain the object. This can
increase the diversity of negative samples, making the model eliminate the interference of
irrelevant factors.

The output result of the object detection is a rectangular box surrounding the object.
However, the object is generally not a standard rectangle, which means that the detected
rectangular box will contain some information that does not belong to the object. If the
object location does not change much, it is very likely to overfit the background information
near the object, which is not conducive to the generalization of the detector. Generally
speaking, invalid information will appear at the edge of the rectangular box. Therefore,
we design a noise-adding augmentation strategy. We randomly select pixels in the image
to cover the pixels near the edge of the rectangular box containing the object. Since we
cannot accurately determine whether a pixel belongs to the object or background, we fill
the pixels along the bounding box and the pixel block used as noise contains no more than
10 pixels, considering that the object is in the center of the detection box. The pixels near the
object are changed by randomly adding noise to improve the generalization of the detector.
The formula of background replacement is expressed as follows:

x̃ = M� xA + (1−M)� zB

ỹ = yA
(1)
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where M ∈ {0, 1}W×H represents the part of the image that needs to be filled and � means
pixel by pixel multiplication. xA and xB denote two samples in the training set. yA and
yB represent the label corresponding to the training samples, and zB is an image in the
background image set.

Figure 2. Two data augmentation methods. The red line represents the background replacement
and the yellow lines represent noise adding.

3.2. Backbone Design

YOLOv4 proves that CSPDarknet53 is the relatively optimal model. We modify
CSPDarknet53 to make it suitable for small-object detection. The comparison between the
modified backbone in this paper and the original backbone is shown in the Figure 3.

Compared with the original network, the modified network reduces the receptive field
and improves the input image resolution without increasing the computational complexity.
Since the research object focuses on small-scale objects, there is no need to consider large-
scale objects. The modified backbone deletes the network layers used to predict large-scale
objects, which reduces the network depth by half. We call it DCSPDarknet53.

In order to reduce the computational complexity of deep learning, the resolution of
the input image is usually downsampled. However, low image resolution will make it
difficult to correctly classify and locate small objects. Therefore, a convolutional layer
is added in the front of the network to calculate higher-resolution images. We call it
as ADCSPDarknet53. At the cost of a small amount of calculation speed, the detection
accuracy is improved on a large scale. The specific network structure of our proposed
backbone network ADCSPDarknet53 is shown in Figure 4.

Figure 3. Comparison of backbones. CSPDarknet53 is the backbone of YOLOv4. DCSPDarknet53
is a backbone for small objects. ADCSPDarknet53 is a backbone that increases the downsampling
network layer.
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Figure 4. The structure of backbone network ADCSPDarknet53. Conv means convolution layer. BN
denotes batch normalization. Activation layer uses ReLU function.

3.3. Object Positioning

The object positioning algorithm is improved based on the YOLO series. YOLOv5 [28]
uses a positive sample expansion method. In addition to the original positive sample, two
anchor points close to the object center are also selected as positive samples. The calculation
formula is expressed as follow:

P =


p,

if (p · x− bp · xc ≤ 0.5) : p + (−1, 0)
if (p · x− bp · xc > 0.5) : p + (1, 0)

if (p · y− bp · yc ≤ 0.5) : p + (0,−1)
if (p · y− bp · yc > 0.5) : p + (0, 1)

 (2)

where P represents the expanded positive sample coordinate set and p means the original
positive sample coordinate. For example, in Figure 5, the gray plane is predicted by the
grid where the gray plane’s center point is located. After the expansion, the gray plane is
also predicted by the grid where the red dots are located.

Figure 5. Selection of positive sample. The yellow dots are anchor points. The red dots are positive
samples expanded by YOLOv5. The blue dots are positive samples proposed in this article.
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The distance between each anchor point is not far in the last feature layer, which
means that the object may contain multiple anchor points. It is not appropriate to select
the closest anchor point as a positive sample and define other anchor points as negative
samples. Therefore, we revise the selection method of positive samples. We calculate the
four anchor points around the object center point as positive samples, as shown by the blue
dots in Figure 5.

The YOLO series algorithms define the probability that the anchor contains the object
as 1. Since each anchor point has a different distance from the object, the strategy of defining
all as 1 cannot reflect the difference between different anchor points. Therefore, we use the
Euclidean distance between the anchor point and the object center point as the metric for
the probability that the anchor contains the object. As the positive sample must contain the
object, the probability of containing objects of the positive sample anchor point cannot be
0. According to the design principle, the function of calculating the probability is shown
as follows:

pobj = 1−
(
(xa − xt)

2 + (ya − yt)
2
)

/4 (3)

3.4. Untrained Sub-Class Object Detection

Generally speaking, top-level features are beneficial to object positioning and bottom-
level features are beneficial to object classification. In order to separate the process of object
localization and object classification to reduce the distractions between these two and make
better use of the features extracted from the backbone network, we select features from the
middle layers of the backbone for object classification. Through object positioning, we can
obtain the coordinates of the object. Using these coordinates, the feature vector of the object
can be extracted from feature maps and then can be used to classify the object.

In UAV airborne images, it is common to think of objects in terms of large classes, such
as aircraft, cars, buildings, pedestrians, etc. However, specific objects such as black cars
and white cars are difficult to determine. To address this sub-class classification problem,
we divide the object classification process into the rough classification process and the
fine classification process. Rough classification mainly distinguishes objects with large
differences in appearance, such as aircraft and cars. Fine classification mainly distinguishes
objects that have similar appearance characteristics, but belong to different classes, such as
black cars, white cars, etc.

In this paper, a measurement method based on Euclidean distance is used to classify
the object. The advantage is that it does not need to fix the object class. By using this metric
learning, the algorithm can identify the potential objects in the scene that do not appear in
training process, in other words, untrained object. The training goal of object classification
is to make the object features of the same class as close as possible and to make the object
features of different classes as far as possible. After extracting the object features, three
objects are randomly selected from all objects, in which two classes are the same. We use
the triple loss [29] as the loss function of object classification. The loss function is defined as:

losscls = max(d(a1, a2)− d(a1, b) + thre , 0) (4)

where a1 and a2 represent objects that belong to the same class. b means the object that
is different from a1 and a2 and thre is the expected distance between objects of different
classes. The rough classification calculates the loss value between the object classes, while
the fine classification calculates the loss value between the object sub-classes. The thre of
the fine classification process is lower than the thre of the rough classification.

In the testing process, we input the labeled images with all objects into the trained
model to obtain image features and then extract the feature vector of the object according
to the object position to construct a classification database. The classification database
is used to classify the object in the test image. The flowchart of object classification is
shown in Figure 6. First, the rough classification database is used to determine the object
class and then the fine classification database is used to determine the object sub-class.
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The principle of object classification is to classify the object into the class closest to the
object. If the distance between the object and any category in the database is greater than
the threshold, the object is considered to belong to an unknown class that has not appeared
in the database. If the distance between the object and the class closest to it is less than the
threshold, the object is considered to belong to that class.

Figure 6. The flowchart of object classification for fine and rough classification.

In summary, we designed two data augmentations—background replacement and
noise adding—to increase the background diversity of the dataset. Based on the information
flow of small objects through convolution layers, we modified the detector backbone
CSPDarkNet53 to ADCSPDarknet53 to obtain a larger feature map for small-object detection
as well as to reduce the computation cost. For object positioning, we selected the four
anchor points around the object center point as positive samples and modified the function
for calculating the objectness probability, which can increase the positioning accuracy of
small objects. For object classification, we combined information from shallow feature
maps and positioning results to perform rough and fine classification processes to obtain
more accurate classification results and identity untrained sub-class small objects.

4. Experiments

To evaluate the small-object detection and classification algorithm proposed in this
paper, we first constructed a dataset consists of small objects. Then, we performed exper-
iments on trained and untrained small objects to compare localization and classification
performance. Finally, we conducted flight experiments to test the detection performance
and real-time inference of the proposed algorithm on small UAVs.

4.1. Dataset of Small Objects and Evaluation Metrics

We choose to detect small objects in the visual field of UAVs to evaluate our algorithm.
In order to obtain as much target data as possible, we built a scaled-down experimental
environment to collect our dataset. The UAV we used to collect the dataset was a DJI
Mini2. To obtain various data, we used some small target models as objects to be detected.
The target models were between 15 cm–25 cm in length and 5 cm–20 cm in width. When
taking the image data, the flight altitude of the UAV was controlled between 8–10 m to
simulate the dataset captured at high altitudes. As the resolution of captured images is
1920× 1080 pixels, the pixel ratio of the object to be detected in the image is less than 0.1%
as shown in Figure 7a. Eight types of objects were selected to construct the dataset. There
are two object classes in the dataset, car and plane. Each class has four sub-classes, which
are listed in Figure 7b.
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(a)

(b)

(c)

Figure 7. (a,b) are example images in the collected small-object dataset. The images on the left show
the pixel proportion of the object to be detected in the whole image, and the patches on the right are a
zoomed-in version of the red box on the left images. (c) shows eight objects in the dataset. 1, 2 and 3
are three trained cars belonging to different sub-classes. 4, 5 and 6 are three trained planes belonging
to different sub-classes. 7 is an untrained plane and 8 is an untrained car. 7 and 8 are objects that did
not appear in the training set and validation set.

The collected dataset are split into training set, validation set and testing set, with
977 images, 100 images and 195 images, respectively. For the object-detection task, the label
file contains four object positioning coordinates and an object class label. For the sub-class
object classification task, the label file contains two object class labels, in which the first
label denotes the object class and the second one is the sub-class. In order to evaluate the
detection performance of the proposed algorithm on untrained small objects, the designs of
the testing set are slightly different from the training set and validation set. The training set
and the validation set contain six types of objects, including three types of cars and three
types of planes. In addition to these six types of objects, one type of car and one type of
plane are added to the testing set.

For evaluation, we use the general indicators in the field of object detection [30] to
evaluate the performance of the proposed algorithm, including mean average precision
(mAP), mean average precision at IoU = 0.50 (mAP50) and frames per second (FPS). In-
tersection over union (IoU) evaluates the overlap between the ground truth bounding
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boxes and the predicted bounding box. Based on IoU and the predicted object category
confidence scores, mAP is applied to measure the detection performance with classification
and localization. mAP50 is calculated with IoU ≥ 0.50. These two metrics are performed
under the COCO criteria [10]. FPS is used to evaluate the running speed of the algorithm
on certain computation platforms. The FPS calculation method is the same as in YOLOv4.

4.2. Implementation Details

We chose YOLOv4 as our baseline model since the proposed network is improved
based on YOLOv4. For comparison of object detection, we implemented several object-
detection models on the collected dataset, including Faster RCNN (with VGG16 [31]
as backbone), SSD [13], FCOS [31], PPYOLO [32], PPYOLOv2 [33], PPYOLOE [34] and
PicoDet [35]. Among them, Faster RCNN is a two-stage object detector and the rest are
one-stage detectors. FCOS, PPYOLOE and PicoDet are anchor-free detectors, and PicoDet is
designed for mobile devices. All the detectors have the same size of input image (608× 608)
and were trained from the pretrained model on the COCO dataset [10] to obtain faster and
better convergence. The training epochs were set to 300 with initial learning rate 0.001 and
Adam optimizer. Then, learning rate decayed by 0.1 times at the 150th epoch and 250th
epoch. The batch size was set to be 16. For the special sub-class classification part of our
method, the thre of the rough classification was 10 and the thre of the fine classification
was 2. All the training and testing experiments were conducted on one NVIDIA Quadro
GV100 GPU.

4.3. Experiment Results
4.3.1. Small Object Detection

We compare the detection performance on small objects with several existing object
detectors. The results are listed in Table 1, from which we can see that our proposed
method gives the highest average precision (33.80%) compared to the others, as well as
running at the highest speed (77 FPS). It also achieves the third highest mAP50, with 61.00%
among ten models. These improvements can be attributed to the following aspects: (1) the
modified backbone network focuses more on the small objects and discards the deep layers,
which have little effect on detecting small objects. Meanwhile, the interference of extra
parameters on network learning is reduced. (2) Metric-based learning improves the ability
of the network to classify objects. (3) The proposed object positioning method increase the
number of positive samples and thus improves small-object localization abilities. (4) The
modified backbone network reduces computation significantly, which makes the network
run at a faster speed and achieves the performance of real-time detection. Figure 8 shows
some detection results of the collected dataset using YOLOv4 and our algorithm. Our
algorithm has stronger ability to detect small objects.

Table 1. Experiment results of small object detection.

Method FPS mAP50 mAP

PPYOLOE_s 56 33.40% 12.70%
PPYOLOE_l 34 52.50% 22.40%

PicoDet_s 68 21.70% 7.50%
FasterRCNN 18 29.40% 10.80%

SSD 51 34.80% 10.80%
PPYOLO 54 63.70% 27.50%

PPYOLOv2 36 62.00% 25.60%
FCOS 26 21.20% 8.80%

YOLOv4 71 39.60% 21.70%
Ours(ADCSPDarknet53) 77 61.00% 33.80%
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(a) (b)

Figure 8. Small-object detection experiment with other algorithms. (a) YOLOv4 algorithm detection
results; (b) our algorithm detection results.

4.3.2. Untrained Sub-Class Object Classification

In our proposed method, object classification includes the process of rough object
classification and fine object classification. The designed classification method has two
advantages. One is that it can classify untrained objects, and the other is that it avoids the
mutual influence of classification and positioning. To illustrate both points, we conduct
multiple comparative experiments. The experimental results of object classification are
shown in Table 2. Experiments 1, 2 and 3 represent detection results of YOLOv4 under
different conditions. Experiments 4 and 5 are the detection results of the same rough
classification model under different test categories. Experiments 6, 7 and 8 are the detection
results of the same fine classification model under different test categories.

Comparing Experiments 1 and 3, the accuracy of object detection decreases from
88.30% to 65.60% when objects are classified during training, which shows the interference
between object classification and localization. Through Experiments 3 and 4, it can be found
that metric-based learning is beneficial to improve the result of object detection, as the
mAP50 increases from 65.60% to 88.30%. It can be demonstrated by Experiments 1, 3 and 6
that the detection performance of the object is worse for more categories. In Experiment
8, we can find that the untrained car and the untrained plane can be detected with 49.4%
mAP50 and 34.1% mAP50, respectively. Although the metric-based method is not very
accurate in detecting untrained objects, it can still locate untrained objects and distinguish
them from trained objects.
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Table 2. Experiment results of untrained object classification.

Experiment Model Number of
Training Classes

Number of
Testing Classes mAP50 (Trained) mAP50

(Untrained)

1 YOLOv4 1 1 88.30% -
2 YOLOv4 2 2 51.10% -
3 YOLOv4 2 1 65.60% -

4 rough
classification 2 1 83.80% -

5 rough
classification 2 2 64.70% -

6 fine classification 9 1 78.30% -
7 fine classification 9 2 57.70% -

8 fine classification 9 9 41.900%

aircraft:
34.10%

car:
49.40%

Figure 9 shows the visualization results of untrained object classification using YOLOv4
and our algorithm. For the untrained sub-class objects, YOLOv4 will give incorrect clas-
sification results, but the proposed algorithm will add these untrained objects to new
sub-classes using metric-based learning.

(a) (b)

Figure 9. Untrained object classification experiment with other algorithms. (a) YOLOv4 algorithm
detection results; (b) our algorithm detection results. Different colors of bounding boxes mean
different sub-classes, and the recognized untrained sub-class objects are labeled with ’new’.

4.3.3. Ablation Study

To analyze the effectiveness of our proposed method, we conducted an ablation study
on data augmentation, backbone design and object positioning.

Data Augmentation. Based on YOLOv4, we analyze the results of two data aug-
mentation methods. It can be seen from Table 3 that the two types of data augmentation
can improve detection performance. The results show that replacing part of the image
background can lead the network to learn more combinations of patterns and effectively
increase the diversity of the dataset. Adding noise around the object reduces the overfitting
to special backgrounds. However, the effect of running the two methods at the same time
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is not as good as the effect of running the two methods separately. This is mainly because
the data augmentation method we propose introduces significant noise while increasing
the diversity of the dataset. Applying both methods at the same time may cause too much
noise and cannot obtain better performance.

Table 3. Experiment results of data augmentation.

Image Input Size Replace
Background Add Noise mAP50 mAP

608× 608 N N 36.50% 19.10%
608× 608 Y N 44.60% 24.90%
608× 608 N Y 41.70% 20.70%
608× 608 Y Y 39.60% 22.40%

Backbone Design. The backbone design consists of two steps. First, the DCSPDark-
net53 deletes the deep network layers used to detect large-scale objects in the original
detection backbone CSPDarknet53 to reduce the influence of the deep network on the
detection of small objects. Then, ADCSPDarknet53 adds a network layer for downsampling
at the front end of the network, so as to obtain better detection results while increasing the
computational complexity as little as possible. The experiment results are shown in Table 4.
Compared to the CSPDarknet53-based detector, there is little increase in mAP50 and mAP
of the DCSPDarknet53-based detector in small-object detection, but the calculation speed
is more than double, which proves that small-object detection can use a high-resolution
network with fewer layers. As for the ADCSPDarknet53-based detector, the mAP50 is
increased by 18% and the mAP is increased by 11% compared to the original detector.
Although the FPS drops, it still runs faster than the CSPDarknet53-based detector. In the
actual scene, the image size and backbone can be adjusted as needed.

Table 4. Experiment results of backbone design.

Backbone Image Input
Size FPS mAP50 mAP

CSPDarknet53 608× 608 71 39.60% 21.70%
DCSPDarknet53 608× 608 166 42.90% 23.90%
ADCSPDarknet53 1216× 1216 77 57.60% 32.70%

Object Positioning. We modified the loss function of object positioning; Table 5 shows
the detection evaluation of detectors with and without loss function modification. Af-
ter modifying the loss function of object positioning, the mAP50 of the CSPDarknet53-based
detector is increased by 10.7% and the mAP is increased by 2.9%. For the ADCSPDarknet53-
based detector, the mAP50 increased by 3.4% and the mAP increased by 1.1%. This proves
the effectiveness of the modified loss function, which can select positive samples that can
represent the ground truth more accurately from many candidate samples. The training
process of object positioning is shown in Figure 10. With the modified object positioning
loss function, the training process is more stable.

Table 5. Experiment results of object positioning.

Backbone Loss Function
Modification mAP50 mAP

CSPDarknet53 N 39.60% 21.70%
CSPDarknet53 Y 50.30% 24.60%

ADCSPDarknet53 N 57.60% 32.70%
ADCSPDarknet53 Y 61.00% 33.80%
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Figure 10. Training process of object positioning.

4.4. Flight Experiments

In order to verify the effectiveness of the proposed algorithm in the actual UAV
application scenario, we built a UAV flight experiment system and deployed the proposed
algorithm on a small drone.

4.4.1. Experiment Settings

The drone we used as the experiment platform was a Matrice M210v2 drone manufac-
tured by DJI Innovations. Its overall dimensions are 883 × 886 × 398 mm with a maximum
takeoff weight 6.14 kg. The onboard optical camera was a DJI innovation company Chansi
X5s camera equipped with a DJI MFT 15 mm/1.7 ASPH lens. It was fixed to the drone
body through a 3-DOF gimbal and its posture can be controlled with a remote controller.
The resolution of the images taken by the camera was set to be 1920× 1080 pixels. To im-
plement our proposed algorithm on the drone, we deployed a Nvidia Jetson Xavier NX
processor on the drone for real-time processing. In order to ensure the safe outdoors flight
of the drone, we also set the real-time kinematic (RTK) global navigation satellite system
on the drone for the positioning. The flight experiment system is shown in Figure 11.

(a) (b) (c)

Figure 11. Hardware system for flight experiments. (a) DJI Matrice M210v2 drone; (b) DJI camera;
(c) Nvidia Jetson Xavier NX.

The proposed algorithm is implemented by PyTorch 1.10 on Nvidia Jetson Xavier
NX’s GPU with a computational capacity of 7.2. All programs run on Robot Operating
System (ROS) systems. While the drone is flying, we use the Rosbag tool to record the
on-board processing data, such as the real-time detection image results. Once the drone
is back on the ground, we can use the Rosbag’s playback function to check how well the
algorithm works.

We set up two flight scenarios to validate our algorithm with trained and untrained
objects. In one detection scenario, the objects to be detected were the small models used for
creating the above dataset, but with new backgrounds. In this case, the flight altitude of
the drone was set to 10 m to stay consistent with the dataset. The purpose of this detection
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scenario is to verify the generalization performance of the learned model in practical
application scenarios. In another detection scenario, the model detected real vehicles with
flight altitude of 95 m. We used seven different types of vehicles to test the classification
and localization ability of the model for object classes with high inter-class similarity. In this
case, we collected new data but only six types were labeled and appear in the training
set. Then the model is retrained and tested for detection performance and speed. The two
scenarios settings are shown in Figure 12.

(a)

(b)

Figure 12. (a) The first detection scenario is set to have the same objects as the collected dataset, but
with different background. (b) The second detection scenario uses real vehicles as objects. The figure
on the left shows part of the drone’s field of view, and the right images show different types of
vehicles, with six labeled types and one unlabeled.

4.4.2. Results

Some qualitative detection results are shown in Figure 13. In Figure 13a, our proposed
algorithm can detect small objects in the visual field without being influenced by the chang-
ing background. This is because the data enhancement method we used effectively prevents
the model from overfitting to the background during the training process. In Figure 13b,
the learned objects are detected by the proposed detector. In addition, the potential tar-
get (the unlabeled one) is also identified by the network and classified into a new class
according to metric learning.

It is worth noting that small-object detection during flight faces additional challenges,
such as camera vibration and motion caused by flight. Camera motion in the imaging
process leads to the blurring of objects and damages the features. In this case, our algorithm
can still detect small objects in the airborne visual field accurately. Our proposed algorithm
not only extracts the features of small objects with CNNs, but also distinguishes the inter-
class and intra-class differences of objects by measuring the distance metric. This more
powerful feature extraction method helps reduce the effect of motion blur.
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(a)

(b)

Figure 13. (a) Detection results on small model objects with different backgrounds. (b) Detection
results on seven types of vehicles.

We also checked the real-time performance of our proposed method. We computed
the runtime of the algorithm on the edge GPU (Nvidia Xavier NX) using different input
image resolutions, including the pre-processing phase, model inference phase, and post-
processing phase. The results are listed in Table 6. For images with input sizes of 416× 416,
608× 608 and 640× 640, our algorithm reaches an average speed of 22 FPS. The small
runtime difference mainly comes from the pre-processing phase and post-processing phase,
since these two phases are run on the CPU. The parallel computing capability of the
GPU makes the inference time of the model almost the same. However, for images with
input size of 1216 × 1216, it takes more than twice as long to process a single frame.
As there are four times as many pixels in the image, more time is needed to perform
normalization for each pixel and permute the image channels in the pre-processing stage.
For model inference, the larger input image size makes the feature map in the network
larger, with more activation needs to compute, which accounts for the increase of time
usage [36]. During the post-processing phase, more candidate detection boxes need to be
computationally suppressed.

In our flight test, we used an image input size of 608× 608. Without any acceleration
library, our algorithm can achieve real-time performance, which is sufficient for reconnais-
sance missions on UAVs. Some runtime optimizations can be made, for example, using the
TensorRT [37] library to accelerate the model inference, or by improving the code efficiency
in pre-processing and post-processing stages.
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Table 6. Experiment results of real-time performance.

Image Input
Size

Average Pre-
Processing
Time (ms)

Average
Inference
Time (ms)

Average
Post-

Processing
Time (ms)

Average
Total Process

Time (ms)
FPS

416× 416 1.6 40.8 1.3 43.7 22.88
608× 608 2.1 41.0 1.3 44.4 22.52
640× 640 2.2 41.3 1.4 44.9 22.27

1216× 1216 3.1 51.9 49.3 104.3 9.59

5. Conclusions

Aimed at challenges such as small-scale objects, untrained objects during inference,
and real-time performance requirements, we designed a detector to detect small objects in
UAV reconnaissance images. To conduct our research, we collected a small object dataset
from the perspective of a high-flying UAV. We proposed two data augmentation methods,
background replacement and noise adding, which improve the background diversity of
the collected dataset. For the backbone design, we designed ADCSPDarkent53 based on
the characteristics of small objects and evaluated the improved backbone on accuracy and
speed. For object positioning, we modified the positioning loss function, which greatly
improved detection accuracy. For object classification, a metric-based classification method
was proposed to solve the problem of untrained sub-class object classification. Experiments
on UAV-captured images and flight tests show the effectiveness and applicable scope of the
proposed small-object detector. In the next step, improvements can be made in terms of
dataset construction, feature selection and metric function design.
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