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Abstract: To solve the problem of low detection accuracy of small objects in UAV optical remote
sensing images due to low contrast, dense distribution, and weak features, this paper proposes
a small object detection method based on feature alignment of candidate regions is proposed for
remote sensing images. Firstly, AFA-FPN (Attention-based Feature Alignment FPN) defines the
corresponding relationship between feature mappings, solves the misregistration of features between
adjacent levels, and improves the recognition ability of small objects by aligning and fusing shallow
spatial features and deep semantic features. Secondly, the PHDA (Polarization Hybrid Domain
Attention) module captures local areas containing small object features through parallel channel
domain attention and spatial domain attention. It assigns a larger weight to these areas to alleviate
the interference of background noise. Then, the rotation branch uses RROI to rotate the horizontal
frame obtained by RPN, which avoids missing detection of small objects with dense distribution and
arbitrary direction. Next, the rotation branch uses RROI to rotate the horizontal box obtained by
RPN. It solves the problem of missing detection of small objects with dense distribution and arbitrary
direction and prevents feature mismatch between the object and candidate regions. Finally, the loss
function is improved to better reflect the difference between the predicted value and the ground truth.
Experiments are conducted on a self-made dataset. The experimental results show that the mAP of
the proposed method reaches 82.04% and the detection speed reaches 24.3 FPS, which is significantly
higher than that of the state-of-the-art methods. Meanwhile, the ablation experiment verifies the
rationality of each module.

Keywords: UAV remote sensing images; small object; feature alignment; polarization hybrid
domain attention

1. Introduction

UAV optical remote sensing images are collected by sensors in the visible light band
(0.38~0.76 microns). They can directly reflect detailed information such as the shape, color,
and texture of ground objects, thus facilitating direct observation of human beings. Optical
remote sensing image object detection refers to using a specific method to search and mark
interesting objects from images, such as airplanes, tanks, ships, and vehicles. Optical remote
sensing object detection is a basic technology that plays an important role in analyzing
remote sensing images, and it is an important basis for urban planning, land use, and
traffic diversion [1].

UAV remote sensing images cover a large area of the ground, and the object size
is generally small. There are two difficulties in the detection of small objects in remote
sensing images: (1) Lack of feature information. Because small objects occupy fewer pixels
in the image and are surrounded by complex background information, it is difficult for
the network to extract effective features of small objects, which affects the subsequent
positioning and recognition tasks. (2) Difficulty of positioning. Compared with large
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objects, the positive sample matching rate of small objects is low, so small objects do not
contribute much to the network training, which affects the ability of the network to locate
the small objects.

To solve the problem that it is difficult to detect small objects in UAV remote sensing
images, this paper focuses on the effects of hierarchical features, attention mechanism,
and rotating bounding box on the detection performance of small objects. To improve
the feature expression of small objects, the model aligns and fuses the shallow spatial
features and deep semantic features. Based on this, double attention is adopted to denoise
the remote sensing image. Then, the rotating bounding box is introduced to alleviate the
missing detection problem of small objects with a dense distribution and arbitrary direction
and a mismatch between the object and the candidate region features. Finally, the loss
function is improved to enhance the robustness of the model. The contributions of this
paper are summarized as follows:

1. APA-FPN establishes the corresponding relationship between feature mappings, thus
solving the misalignment between features and enriching the semantic representation
of shallow features of small objects.

2. PHDA captures local areas containing small object features through parallel channel
domain attention and spatial domain attention. These areas are assigned with a larger
weight to eliminate the interference of background noise.

3. The rotation branch introduces the rotating bounding box to solve the missing detec-
tion of small objects with dense distribution and arbitrary direction and the mismatch
between the object and the candidate region features.

4. The loss function is improved to enhance the robustness of the model. The experi-
mental results show that the proposed method is more accurate and faster than the
state-of-the-art remote sensing object detection methods.

2. Related Works

UAV remote sensing image detection based on deep learning is increasingly mature,
and various methods have been proposed to improve the detection performance [2–4].
Remote sensing small objects are difficult to extract because they occupy only a few pixels,
and the information is easily lost under layer-by-layer convolution calculation. How to
improve the detection performance of small objects in remote sensing images has become a
research hotspot.

2.1. Conventional Object Detection

According to whether ROI (region of interest) extraction is needed, the object detection
methods based on deep learning can be divided into two-stage detection and one-stage detection.

The two-stage object detection method has high accuracy, but it involves additional
computation, and the speed cannot meet the real-time requirement. Typical two-stage object
detection methods are represented by R-CNN [5,6] series. RFCN [7] improves the network
after the ROI pooling layer and replaces the full connection with the location-sensitive
score map obtained by full convolution, which greatly improves the detection speed. Mask-
RCNN [8] combines segmentation and detection tasks, and it uses interpolation to align
ROI, which further improves detection accuracy. FPN [9] uses a top-down architecture
with a horizontal connection, which can extract strong semantic information at all levels.
One-stage object detection completes the whole detection process in one stage, which is
fast and can meet the requirements of real-time systems, but the detection accuracy is
slightly lower than that of two-stage object detection. Typical one-stage object detection
methods are the YOLO series [10–13] and SSD [14]. Additionally, RetinaNet [15] combines
FPN and FCN [16] networks and proposes an improved cross-entropy focal loss, which
effectively eliminates the category imbalance problem. CornerNet [17] adopts a corner
detection method to avoid generating anchor boxes, and it introduces the concept of corner
pooling to better locate corners, which effectively improves the detection performance.
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2.2. Remote Sensing Object Detection

The above-mentioned general object detection methods have achieved great progress
in recent years, and they are effective for conventional object detection tasks. However,
there are some problems in remote sensing images, such as complex background, arbitrary-
oriented objects, densely distributed small objects, etc., which pose a great challenge to
object detection in multi-scene remote sensing images.

R3Det [18] integrates a feature refinement module that can realize the fine distinction
of object features, and it adopts a more accurate rotation loss. Based on this, it can achieve
a mAP of 76.47 on the DOTA data set. Yang et al. [19] employ CSL to solve the problem
of boundary discontinuity, and it transforms the regression problem of angle prediction
into a classification problem, which effectively alleviates the influence of remote sensing
object rotation in any direction and improves detection performance. GWD [20] uses two
Wasserstein distances with an arbitrary Gaussian distribution as the rotation IoU loss, which
effectively solves the boundary discontinuity and square-like problems. ReDet [21] adds the
rotation equivariant network to the detector to extract rotation equivariant features, which
can accurately predict the direction and significantly reduce the model size; meanwhile,
it integrates RiRoI Align to adaptively extract rotation invariant features according to the
direction of RoI. Chen et al. proposed PIoU loss [22], which calculates IoU by pixel-by-pixel
judgment and improves the rotation angle and IoU accuracy at the same time. S2A-Net [23]
first refines the initial anchor into a rotating anchor and then adjusts the position of feature
sampling points to extract the aligned depth features under the guidance of the refined
anchor box, which achieves good detection results. Oriented R-CNN [24] designs a directed
candidate frame generation network, called Oriented RPN, which achieves good detection
results and has an execution speed comparable to that of single-stage object detection.

2.3. Conventional Small Object Detection

Aiming at the bottleneck of low performance of small object detection, more experts
and scholars are turning their attention to the field of small object detection. At present, a
series of effective improvement methods have been proposed [25–27].

PANet [28] adds a bottom-up path enhancement branch to FPN [9], which more fully
integrates the information of high-level features and low-level features. MDSSD [29] adds
a low-level feature map and a high-level feature map element by element to SSD, and the
generated feature map is used to predict objects of different scales. Zhang et al. [30] fused
feature maps with different expansion rates to learn multi-scale information of the object,
which improved the detection accuracy without increasing the computational complexity.
Couplenet [31] combines local information, global information, and context information
to improve the detection accuracy of small objects. Li et al. [32] combined top-down and
bottom-up attention mechanisms and applied a circular flow to guide feature extraction,
which makes the network better positioned on the object features and achieves high-
precision small object detection. Xi et al. [33] introduced a pairwise constraint to describe
the semantic similarity and used the context information of candidate objects to improve
the detection performance of small objects. The above method improves the detection
accuracy of small objects by feature fusion, multi-scale prediction, attention mechanism,
and context-based information, and the detection results are improved.

2.4. Remote Sensing Small Object Detection

Remote sensing images have many characteristics, such as large texture differences,
low contrast, arbitrary dense distribution, and ultra-fine, which make it more difficult
to detect small objects. Many effective network frameworks have been proposed for
multi-scale object detection.

PIoU [34] and SCRDet++ [35] have been proposed to verify the effectiveness of denois-
ing methods in optical remote sensing small object detection. The former uses an attention
mechanism, while the latter uses instance-level denoising on a feature map to highlight
and enhance the features of small objects, thus detecting small and messy remote sensing
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objects. Li et al. [36] proposed an enhanced architecture for small object detection, which
reduces the times of network downsampling to avoid information loss in the subsequent
transmission process. Meanwhile, they fused shallow features and deep features to enrich
the small object information in the feature map. Hou et al. [37] proposed a fusion strategy
of cascading features, which integrates shallow position information and deep semantic
information to fuse all layers of features and enhance the cascading effect. Qu et al. [38] de-
signed an efficient feature fusion network by adopting atrous convolution, which enhances
the effective receptive field of deep features. Zhang et al. [39] aggregated the context infor-
mation in the shallow feature map and increased the training weight of the small objects,
which improves the detection performance. Since the scale of small objects in real remote
sensing images may be different, it is difficult for the feature fusion module to splice feature
maps into deep features. Therefore, only using a feature fusion module may become the
bottleneck of detection. The existing studies have verified the effectiveness of combining
an attention mechanism with a feature fusion module in detecting remote-sensing small
objects [40]. This paper selects some representative works and briefly introduces their
methods, advantages, and disadvantages in Table 1.

Table 1. Comparison of semantic image segmentation methods.

Algorithm Brief Methodology Highlights Limitations

CSL
Boundary problem
transformation, Circular
Smooth Label

The regression problem of angle is
transformed into a classification problem,
and the range of prediction results is
limited to eliminate large boundary loss.

Too many angle categories will
cause the head part of RetinaNet
to be too thick, resulting in low
calculation efficiency.

R3Det
Pixel by pixel feature
interpolation, Rotation
RetinaNet

The feature refinement module realizes
feature reconstruction and alignment
through pixel-by-pixel feature
interpolation. An approximate SkewIoU
loss is proposed to achieve more accurate
rotation estimation.

The continuity of local pixel
information is interrupted, and
the adaptability to unknown
deformation is poor.

MDSSD Feature fusion, multi-scale
convolution

The high-level feature map with rich
semantic features is enlarged by
deconvlution, and then fused with the
low-level feature map to achieve more
refined feature extraction.

Without designing the rotating
frame, it is impossible to
accurately predict the
rotating object.

S2A−Net
Anchor refinement
network, Active
rotating filter

FAM generates high-quality anchors
through an anchor thinning network, and
adaptively aligns convolution features.
ODM uses an active rotation filter to
encode the direction information, and
generates the characteristics of direction
sensitivity and direction invariance.

Insensitive to small-scale remote
sensing objects, and the detection
effect is not good.

PIoU PIoU loss

PIoU loss is calculated by pixel-by-pixel
judgment and is continuously
differentiable, which effectively improves
the detection effect of inclined targets.

Insensitive to small-scale
remote sensing objects.

SCRDet++
Instance-Level Feature
Denoising, Rotation Loss
Smoothing

In feature map, a novel instance-level
denoising module is designed to suppress
noise and highlight prospects, and an
improved Smooth L1 loss is designed to
solve the boundary problem of rotating
bounding box regression.

Without feature alignment,
the ability of feature
expression is poor.

Oriented R-CNN Oriented RPN, Oriented
RCNN head

Orientation RPN generates high-quality
orientation proposals at almost no cost.
Directional R-CNN header refines and
identifies the region of interest.

The detection effect of small and
chaotic objects is not good.
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Based on the advantages and disadvantages of the above studies, this paper proposes
a method for UAV remote sensing small object detection. AFA-FPN aligns and fuses the
shallow spatial features and deep semantic features. Based on this, PHDA introduces dual
attention to denoise the remote sensing image. Then, the rotating bounding box is adopted
to alleviate the missing detection problem of small objects with dense distribution and
arbitrary direction and the mismatch between the object and the candidate region features.
Finally, the loss function is improved to enhance the robustness of the model. To verify the
effectiveness of the proposed method for UAV remote sensing small object detection, this
paper extracts a certain proportion of small object images from three published datasets and
reorganizes them into a new dataset called RSSO. The experimental results on the RSSO
dataset show that compared with the state-of-the-art methods, our method has an obvious
effect on improving the detection accuracy and speed of remote sensing small objects.

3. Overview of the Proposed Method

The structure of the remote sensing small object detection model proposed in this
paper is shown in Figure 1. ResNet-101 [41] is used as the backbone network to extract
features, and then AFA-FPN clarifies the relationship between feature mappings to solve
the problem of misregistration of features between adjacent levels and ensure that the
deep semantic features of small objects can be well transmitted to the shallow feature
map. PHDA captures the local areas containing small object features in the tensor of the
feature map by parallel channel domain attention and spatial domain attention, and it
assigns a larger weight to these areas to eliminate the interference of background noise. The
rotation branch adopts a two-stage rotation regression to reduce the regression difficulty of
the rotation candidate box, extract rotation-invariant regional features, and eliminate the
mismatch between regional features and objects. Finally, the loss function is improved to
obtain better classification and regression results.
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3.1. AFA-FPN (Attention-Based Feature Alignment FPN Module)

FPN was proposed to improve the performance of multi-scale object detection tasks,
and it can also improve the detection performance of small objects. Many methods use
FPN to fuse features of small objects, and good results are obtained [42–44]. However,
there are still some problems that affect the detection performance of small objects in actual
detection tasks, and the most prominent problem is the feature fusion between levels. The
traditional FPN network simply reduces the channel number of the deep feature map
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through 1 × 1 convolution layers and then performs upsampling to make the deep feature
map the same size as the adjacent shallow feature map. Finally, deep semantic features and
shallow spatial features are fused through element-wise addition. This method improves
the multi-scale detection performance of the detector, but its heuristic mapping mechanism
between the pyramid level and the candidate box size makes small objects share the same
feature map with normal or large objects, which seriously limits the ability of the shallow
feature map to learn the features of the small objects. In addition, upsampling the deep
feature map can easily cause the semantic features in the adjacent level feature maps to be
misaligned so that the small object features are submerged in the complex background.

Based on the above analysis, this subsection introduces a feature alignment module
called AFA-FPN to explicitly establish the correspondence between feature maps to solve
the misalignment between features. By predicting the flow field, the misregistration
between features of adjacent layers can be avoided, which ensures that the deep semantic
features of small targets can be well transmitted to the shallow feature map, thus effectively
solving the problem of small target information loss during the convolution process. The
structure of AFA-FPN is shown in Figure 2.
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Firstly, the deep and shallow feature maps are adjusted by a convolutional layer to
the same channel size. Then, the deep feature maps are upsampled and added with the
shallow feature map. The resulting feature maps are:

Fsum
i−1 = Convi

(
fup(Fi)

)
+ Convi−1(Fi−1) (1)

where Fi and Fi−1 i ∈ (3, 4, 5) are deep and shallow feature maps, respectively, and Fi−1
has a larger spatial size than Fi; Convi and Convi−1 are convolution operations for channel
adjustment of deep and shallow feature maps, respectively, and fup is the upsampling
operation for deep feature maps. The fused features Fsum

i−1 are fed into the upsampling
calibration path and object attention branch, respectively.

Upsampling Calibration Path. In this path, a 3 × 3 convolution kernel is used to
predict the feature offsets:

∆i−1 = Conv∆
(

Fsum
i−1
)

(2)
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where Conv∆ is the convolution operation for predicting the feature offset of the deep
feature maps; ∆i−1 ∈ RHi−1×Wi−1×4 is the predicted offset field, and it is used to weighted
upsample the Fi.

The ∆i−1 has four values at each spatial location ∆i−1 = (wul
i−1, wur

i−1, wlr
i−1, wll

i−1),
which represents the weights of four adjacent pixel points: the upper left point, the upper
right point, the lower right point, and the lower left point. The upsampled feature map is
represented as:

Fup
i−1 = wul

i−1Ful
i + wur

i−1Fur
i + wlr

i−1Flr
i + wll

i−1Fll
i (3)

where Ful
i , Fur

i , Flr
i , Fll

i represent the Fi features of different upsampled locations. This oper-
ation is similar to the traditional bilinear upsampling operation, except that the traditional
upsampling has wul

i−1 = wur
i−1 = wlr

i−1 = wll
i−1 = 0.25, while ∆i−1 is adaptively calculated

for the weighted upsampling.
object Attention Path. A 1 × 1 convolutional layer is first used to process the input

feature maps Fsum
i−1 , and then the position weight is calculated through the global average

pooling (GAP) operation. Finally, the Sigmoid activation is applied to normalize the
extracted features. The output can be expressed as:

Fpo
i−1 = σ

(
θ
(
Conv1×1(Fsum

i−1
))
)× Fsum

i−1 (4)

where Conv1×1 is the 1 × 1 convolutional layer, θ(·) is realized through GAP, and σ(·) is
the Sigmoid function.

Feature Alignment. Finally, the feature maps Fsum
i−1 , Fup

i−1 and Fpo
i−1 are fused for feature

alignment, and they are from the identity mapping, upsampling calibration path, and object
attention path, respectively. The resulting feature is

Fout
i−1 = Fsum

i−1 + Fup
i−1 + Fpo

i−1 (5)

The flow chart of the AFA-FPN module is shown in Figure 3.
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Generally speaking, Fup
i−1 is the feature map generated by the upsampling calibration

path, where the object boundary is upsampled in a high quality. Fpo
i−1 is the feature map

generated by the position attention path, where the objects are highlighted. As can be
seen from Figure 3, in the upsampled feature map obtained by the AFA-FPN module,
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the deep semantic features converge to certain positions of the corresponding objects in
the shallow feature map. This helps to solve the problem of small object feature loss in
the subsequent fusion process. Meanwhile, it enriches the semantic representation of the
shallow features of small objects so that the features of small objects will not be submerged
in the deep background noise. Thus, AFA-FPN provides a good feature basis for the
subsequent localization and classification of small objects, thus effectively improving the
detection performance of small objects.

3.2. PHDA (Polarization Hybrid Domain Attention Module)

Remote sensing images contain many complex and dense small objects, and some
large-scale scene objects such as ground field tracks, baseball fields, etc. The huge difference
in object scale and the few small object pixels lead to serious miss detection of small objects.
Adopting an attention mechanism to pay special attention to remote sensing small objects
and suppressing background noise has become a hot spot in small object detection [45–47].

The attention mechanism is essentially a set of weighting factors, which can emphasize
regions of interest while suppressing unrelated background regions in a “dynamic weight-
ing” approach. Compared with CNN, RNN, and other network structures, the attention
mechanism module has less complexity and fewer parameters, so it requires less computing
power. Meanwhile, the attention module can be calculated in parallel, and the calculation
of each step of the attention mechanism does not depend on the calculation result of the
previous step, so it can be processed in parallel like CNN. The general attention mechanism
does not involve a polarization function and only gives cursory attention to the object that
needs attention. For the detection of small objects in UAV images, the general attention
mechanism cannot achieve good results due to their small size, various types, and differ-
ent directions. Therefore, this paper introduces the polarization hybrid domain attention
(PHDA) mechanism to improve the detection effect of small objects, as shown in Figure 4.
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Channel attention aims to find the correlation between different channels (feature
maps), automatically obtain the importance of each feature channel through network
learning, and give each channel a different weight coefficient to strengthen important
features and suppress unimportant features. However, the channel-based attention module
ignores the location information, so it is necessary to introduce the spatial attention module
to enhance the spatial location features. The adoption of an attention mechanism can extract
location information, reduce the interference of background information, and generate a
weight mask for each location, thus improving the network detection performance.
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For a given input feature T ∈ Rw×h×c, the channel attention map HC extracts the
weight of each channel through global average pooling, global maximum pooling, and full
connection. The process can be expressed as follows:

HC(T) = σ(W2(W1(Tgap + Tgmp))) (6)

where Tgap and Tgmp, respectively, represent the feature graphs obtained by global average
pooling and global maximum pooling, W2 ∈ RC/r×C and W1 ∈ rRC×C/r represent the
weights of all the connected layers, and σ represents the Sigmoid function.

Correspondingly, the spatial attention HS extracts the spatial position weight of the
input feature pixels through average pooling and maximum pooling. Maximum pooling
means to maximize the pixels in the pool area, and the feature map obtained in this way is
more sensitive to texture feature information. Average pooling means to average the images
in the pool area, and the feature information obtained in this way is more sensitive to the
background information. Spatial attention mainly focuses on extracting the spatial position
weight of the input feature pixels, which does not require high background accuracy.
Therefore, asymmetric 3 × 1 and 1 × 3 convolutions are used to compress and accelerate
the model in average pooling to reduce the number of parameters. For maximum pooling,
the traditional 3 × 3 convolution is employed to extract texture feature information, and its
expression is as follows:

HS(T) = σ(c3×3(Tap) + cat(c1×3, c3×1)(Tmp)) (7)

where c3×3, c1×3, and c3×1 represent the convolution with a convolution kernel of 3× 3,
1× 3, and 3× 1, respectively, cat represents serial operation, and Tap and Tmp represent the
feature graph obtained by performing average pooling and maximum pooling on the input
features, respectively.

The output of the PHDA module is as follows:

H = HC(T)⊗ HS(T)⊗ T
T′ = H + ψ(σ(H))� T

(8)

where ⊗ and � represent the tensor product and element-wise multiplication, respectively,
σ represents the Sigmoid function, and ψ represents the polarization function. To increase
the attention more towards the small object area and reduce the interference of unimportant
background information [48], this paper uses the following excitation function:

ψ(x) =
1

1 + e−η(x−0.5)
(9)

where η is the adjustment factor for controlling the activation intensity, and it is set to
10. It can be seen from Equation (9) that irrelevant areas with an attention weight of less
than 0.5 are greatly suppressed to reduce noise interference to small object areas, while
important areas with an attention weight of greater than 0.5 are highlighted to enhance
small object features. The introduction of the polarization function further enhances the
effect of the attention mechanism and highlights the characteristic areas of small objects.

3.3. Rotation Branch

The rotation branch is divided into two stages: the first stage is RRoI alignment,
and the second stage is RRoI rotation position-sensitive pooling. RRoI alignment is to
obtain the offset of rotation ground truths (RGTs) relative to horizontal RoI; RRoI rota-
tion position-sensitive pooling is to further refine the rotation area to keep the rotation
invariant properties [49].
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3.3.1. RRoI Alignment

RRoI alignment is mainly responsible for learning RRoIs from the horizontal ROI fea-
ture maps. Assume that n horizontal ROIs are obtained as {ξi}. This paper uses (x, y, w, h)
to represent the position, width, and height of horizontal RoI. In an ideal situation, each
horizontal RoI is the outer rectangle of the RRoI. Therefore, this paper infers the geometric
shape of RRoI from each feature map with the full connection layer.

t∗x = 1
wr
((x∗ − xr) cos θr + (y∗ − yr) sin θr)

t∗y = 1
hr
((y∗ − yr) cos θr − (x∗ − xr) sin θr)

t∗w = log w∗
wr

, t∗h = log h∗
hr

t∗θ = 1
2π ((θ

∗ − θr)mod2π)

(10)

In Equation (10), (xr, yr, wr, hr, θr) represent the position, width, height, and direction
of the RRoI, respectively. (x∗, y∗, w∗, h∗, θ∗) are the information parameters of the ground
truth of the OBB (oriented bounding box). The mod operation is used to adjust the angle
offset within [0, 2π). As shown in Equation (11), the fully connected layer outputs a vector
(tx, ty, tw, th, tθ) for each feature map.

t = ς(ζ; κ) (11)

where ς represents the fully connected layer, and κ is the weight parameter of ς.

3.3.2. RRoI Rotation Position-Sensitive Pooling

After obtaining the parameters of the RRoI, the RRoI rotation position-sensitive pool-
ing operation extracts rotation-invariant features of the oriented objects.

Given a feature map D of shape (H, W, K× K× C) and RRoI (xr, yr, wr, hr, θr), where
(xr, yr) is the center of the RRoI, (wr, hr) is the width and height of the RRoI, and θr
represents the direction of the RRoI. This paper divides RRoI into K × K blocks. For
block di,j,c with channel c(0 ≤ c < C) and index (i, j)(0 ≤ i, j < K), its output Υ can be
expressed as follows:

Υc(i, j) =

∑
(x,y)∈Bi,j

di,j,c(Γθ(x, y))

nij
(12)

where Bi,j represents the coordinate set, nij is the number of all pixels in the interval, and
(x, y) ∈ Bi,j is the global coordinate of the feature point Pi,j. (x, y) ∈ Bi,j can be converted
into (x′, y′) by Γθ , and the transformation equation is shown as follows, which is realized
by bilinear interpolation:(

x′

y′

)
= (

cos θ − sin θ
sin θ cos θ

)

(
x− wr

2

y− hr
2

)
+

(
xr
yr

)
(13)

Floating-point parameters are reserved in the quantization process of rotation-sensitive
pooling, then the pixel value of the object is obtained by bilinear interpolation, and finally
the output is obtained by maximum pooling. Taking k = 3 as an example, nine RROI
feature maps are spliced into an RROI voting map. Then, the RRoIs are voted through nine
position-sensitive scores to obtain the feature map that keeps rotating position sensitivity
on different position blocks. The specific process is shown in Figure 5.



Drones 2022, 6, 292 11 of 24

Drones 2022, 6, 292 11 of 26 
 

Floating-point parameters are reserved in the quantization process of rotation-
sensitive pooling, then the pixel value of the object is obtained by bilinear interpolation, 
and finally the output is obtained by maximum pooling. Taking k = 3 as an example, nine 
RROI feature maps are spliced into an RROI voting map. Then, the RRoIs are voted 
through nine position-sensitive scores to obtain the feature map that keeps rotating 
position sensitivity on different position blocks. The specific process is shown in Figure 5. 

 
Figure 5. The flow chart of RRoI rotation position-sensitive pooling. 

Figure 6 shows the two-stage box rotation process of the rotation branch. In the first 
stage, the blue box is initially aligned to the green box, and in the second stage, the green 
box is further refined to the red box. GT-H and PR-H represent the ground truth and 
predicted value of the horizontal box, respectively, and FS-R and SS-R represent the 
rotating box obtained in the first stage and the second stage, respectively. 

 
Figure 6. The schematic diagram of the two-stage box rotation process of the rotation branch. 

3.4. Loss Function 
3.4.1. Classification Loss Function 

This paper adopts the focal loss function [15] as the classification loss function, as 
shown in Formula (14). 

Figure 5. The flow chart of RRoI rotation position-sensitive pooling.

Figure 6 shows the two-stage box rotation process of the rotation branch. In the first
stage, the blue box is initially aligned to the green box, and in the second stage, the green
box is further refined to the red box. GT-H and PR-H represent the ground truth and
predicted value of the horizontal box, respectively, and FS-R and SS-R represent the rotating
box obtained in the first stage and the second stage, respectively.
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3.4. Loss Function
3.4.1. Classification Loss Function

This paper adopts the focal loss function [15] as the classification loss function, as
shown in Formula (14).

FL =

{
−(1− P̂)ρ log(P̂), i f y = 1
−P̂ρ log(1− P̂), i f y = 0

(14)

where P̂ ∈ (0, 1) represents the predicted value, and ρ > 0 is the adjustable factor.
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Let Pt represent the probability that the predicted category is a real label, which is
defined in Formula (15). After substituting Pt into Formula (14), the focal loss function can
be written in Formula (16).

Pt =

{
P̂, i f y = 1
1− P̂, else

(15)

Lcls = FL = −(1− Pt)
ρ log(Pt) (16)

It can be seen from Formula (16) that the focal loss function is the optimization of the
cross-entropy loss function. Compared with the cross-entropy loss function, the focal loss
function has one more modulation factor (1− Pt)

ρ, and when ρ = 0, the focal loss becomes
a cross-entropy loss.

The main idea of the loss function is to add weight to positive and negative samples,
measure the loss contribution of hard samples and easy samples, and adjust the weight
of the loss contribution of the positive and negative samples. However, many candidate
frames will be generated during the detection process, and the number of objects in an
image is limited. This means that most of the candidate frames are negative samples,
especially for small objects. The optimized focal loss function can solve this problem well.

3.4.2. Regression Loss Function

Compared with the methods that use GIoU [50] as the regression loss function, this paper
adopts the more comprehensive CIoU [51] as the regression loss function. The optimization
object of GIoU is the overlapping area of the predicted box and the real frame, which helps to
solve the problem that IoU is 0. Although it can reflect the directional difference of anchor
boxes to a certain extent, when the intersection value of two boxes is the same, it cannot reflect
the specific intersection situation. In addition to the overlapping area, the CIoU loss function
also considers distance, scale, and aspect ratio. It is defined as follows:

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(17)

CIoU = IoU −
ρ2(b, bgt)

c2 − αv (18)

Lreg = LCIoU = 1− CIoU (19)

where α is the weight, v is used to measure the similarity of aspect ratio, b and bgt are
prediction box and ground truth, respectively, w and h are the width and height of the
prediction box, respectively, wgt and hgt are the width and height of the ground truth,
respectively, c is the diagonal of the minimum circumscribed moment of two rectangular
boxes, ρ is the Euclidean distance between the center points of two rectangular boxes, CIoU
is a more comprehensive optimization of IoU, and LCIoU is the loss of CIoU.

The classical RPN loss proposed by Faster RCNN [6] is used as the RPN loss in this
paper, as shown in the following formula, where the meaning of each letter is the same as
that of Faster RCNN.

LRPN =
1

Ncls
∑

i
Lcls(pi, p∗i ) +

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (20)

The total loss function can be expressed as:

L =
1
N

N

∑
n=1

Lcls +
λ1

N

N

∑
n=1

Lreg + LRPN (21)

where Lcls and Lreg represent classification loss and regression loss, respectively; N represents
the number of candidate boxes; and λ is a weight balance parameter, and it is set to 1.
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4. Experimental Analysis
4.1. Dataset

To verify the effectiveness of the proposed method, this paper conducts experiments
on a self-made remote sensing small object database RSSO. The images of RSSO are taken
from NWPU VHR-10 [52], DOTA [53], and UCAS AOD [54]. NWPU VHR-10 is a public
dataset released by Northwestern Polytechnical University for remote sensing image object
detection. This dataset includes 800 remote sensing images of 10 types of ground objects,
such as harbors, bridges, and vehicles. The DOTA dataset contains 2809 remote sensing
images of 15 types of ground objects, such as planes, ships, and storage tanks, and it is
the largest and most comprehensive remote sensing image data set at present. UCAS
AOD is used for aircraft and vehicle detection. Almost all objects in this dataset are small
objects. The 600 aircraft images contain 3210 aircraft, and the 310 vehicle images contain
2819 vehicles.

This paper defines the object whose length and width are less than 0.1 of the original
graphic size as a small object, the object whose length and width are greater than 0.1 but
less than 0.3 of the original graphic size as a medium object, and the object whose length
and width are greater than 0.3 of the original graphic size as a large object. According to this
definition, this paper selects the images that mainly contain small objects from the above
three datasets, and finally 400, 1000, and 600 images are obtained from NWPU VHR-10,
DOTA, and UCAS AOD, respectively. After cropping and scaling, the dataset is expanded
to 4000 images and called the RSSO dataset. The objects in our dataset are of different
sizes, but they are mostly small-sized objects, with various types and arbitrary orientations.
Figure 7 shows some images in the dataset. The RSSO dataset is divided into a training set,
a validation set, and a test set at the ratio of 0.6, 0.15, and 0.25.
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4.2. Experimental Setting

This paper uses Ubuntu 18.04 as the software experimental platform to verify the de-
signed network structure and uses NVIDIA GeForce RTX 3090Ti as the graphics processing
unit in both training and testing. Experiments are conducted on PyTorch. In the network
training, the SGD optimizer with momentum is used to train the model; the momentum
parameter is set to 0.9, the initial learning rate is set to 0.01, and it decays to 1/10 every
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50,000 iterations. Additionally, the weight decay coefficient is 0.0005, and the batch size is
32. The total number of training iterations for the RSSO dataset is 200,000.

In this paper, the evaluation indicators are Recall (recall rate) and Precision (precision
rate), and they are defined in Formulas (22) and (23). The discriminant condition of TP
(True Positive) and FP (False Positive) is whether the IoU between the object identified as a
positive sample and the ground truth region is greater than the specified threshold. FN
(False Negative) refers to omitting the ground truth that has not been detected.

R =
TP

TP + FN
=

TP
all ground truth

(22)

P =
TP

TP + FP
=

TP
all detect

(23)

Generally, the precision rate and the recall rate are mutually restricted, and AP can
achieve a balance between the two. Therefore, AP is often used as the standard for evaluating
the network detection ability. The P-R curve can be drawn by taking the R value as the
abscissa and the P value as the ordinate, and then AP is the integral area enclosed by the P-R
curve and the coordinate axis. The expression of AP is shown in Formula (24). mAP is the
average of the AP values of each category, which represents the average detection accuracy
of the method for the whole dataset. The expression of mAP is shown in Formula (25).

AP =
∫ 1

0
P(R)dR (24)

mAP =
1
Q

Q

∑
q=1

AP(q) (25)

where P(R) represents the precision when the recall rate on the PR curve is R, q represents
a certain object category, and Q represents the total number of object categories.

4.3. Ablation Experiment

To verify the effectiveness of the proposed module, the ablation experiment analyzes its
effectiveness in improving the method’s performance. Table 2 shows the influence of FPN,
AFA-FPN, PHDA module, rotation branch, and loss function on the model detection effect. In
this table, APS indicates the average detection accuracy of small objects, and mAP@0.5 refers
to the average AP value when the IoU threshold is 0.5. mAP@0.5 : 0.95 represents the average
accuracy when the IoU threshold is increased from 0.5 to 0.95 at a step size of 0.05.

Table 2. Results of ablation experiment. The best results are in bold.

Baseline FPN AFA-FPN PHDA Rotation Branch GIoU CIoU APS mAP@0.5 mAP@0.5:0.95

X X X 48.75 64.28 53.27
X X X 53.60 67.59 54.03
X X X 56.21 66.37 54.82
X X X 52.74 65.98 53.94
X X X X 68.92 73.57 56.05
X X X X 64.31 72.11 55.71
X X X X X 74.48 77.14 58.45
X X X X X 78.21 82.04 59.70

It can be seen from the table that compared with FPN, our proposed AFA-FPN im-
proves APS by 4.85%, which greatly improves the detection accuracy of small objects.
Meanwhile, mAP@0.5 and mAP@0.5 : 0.95 are increased by 3.31% and 0.76%, respectively,
which indicates that AFA-FPN is suitable for improving the detection accuracy of medium
and large objects. Additionally, the use of PHDA and the rotation branch brings great
benefits to the performance of small object detection, and the average detection accuracy
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is greatly improved. Compared with GIOU, CIOU is more comprehensive, with faster
convergence and better results. The model combining AFA-FPN, PHDA, rotation branch,
and CIOU achieves the best detection effect, with APS reaching 78.21%, and mAP@0.5 and
mAP@0.5 : 0.95 reaching 82.04% and 59.70%, respectively. These results prove the rational-
ity and superiority of the model designed in this paper.

To highlight the good effect on improving the detection performance of small ob-
jects, this paper compares the P-R curves for detecting small, medium, large objects, and
all objects. The comparison result is shown in Figure 8, where sequence numbers 1 to
7 represent the first to seventh rows of Table 1, respectively. From Figure 8, it can be seen
that our proposed method can improve the detection accuracy of small objects the most.
Additionally, the detection accuracy of medium, large and all objects is slightly improved.
The P-R curve verifies the effectiveness of our proposed method for remote sensing small
object detection, which is consistent with the results obtained in Table 1.

Drones 2022, 6, 292 16 of 26 
 

 
Figure 8. Comparison of P-R curves of small, medium, and large objects and all objects. 

Based on this, this paper chooses several backbone networks with all the modules 
proposed in this paper to conduct experiments on the RSSO dataset to verify the 
rationality of choosing Resnet-101 as the backbone network. The selected networks are 
VGG-16 [55], VGG-19 [55], ResNet-50 [38], ResNet-101 [38], and Alex-Net [56]. The 
corresponding precision–recall curve is shown in Figure 9. The results of Figure 9 indicate 
that Resnet-101 achieves better precision and recall rates than other backbone networks. 

 
Figure 9. Comparison of the P-R curves of adopting different backbone networks. 

Figure 8. Comparison of P-R curves of small, medium, and large objects and all objects.

Based on this, this paper chooses several backbone networks with all the modules
proposed in this paper to conduct experiments on the RSSO dataset to verify the rationality
of choosing Resnet-101 as the backbone network. The selected networks are VGG-16 [55],
VGG-19 [55], ResNet-50 [38], ResNet-101 [38], and Alex-Net [56]. The corresponding
precision–recall curve is shown in Figure 9. The results of Figure 9 indicate that Resnet-101
achieves better precision and recall rates than other backbone networks.
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4.4. Experimental Results and Analysis

To verify the effectiveness of our model structure, Table 3 presents the detection results
of CSL, R3Det, MDSSD, S2A−Net, PIoU, SCRDet++, Oriented R-CNN, and our proposed
methods for various objects. For the convenience of expression, the object categories in
the table are abbreviated as PL-Plane, BD-Baseball diamond, ST—Storage tank, SH—Ship,
TC- Tennis court, BR—Bridge, GTF—Ground field track, HA—Harbor, BC—Basketball
court, SV—Small vehicle, LV—Large vehicle, SP—Swimming pool, SBF—Soccer ball field,
HC—Helicopter, and RA—Roundabout.

Table 3. Experimental results of our proposed method compared with the state-of-the-art methods
on the RSSO dataset. The best results are in bold.

Method PL BD ST SH TC BR GTF HA

CSL 67.38 69.80 66.15 71.65 83.61 65.75 77.15 76.53
R3Det 68.59 69.37 71.36 68.24 86.24 64.38 82.43 70.52

MDSSD 62.11 71.25 71.54 70.35 85.34 66.54 79.01 72.77
S2A−Net 75.96 76.89 75.38 76.77 88.48 74.68 84.28 79.85

PIoU 78.43 79.54 78.09 78.05 89.71 78.02 84.21 80.64
SCRDet++ 76.78 77.42 76.08 76.91 90.46 77.25 87.92 83.60

Oriented R-CNN 80.93 80.42 81.23 78.94 89.60 78.17 85.14 80.53
Ours 82.42 79.46 82.21 79.02 89.94 77.63 85.47 81.75

Method BC SV LV SBF RA SP HC mAP

CSL 68.52 61.06 58.08 79.22 74.75 78.98 76.21 71.66
R3Det 67.44 63.21 61.19 84.68 76.88 76.54 72.64 72.25

MDSSD 75.07 69.52 71.44 78.55 89.42 83.59 79.05 75.04
S2A−Net 77.26 66.24 71.07 78.22 81.79 86.87 77.96 79.04

PIoU 78.11 67.83 70.22 80.06 82.56 87.98 82.58 78.57
SCRDet++ 70.84 64.32 71.03 82.60 86.71 88.19 84.01 79.61

Oriented R-CNN 78.58 68.55 70.08 81.35 84.56 88.02 84.37 80.24
Ours 79.27 74.11 75.16 83.49 88.31 87.58 84.81 82.04

From Table 3, it can be seen that the proposed method achieves the highest detection
accuracy for small-scale planes, ships, oil tanks, small vehicles, and helicopters. Meanwhile,
the detection accuracy of medium-scale objects such as large vehicles and basketball courts
is also the highest. Although the detection accuracy of large-scale objects such as ground
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field tracks and soccer ball fields is not the highest, it is also among the highest of the
comparative advanced methods. The MAP of the proposed method reaches 82.04%, which is
increased by 1.8%–10.38% compared with that of the state-of-the-art detection methods. This
verifies the effectiveness of the proposed method for detecting remote sensing small objects.
Compared with other methods, AFA-FPN makes the relationship between feature maps clear
and enhances the feature expression of small objects. PHDA eliminates the interference of
background noise to some extent, which is significant for detecting small objects. The rotation
branch and improved loss function enable the network model to obtain better classification
and regression results. Generally, the proposed method enhances and improves the detection
of small objects in remote sensing images and obtains obvious results.

In addition, to more comprehensively evaluate the superiority of our proposed method,
Table 4 presents the accuracy comparison of different size objects, the model accuracy com-
parison of different IOU thresholds, and the speed comparison with CSL, R3Det, MDSSD,
S2A−Net, PIoU, SCRDet++, Oriented R-CNN, Yolo v4 and Yolo v7. APS, APM, and APL
represent the average detection accuracy of small, medium, and large objects in the dataset,
respectively. mAP@0.5, mAP@0.75, and mAP@0.9 refer to the average AP value when the
IoU threshold is 0.5, 0.75, and 0.9, respectively. FPS stands for Frames Per Second.

Table 4. Comparison of the object detection performance on the RSSO dataset. The best results are in bold.

Method APS APM APL mAP@0.5 mAP@0.75 mAP@0.9 FPS

CSL 61.02 71.02 80.23 70.22 58.11 46.97 22.0
R3Det 63.21 72.38 81.54 71.35 58.64 47.82 17.3

MDSSD 68.85 75.61 77.69 71.98 59.07 48.33 33.4
S2A−Net 71.58 76.71 78.09 75.84 60.49 49.01 22.3

PIoU 74.02 78.04 80.14 76.35 61.50 51.20 20.7
SCRDet++ 70.99 79.09 81.30 75.08 62.44 49.03 21.2

Oriented R-CNN 75.54 81.99 80.24 78.45 64.94 51.96 18.6
Yolo v4 39.54 48.09 58.22 56.47 41.98 33.84 106
Yolo v7 48.31 57.87 69.61 61.29 55.31 39.05 114

Ours 78.21 84.77 80.43 82.04 69.70 53.41 24.3

It can be seen from Table 4 that the proposed method achieves the highest detection
accuracy for small and medium objects, and the improvement of small objects is greater.
Compared with the state-of-the-art methods, the accuracy is improved by 2.67%–17.19%.
Meanwhile, the average detection accuracy for each IOU threshold range is the highest,
which means that the proposed method can delineate more accurate bounding boxes for
remote sensing image object detection. For densely distributed remote sensing small objects,
a more accurate bounding box can alleviate the impact of dense distribution and improve
detection accuracy. Although the calculation speed of the proposed method is not the
fastest, it basically meets the requirements of real-time performance. Compared with the
traditional Yolo v4 and Yolo v7, the improvement is even greater. Although the Yolo series
algorithms have a faster speed, because they are not designed for the object detection of
remote sensing small objects, they are insensitive to remote sensing small objects and their
detection accuracy is not high. Thus, our method performs the best for remote sensing
small object detection both in detection accuracy and speed.

Figures 10–13 show the detection effects of different methods on the RSSO dataset
under the conditions of simple backgrounds, complex backgrounds, multi-scale objects,
and dense small objects, respectively. Our method is compared with CSL, R3Det, MDSSD,
S2A−Net, PIoU, SCRDet++, and Oriented R-CNN. It can be seen that MDSSD does not
have a rotating frame design, so the prediction boxes are all horizontal. The prediction
boxes of the other methods are rotating boxes. From a subjective point of view, our method
has a stronger detection ability for small objects and can effectively reduce the omission
ratio of small objects under the conditions of a simple background, complex background,
multi-scale objects, or dense small objects. Due to the two-stage regression of the anchor
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box by the rotation branch, the prediction box of the proposed method is the closest to the
ground truth, and the IOU between the prediction box of the proposed method and the
ground truth is the highest among all methods.
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Figure 10 shows the detection results of a single type of object in the simple back-
ground. From the subjective point of view, the proposed method obtains the most accurate
regression and classification, but the improvement effect is not great compared to other
methods. This is because the scene is too simple, and general detection methods can achieve
good detection results.

Figure 11 illustrates the detection results of different types of objects in complex
backgrounds. From a subjective point of view, the proposed method achieves the lowest
omission ratio and can detect small objects with little contrast with the background. In
contrast, other methods suffer from varying degrees of missed detection. It can be inferred
that the background has a great influence on the detection results, and the proposed
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method can effectively solve this problem. This is attributed to the adoption of the PHDA
module. The PHDA module suppresses the noise interference of complex backgrounds
and improves the attention degree of foreground objects through the joint action of parallel
channel attention and spatial attention, thus improving the detection accuracy of small
objects in complex backgrounds effectively.

Figure 12 shows the detection results of multi-scale objects. From the subjective
point of view, our detection results are the best. For a large-scale baseball diamond, our
regression effect is the most consistent with the ground truth, and the prediction boxes
of other methods are enlarged to varying degrees compared to the ground truth. For
small-scale vehicles, the proposed method obtains the lowest omission ratio, and almost
every vehicle can be detected. Generally, the proposed method achieves the best detection
results for multi-scale objects in remote sensing images, and it does not miss the detection
of small objects.

Figure 13 shows the detection results of densely distributed small objects. From a
subjective point of view, the proposed method performs better than other methods in
detecting dense small objects. The proposed method pays much attention to the densely
distributed ships while considering the small cars in the non-dense area in the lower right
corner. Our method achieves a lower omission ratio than other methods, and the regression
effect is also better.

Figure 14 shows the detection results of the proposed method for multi-scale objects
on high-resolution remote sensing images of large scenes. The proposed method achieves a
good detection effect on small objects in high-resolution remote sensing images of large
scenes, and it can accurately detect densely arranged cars, ships, or basketball courts and
soccer ball fields with little distinction from the background. Interestingly, the enlarged
image in the lower left corner shows that the proposed method also performs well for
occluded car detection. Figure 15 shows the detection results of the proposed method on
other remote sensing image examples.
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4.5. Discussion

The RSSO dataset is produced by filtering, cropping, and scaling images from three
public datasets, namely NWPU VHR-10, DOTA, and UCAS AOD. Experiments are per-
formed on the RSSO dataset, which makes the evolution of our proposed method more
objective. Ablation experiments are performed on the proposed modules and the backbone
network used in this paper, and the results verify the effectiveness of these modules and the
backbone network. In comparison with other state-of-the-art methods, our method obtains
some surprising results. It is found that our proposed method has a stronger detection
ability for small objects and can effectively reduce the omission ratio of small objects in the
case of simple backgrounds, complex backgrounds, multi-scale objects, and dense small
objects. Meanwhile, although the detection speed of the proposed method is not the highest,
it is still sufficient for practical engineering applications and can meet the requirements of
real-time performance. The experimental results indicate that the proposed method can
effectively improve the detection performance of small objects in remote sensing images.
These satisfactory results are attributed to the reasonable architecture of our mode and



Drones 2022, 6, 292 22 of 24

the numerous adjustments to the network model hyperparameters during the network
training phase.

5. Conclusions

Detecting small objects in UAV optical remote sensing images suffers from low accu-
racy due to low contrast, dense distribution, and weak features. To solve this problem, this
paper focuses on the influence of different levels of features and rotating bounding boxes
on the detection performance of small objects and proposes a small object detection method
based on the feature alignment of candidate regions for remote sensing images. Firstly,
AFA-FPN defines the corresponding relationship between feature mappings, solves the
misregistration of features between adjacent levels, and improves the recognition ability
of small objects by aligning and fusing shallow spatial features and deep semantic fea-
tures in convolutional neural networks. Secondly, the PHDA module captures local areas
containing small object features through parallel channel domain attention and spatial
domain attention, and it assigns a larger weight to these areas to eliminate the interference
of background noise. Then, the rotation branch uses RROI to rotate the horizontal frame
obtained by RPN, which avoids missing detection of small objects with dense distribu-
tion and arbitrary direction and prevents the object from not matching the characteristics
of candidate regions. Next, the rotation branch uses RROI to rotate the horizontal box
obtained by RPN, which solves the problem of missing detection of small objects with
dense distribution and arbitrary direction and prevents feature mismatch between the
object and candidate regions. Finally, the loss function is improved to better reflect the
difference between the predicted value and the ground truth. Experiments are conducted
on a self-made dataset RSSO, and the experimental results show that the proposed method
can effectively enhance the representation ability of small objects, reduce the omission ratio
of small objects, and achieve efficient and accurate detection of small objects in remote
sensing images under different backgrounds.

In future work, the application of unsupervised models is the focus of our research.
Unsupervised models can avoid the tedious labeling of datasets while improving the
model’s adaptivity. In addition, the use of lightweight models will be considered to
improve model detection efficiency.
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