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Abstract: The advancement in computing and telecommunication has broadened the applications
of drones beyond military surveillance to other fields, such as agriculture. Livestock farming using
unmanned aerial vehicle (UAV) systems requires surveillance and monitoring of animals on relatively
large farmland. A reliable communication system between UAVs and the ground control station
(GCS) is necessary to achieve this. This paper describes learning-based communication strategies and
techniques that enable interaction and data exchange between UAVs and a GCS. We propose a deep
auto-encoder UAV design framework for end-to-end communications. Simulation results show that
the auto-encoder learns joint transmitter (UAV) and receiver (GCS) mapping functions for various
communication strategies, such as QPSK, 8PSK, 16PSK and 16QAM, without prior knowledge.

Keywords: unmanned aerial vehicle; convolutional auto-encoder; livestock farming; deep neural
networks

1. Introduction

Unmanned Aerial Vehicles (UAVs), known as drones, are self-driven aircraft that work
without a human pilot on board [1]. Different types of UAVs are employed for various
intents [2]. Initially, the military used the technology for anti-aircraft target techniques,
intelligence gathering and surveillance of enemy territories [2-5]. Moreover, UAV tech-
nology has evolved beyond its initial purpose. It has, in recent years, gained prominence
in diverse spheres of human endeavour. The ease of operating drone technology results
in the widespread applications of UAVs in diverse fields, thus making it a prosperous
technology [6]. Livestock farming is one of the promising applications of UAVs, where
UAVs simplify various operations for efficient animal management [7-10]. Over the years,
livestock farming has faced environmental, economic, technical and strategic planning
due to varying climatic conditions, population growth and intense competition for land
and other natural resources [11]. Nevertheless, the use of advanced technologies such as
Artificial Intelligence (Al), the Internet of Things (IoT), Machine Learning (ML), cutting-
edge sensors, etc., integrated with UAVs has recently resulted in the widespread adoption
of drone technology amongst livestock farmers [9]. As an illustration, Figure 1 shows a
typical UAV conceptual design framework of a livestock farming management system
(LEMS). The system consists of four development stages; the water examination system,
Long-Range Wide-Area Network (LoRaWAN)-based network planning, drone mounted
with sensors and cameras and drone path planning optimization. The cattle are fitted with
transceivers around their necks. This provides a means for sharing information between
the drone and the ground station.
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The UAVs are controlled either remotely or manually by a pilot at a ground station,
guided using a pre-programmed flight procedure. Wireless communication is one of the
critical technologies for UAV wireless communication and is classified into a command
and control link and a data link [12]. The command and control link provides essential
information about the environment, operating conditions and control instructions for a
UAV’s safe operation. Therefore, it requires high reliability and low latency. Compared to
the command and control link, the data link often maintains the target-related information
and thus supports higher data rates
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Figure 1. Conceptual framework of UAV-based farm monitoring system [13].

1.1. Motivation

The use of UAVs for livestock location, detection, activity monitoring, anomaly detec-
tion and rearing requires onboard sensors operating at radio frequencies (RF) of 2.4 and
5.8 GHz for reliable data transfer between the UAVs and the ground stations [1,4]. However,
due to traffic of the target-related UAV data, the tasks become more strenuous and demand-
ing as the resolution of the onboard sensors becomes higher, specifically in the backbone
network [14]. Accordingly, this imposes enormous demands on the communication system
as well as the challenge of decoding the transmitted data with minimum error probability
at the user end. Livestock farming requires extensive farmland, located mainly in rural
areas. It is known that many rural areas, even in developed countries, are significantly
under-connected with mobile wireless technology. Therefore deploying 5G test beds in
rural areas can motivate service providers to improve internet connectivity. Recently, the
United Kingdom (UK) launched a project called 5G Rural Integrated Test bed (SGRIT)
to create test beds for 5G in rural areas [3]. The project seeks to demonstrate the role 5G
networks can play in consolidating farming and tourism sectors using an integrated system
of UAVs and Al technologies. Therefore, designing a robust communication system that
will provide reliable data transfer between UAVs and the GCS is necessary for UAV-based
livestock farming.

1.2. Related Works

Beyond using multirotor UAVs for aerial surveillance, substantial research has been
performed on UAVs to ease livestock and agricultural farming [15-17]. Drones have
explicitly become helpful in monitoring and enhancing crop and livestock production
due to real-time data that help farmers respond more quickly to weed incursion, pest
infestation, output projections, livestock health conditions and other issues [18]. UAVs and
other related technologies, such as the Internet of things (IoT), have been extensively used
for smart agriculture and animal farming [9,19-22].

Different types of UAVs are applied in pest control, crop irrigation, animal health mon-
itoring, animal rearing and other agriculture-related activities [19]. The joint application
that both IoT and UAVs can play in smart-driven agriculture was also discussed in [20].
Maddikunta et al. [9] have explored the architecture, adaption and usage of UAVs for smart
agriculture. The authors highlighted the UAV’s applications and related technologies to
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efficiently enhance and optimize diverse agricultural processes using smart Bluetooth-
enabled sensors. However, reliable data transfer was the major drawback of this approach
due to the short range of the Bluetooth UAV-enabled system. In some scenarios, UAVs
could be used as tools for mechanized agriculture to ameliorate disorders in various fields
through commercial, scientific, agricultural and livestock enhancement [21]. Specifically,
the paper focused on providing details of mechanized agriculture using UAV systems for
pesticides and fertilizer application in farms that were obstacle rich. Other issues related
to the lack of awareness and special education on precision agriculture in animal farming
using UAV technology were also highlighted. Furthermore, Alanezi et al. [22] presented
a comprehensive review of the state-of-the-art techniques incorporated with UAVs for
livestock. The authors highlighted various pressing issues, challenges and opportunities
associated with livestock management.

Al and ML have drawn growing research interests and are ubiquitously emerging
in many fields due to their capability to model systems through learning from data [23].
Recently, studies and findings have unveiled the potential benefits of deploying Al and
machine learning techniques and UAVs for effective livestock farming [2,3,8,24-26]. Stud-
ies have shown the feasibility of using UAV video monitoring to predict the food eating
behaviour of rangeland-raised Raramuri Criollo non-nursing beef cows [2]. To address
the problem associated with animal counting, a computer vision pipeline that uses DNN
architecture for automated Holstein Friesian cattle detection and identification was pro-
posed in [24]. The authors introduced a video processing mechanism to efficiently monitor
dynamic cattle footage filmed by UAVs. However, the UAV was manually flown and only
captured data within small-sized and relatively spaced herds. Rivas et al. [25] presented the
use of artificial intelligence techniques for real-time analysis and cattle monitoring using the
information captured by drones. The authors used a camera installed in the drone to take
images that were later analysed using Convolutional Neural Networks (CNNs) for cattle
identification captured in the images. However, the model could not determine the number
of animals in a cluster with utmost precision. Furthermore, a test bed implementation
that used deep learning algorithms was designed for precision livestock detection and
counting from aerial images captured by drones. In the same vein, the use of UAVs to track
the postural position of cattle and sheep was studied in [8] to find the optimal number
of UAVs that minimizes the UAV-animal distance using a streaming K-means clustering
algorithm. All the targeted herds were fitted with global positioning system (GPS) neck-
bands to monitor their movements. A dual-stream deep learning (DL) architecture that
combined exploration strategies learned from previous experiences with instantaneous
sensory inputs was proposed to capture the movement of the cattle [26].

Nonetheless, accurate livestock counting in a multi-path crossing by the same animal
is still an open problem. While many works of the literature mainly focus on combining
ML algorithms with UAVs for efficient smart farming and livestock management, little or
no attention is paid to the part that involves data transfer within the UAV communication
network. ML techniques, specifically DL, have been used to solve many physical layer
communication problems [27-29]. Therefore, this paper proposes a learning framework
for an efficient and reliable communications system for UAV-based livestock management.
Our contributions are summarized below:

®  We built an auto-encoder for end-to-end wireless communications for UAV-assisted
livestock management systems. We showed that learning the entire transmitter (UAV)
and receiver (GCS or UAV) implementations for a given communication channel link
optimized for a chosen loss function (e.g. minimizing BER) is possible. The basic idea
is to describe the transmitter, channel, and receiver as a single deep CNN that can
be trained as an auto-encoder. Interestingly, this technique can be used as a model
approximator to approximate optimal solutions for systems with unknown channel
models and loss functions.

e We simulated the communication links with a different set of communication rates to
learn various communication schemes, such as QPSK, 8PSK and 16QAM.
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e  Fora (7,4) communication rate, the proposed auto-encoder performance matched the
optimal Hamming code maximum likelihood decoding scheme.

The remainder of the paper is structured as follows: The system model and prob-
lem are presented in Section 2. The proposed methodology is described in Section 3.
Section 4 presents the simulation results and discussions. Finally, Section 5 summarizes
and concludes the paper.

Notations: We use bold uppercase symbols for matrices, bold lowercase symbols for
vectors and lowercase symbols for scalars. Finally, notation .Z(-) is reserved for the loss
function.

2. System Model and Problem Formulation

Reliable communication among UAVs monitoring livestock is critical for efficient
and accurate data transmission for managing large herds. Figure 2 portrays a typical
high-speed local architecture network constructed over long-distance WiFi access points to
establish communication with UAVs and the ground control stations used for cattle and
sheep rearing. The UAVs are equipped with onboard cameras and sensors used for taking
images of herds and territorial surveillance. Information about the locations of animals
is exchanged between the UAVs and the ground control station (GCS), which could be
monitored manually or remotely by a human operator.
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Figure 2. Communications network architecture of UAV-based livestock management system.

Throughout this section, we assume a known perfect channel state information (CSI)
between the UAVs and the GCS. The communication links between the UAVs and the
GCS can be viewed as a simple communications system consisting of a transmitter, a
channel and a receiver. Suppose the UAV wants to send one out of M possible messages
seM={1,2,---, M} to another UAV or GCS through a wireless fading channel. Then
the received message is modelled as

y=hx+ng 1)
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where x,h and n are the message. The complex baseband message is converted to its
equivalent real format using the transformation f : Ml — R?" to the message s to generate
the transmitted signal x = f(s) € R?". It should be noted that the UAV imposes some
constraints on the x based on either average energy or average power of the transmitted
message as follows [30]

Ix[|5 < 2n, 2)

E[lx|’] < 1. ®)

For simplicity, we use Quadrature phase shift keying (QPSK) and 8-phase shift
keying (8PSK) modulation schemes because of their abilities to transmit two bits and
three per symbol, respectively. As an illustration, for QPSK, the transmitted symbols
seM= {\% + ]%, - % + ]% }. Compared to ordinary phase shift keying (PSK), QPSK
conveys twice as much information using the same bandwidth [31]. The rate at which
the message is sent over a communications channel, known as the communication rate, is
given by

R= % [bit/channel], 4)

where k = log, (M) and M is the number of symbols or modulation index. Intuitively, (4)
shows that the communication system transmits one out of M = 2X messages through
active channels or channel uses. This is usually presented by the notation (1, k) [32].

3. Proposed Methodology

Generally, a simple communications system can be viewed as a particular type of auto-
encoder from the deep learning viewpoint [30,33]. An auto-encoder is an unsupervised
learning model that learns to squeeze and reconstruct the input. Therefore, it can be
considered a dimensionality reduction framework that allows the input reconstruction
at the output with minimal error. However, in our case, the auto-encoder is used for
end-to-end communication to learn the representations of the messages s that are robust
to the channel impairments mapping x to y, such that the transmitted information can be
recovered with a minimal probability of error. Contrary to redundancy removal from the
input data for compression, our proposed auto-encoder usually adds redundancy, learning
an intermediate representation robust to channel variations for reliable data transfer.

Firstly, the UAV flies above the livestock to capture data (usually real-time images)
about the livestock and send it to the GCS for analysis. The reliable data transfer requires
that the UAV communication system be divided into a sequence of communication blocks,
which are traditionally optimized individually. Such an approach depends on complex
mathematical models that are usually intractable. However, the communication blocks
are jointly optimized as a single learning block to simplify the process while ensuring
reliable data transfer from the UAVs to the GCS. The proposed auto-encoder is shown
in Figure 3. Here, the transmitter, which could be a UAV, is the encoder consisting of
feedforward convolutional neural network (CNN) layers followed by a normalization layer
that guarantees that the physical constraints on x are met based on (2) or (3). Accordingly,
the input s to the encoder is encoded as a one-hot vector 1s € RM, having an M-dimensional
vector, the s-th element of which is equal to one and zero otherwise. The wireless channel
layer is represented by a fading channel obtained from a random normal distribution with
zero mean and unit variance and an Additive White Gaussian Noise (AWGN).

Similarly, the receiver (decoder), which could be the GCS, is also implemented as
a feedforward CNN. The decoder’s final layer uses a softmax activation whose output
p € (0,1)M is a probability vector over all possible messages. The estimated message corre-
sponds to the index of the element of p with the highest probability value. Consequently,
the conditional probability density function p(y|x) defines the channel, where y € R?"
designates the received signal. Once y is received, the decoder applies the transformation
g : R?" — M to yield the estimate of the transmitted message $. We train the auto-encoder
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end-to-end using stochastic gradient descent (SGD) over all possible messages s € M using
the appropriate categorical cross-entropy loss function to generate the predicted output or
reconstructed estimate of the transmitted message. Therefore, the loss function is given by

N
2(0) = —x Lsilog 4), ®)
i=1

where N is the number of samples, 8 is the model parameters (weights of the neural
network), s is the original transmitted message, and § is the estimated message.

Convolutional Auto-Encoder

i J
: :
h '
h — i
h ,
e 6) N ) . o(y) D
' '
: 1 P ;
! A — ,
: g 5 5| [foor
1 =)
: = el |2 5 3 o lal [ |2 ||*® :
H 5 5 s 5 = P 5 T = . !
' 2 > = - 2 > > > 2 : '
' & &) & = 2 £ & 9 s '
! 0 : | : g x g = = | E 0.2 '
- ‘—>';—>E>.—>¢;—>g S RN S8 8 2 (o9 | —>8§ !
! Input 0 ] g g = 2 z z z P 01 Output |
! S 3 S g k) S S 5} s '
' : © © < = = o o © £ 5 '
H 8 5 = £ E '
< :
: 0 g ¢ 0.02
H 0 0.15 '
H L L1 1 LI L | B :
H L L1 L ] '
i
E \ Transmiter/Encoder / ‘Wireless Channel K Receiver/Decoder / !
.
' :
h i
\ !

Figure 3. UAV communications system over fading channel depicted as an auto-encoder with an
input message s encoded as a one-hot vector.

Accordingly, this end-to-end learning concept is applied to UAV communications,
where information about herds (usually images) from the UAVs is sent through a wireless
channel to the GCS for effective monitoring. The details of the proposed auto-encoder UAV
communications system are shown in Figure 4, and its architectural layout is provided in
Table 1.

Table 1. Layout of the proposed UAV-based auto-encoder.
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Figure 4. UAV and GCS information communications system over wireless channel presented as an
auto-encoder.

Data Generation, Training and Inference

We have generated 50,000 message samples, from which 30,000 are the training sam-
ples, and 15,000 samples are used for validation and inference each. The auto-encoder is
trained with a fixed signal-to-noise ratio (SNR) or energy per bit to noise power spectral
density (16—’(’)) of 7 dB using an Adam optimizer [33] with a learning rate of 0.001. The
training was performed with various training batch sizes to determine the appropriate
size that gives the best performance. The performance of the trained auto-encoder was
tested over different SNR values. We have implemented the auto-encoder model in Keras
Tensorflow 2 DL framework and 3.8 Python.

4. Results and Discussions

This section presents the simulation results and discussions based on the performance
metric. For performance evaluation, bit-error-rate (BER), Pr($ # s) is used as a performance
metric for assessing the efficacy of our proposed learning model.

Figure 5 compares the BER performance of a communications system using uncoded
QPSK (4, 4) and a Hamming (7,4) code with the optimal maximum likelihood decoding
(MLD) against the BER gained by the auto-encoder (7,4) with different training samples
and average fixed energy constraints. It can be seen that the performance of the auto-
encoder trained with 25,000 training samples matches the Hamming (7, 4) maximum
likelihood decoding scheme. We also observe that the auto-encoder’s performance falls
as the number of training samples decreases. We ensure that the system operates at a
7/4 communication rate for fair performance evaluation. This result reveals that the
auto-encoder has learned the UAV and GCS information mapping (i.e., an encoder and
decoder function) that achieves the same performance as the Hamming (7,4) code with
MLD without prior knowledge.

Figure 6 compares the BER produced when the input data are modulated with binary
phase-shift keying (BPSK), QPSK and 8PSK against the BER achieved by the trained auto-
encoder with an average fixed energy constraint based on (2). Generally, the number of
encoded bits depends on the number of encoded phases. The BPSK uses two distinct
phases shifted by 180° compared to QPSK, which utilizes four phases to encode the data.
Therefore, the QPSK transmits 2-bit data, twice the data transmitted by BPSK per symbol
cycle. In contrast, 8PSK uses eight phases, described by a 3-bit transmitting 3-bit symbols
per cycle. Accordingly, while the uncoded QPSK (4, 4) produces a BER lower than the
BPSK modulation scheme, the Hamming (7, 4) hard decision decoding scheme outperforms
all three modulation schemes. Interestingly, the auto-encoder trained with QPSK and
8PSK-modulated symbols performs better than all the baseline communication schemes.
We have observed that the performance gap between the auto-encoders trained with QPSK
and 8PSK tends to close between 2 and4 dB SNRs. At these SNRs, the communication rate
of the auto-encoder trained with QPSK-modulated symbols decreases; it is thus forced
to learn a lower modulation scheme. Beyond the 4 dB SNR, a significant decline in BER
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is observed, suggesting that the auto-encoder trained with the 8PSK modulation scheme
learns to transmit more bits per symbol cycle.

BER

Uncoded QPSK (4, 4) \ N
====Hamming (7, 4) Hard Decision \@ N
= = Hamming (7, 4) MLD \
@ Auto-encoder (7, 4) with 25K Training-Samples v
— P> Auto-encoder (7, 4) with 15K Training-Samples

Auto-encoder (7, 4) with 2K Training-Samples
Auto-encoder (7, 4) with 5K Training-Samples

4 -2 0 2 4 6 8
SNR [dB]

Figure 5. BER vs. SNR for the auto-encoder trained with different amounts of samples against

various benchmark communication techniques.

102
o
L
m
1073
—ﬁ-- Hamming (7, 4) Hard Decision
107 —@— Auto-encoder with QPSK Modulation .
—l— BPSK Modulation %
.-+ Auto-encoder with 8PSK Modulation
Uncoded QPSK (4, 4) X
-4 -2 0 2 4 6 8
SNR [dB]

Figure 6. BER vs. SNR for the auto-encoder trained with 25,000 training samples using QPSK and
8PSK modulation schemes against baseline modulation schemes.
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Figures 7 and 8 portray the effects of both fixed and varying SNR on the auto-encoder’s
performance. Figure 7 shows that the BER falls faster when the auto-encoder is trained with
a fixed SNR and then saturates at the 25th epoch. With this, a relatively small training effort
is required for the auto-encoder to learn various communication schemes. However, when
the auto-encoder is trained with a varying SNR from —4 to 10 dB, the BER slowly decreases
with the training epoch and finally saturates at the 10th epoch, as shown in Figure 8. From
these results, we can deduce that an auto-encoder trained with fixed SNR for end-to-end
communications converges faster than the one trained with varying SNRs.

Fixed training SMR =7 dB

0.06 1

0.05 1

0.04 4

0.03 1

BER

0.02 1

0.01 1

0.00 -

0.0 25 5.0 75 10.0 125 15.0 175
Epochs

Figure 7. BER vs. the number of epochs of the auto-encoder trained via fixed SNR = dB.

Training SNR =-4dB to 10 dB

05 A

04

03

BER

02 1

01 A

0.0

& 8 10 12
Epochs

,:,_
kJ
.

Figure 8. BER vs. the number of epochs of the auto-encoder trained via variable SNR values.

To investigate whether the auto-encoder has learnt some communication schemes
without prior knowledge of the channel model, we show the learned constellation repre-
sentations x of all messages for different values of (1, k). Figure 9 depicts a typical (2,2)
system, which assembles rapidly to a classical QPSK constellation rotation. The symbol
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constellations spread over four possible carrier phases within a unit circle, as in the case of
a classical QPSK modulation technique.

2 -
1 - ° s
0 -
-1 A H e
=2 -
3 1 0 1 2

Figure 9. Learned constellation produced by auto-encoders using a (2, 2) communication rate with
an average energy constraint.

Correspondingly, Figure 10 illustrates a (4,2) communication system that produces a
rotated 16PSK constellation. Interestingly, with a fixed, average energy constraint, the re-
sulting constellation produced by the learned auto-encoder is similar to the one constructed
by the classical 16PSK. The effect of the choice of normalization function for a transmit mes-
sage under some constraints is noticeable from Figure 11 for the same settings but with an
average power normalization rather than an average fixed energy constraint. This produces
an intriguing hybrid pentagonal/hexagonal grid structure similar to the performance from
a distorted 16QAM constellation with a symbol near the origin surrounded by five equally
spaced nearest neighbours. Therefore, this shows that an auto-encoder trained with the
average energy constraint produces a much more regular and well-defined communication
scheme that matches a particular classical communication technique.

To find whether the proposed auto-encoder is doing well during the learning phase,
we compare the training loss against the validation loss in Figure 12. It can be observed
that both the training loss and validation loss converge at the eighth iteration. This further
demonstrates that the auto-encoder is doing well in learning various communication
strategies for efficient data transfer between the UAVs and the GCS.
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(2, 4) Learned Constellation with Average Energy Constrained
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Figure 10. BER vs. SNR for the auto-encoder test with different amounts of test samples against

various benchmark communication techniques.
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Figure 11. BER vs. SNR for the auto-encoder test with different amounts of test samples against

various benchmark communication techniques.
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Model loss

200 1 —+— Message Training Loss

175 A —&— Message Validation Loss
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Epochs

Figure 12. BER vs. SNR for the auto-encoder test with different amounts of test samples against
various benchmark communication techniques.

5. Conclusions

This paper presents a communications system as an end-to-end optimization scheme
using an auto-encoder to jointly learn UAV (transmitter) and GCS (receiver) signal pro-
cessing implementations without prior knowledge. The auto-encoder was trained with
fixed and varying SNR values and an input message modulated with different modulation
schemes, such as BPSK, QPSK and 8PSK, and various communication rates. We have
seen from the results that the proposed learning-based communication framework can
learn standard and distorted classical modulation techniques when trained with average
and average power constraints, respectively. Comparisons with conventional baselines in
various scenarios unveil a competitive BER performance against traditional communication
techniques. From the results, we find that the proposed learning approach demonstrates its
efficacy in terms of reliability in learning optimal communication schemes in a challenging
environment or situations where the optimal strategies are not known. This could be used
to design UAV communication links for reliable data transfer and efficient smart livestock
farming. Future work should consider various channel types and communication rates for
a more practical UAV communication system for different baseline schemes. An extension
to a multiantenna UAV system with particular attention to beamforming, secrecy, channel
interference and energy efficiency is appealing.
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