
Citation: Silvestrini, S.; Lavagna, M.

Deep Learning and Artificial Neural

Networks for Spacecraft Dynamics,

Navigation and Control. Drones 2022,

6, 270. https://doi.org/10.3390/

drones6100270

Academic Editor: Diego

González-Aguilera

Received: 31 August 2022

Accepted: 19 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Review

Deep Learning and Artificial Neural Networks for Spacecraft
Dynamics, Navigation and Control
Stefano Silvestrini * and Michèle Lavagna

Department of Aerospace Science and Technologies, Politecnico di Milano, 20156 Milan, Italy
* Correspondence: stefano.silvestrini@polimi.it

Abstract: The growing interest in Artificial Intelligence is pervading several domains of technology
and robotics research. Only recently has the space community started to investigate deep learning
methods and artificial neural networks for space systems. This paper aims at introducing the most
relevant characteristics of these topics for spacecraft dynamics control, guidance and navigation.
The most common artificial neural network architectures and the associated training methods are
examined, trying to highlight the advantages and disadvantages of their employment for specific
problems. In particular, the applications of artificial neural networks to system identification, control
synthesis and optical navigation are reviewed and compared using quantitative and qualitative
metrics. This overview presents the end-to-end deep learning frameworks for spacecraft guidance,
navigation and control together with the hybrid methods in which the neural techniques are coupled
with traditional algorithms to enhance their performance levels.

Keywords: ANN; spacecraft; GNC; deep learning; dynamics; autonomous; control; navigation

1. Introduction

One of the major breakthrough in the last decade in autonomous systems has been
the development of an older concept named Artificial Intelligence (AI). This term is vast
and addresses several fields of research. Moreover, Artificial Intelligence is a broad term
that is often confused with one of its sub-clustering terms. The well-known artificial neural
networks (ANNs) are nearly as old as Artificial Intelligence, and they represent a tool, or a
model, rather than a method by which to implement AI in autonomous systems. Nearly all
deep learning algorithms can be described as particular instances of a standard architecture:
the idea is to combine a dataset for specification, a cost function, an optimization procedure
and a model, as reported in [1]. Actually, for guidance, navigation and control, using a
dataset produces poor results due to distribution mismatching. Even for the case where
training is done in a simulated environment but not during deployment, the need to update
the dataset using simulated observations and actions during training is justified by the
mentioned dataset distribution mismatch, as thoroughly presented in [2]. Additionally,
updating the dataset with incremental observations tends to reduce overfitting problems.
This survey presents the theoretical basis for the foundational work of [1,3–5]. In this
overview, the focus is to catch a glimpse of the current trends in the implementation of AI-
based techniques in space applications, in particular for what concerns hybrid applications
of artificial neural networks and classical algorithms within the domains of guidance,
navigation and control. Even though the survey is restricted to these domains, the topic is
still very broad, and different perspectives can be found in recent surveys [6–12]. Most of the
analyzed surveys focus on a limited application, deeply investigating the technical solutions
for a particular scenario. Table 1 compares the existing works with this manuscript.

Drones 2022, 6, 270. https://doi.org/10.3390/drones6100270 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6100270
https://doi.org/10.3390/drones6100270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-2664-443X
https://orcid.org/0000-0003-4361-1437
https://doi.org/10.3390/drones6100270
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6100270?type=check_update&version=3

Drones 2022, 6, 270 2 of 39

Table 1. Comparison between recent survey works and this review.

Ref. Highlights This Review

[6] The survey focuses on machine learning
techniques in spacecraft control design.

This paper extends the review to
navigation and estimation in space.

[7] The survey is limited to the relative
navigation task using deep learning

This paper extends the review to online
estimation, AI-aided filtering and
machine learning spacecraft control.

[8]

The survey thoroughly reviews multiple
applications of machine learning
techniques, particularly focusing on FDIR.
Moreover, it reports a review of the most
common Edge AI boards applicable to
space-based systems.

This paper focuses on GNC applications,
yielding also a mathematical tutorial for
the development of some of the
presented applications.

[9]
The survey thoroughly reviews
end-to-end guidance and control
applications based on AI.

This paper entails a significant discussion
on the hybrid techniques that incorporate
traditional algorithms to
AI-based approaches.

[10]
The survey thoroughly reviews deep
learning methods for unmanned
aerial vehicles.

This paper focuses on GNC and
estimation for space-based systems.

[12]
The survey focuses on reinforcement
learning applications for
spacecraft control

This paper extends the discussion to
spacecraft navigation and estimation,
together with tutorial-like analysis of
common artificial neural
network architectures.

The range of applications is from preliminary spacecraft design to mission operations,
with an emphasis on guidance and control algorithms coupled with navigation; finally,
perturbed dynamics reconstruction and classification of astronomical objects are emerging
topics. Due to the very large number of applications, it is the authors’ intent to narrow down
the discussion to spacecraft guidance, navigation and control (GNC), and the dynamics
reconstruction domain. Nevertheless, besides those falling into the above-mentioned
domains, the most promising applications in space of AI-based techniques are mentioned
within the discussion of the most common network architectures.

The major contributions of this paper are:

• to introduce the bases of machine learning and deep learning that are rapidly growing
within the space community;

• to present a review of the most common artificial neural network architectures used
in the space domain, together with emerging techniques that are still theoretical;

• to present specific applications extrapolating the underlying cores of the different al-
gorithms; in particular, the hybrid applications are highlighted, where novel Artificial
Intelligence techniques are coupled with traditional algorithms to solve their shortcomings;

• to provide a performance comparison of different neural approaches used in guidance,
navigation and control applications that exist in the literature. In general, it is hard
to attribute quantitative metrics to such evaluations, since the applicative scenarios
reported in the literature are different. The paper attempts to condense the information
into a more qualitative comparison.

The paper is structured as follows: Section 2 presents the foundations of machine
learning, deep learning and artificial neural networks, together with a brief theoretical
overview of the main training approaches; Section 3 presents an overview of the most used
artificial neural networks in the spacecraft dynamics identification, navigation, guidance
and control applications. Section 4 reports the applications of several artificial neural
networks in the context of spacecraft system identification and guidance, navigation and
control systems. Finally, Section 5 draws the conclusions of the paper.

Drones 2022, 6, 270 3 of 39

2. Machine Learning and Deep Learning

This section provides the theoretical basis of machine learning and deep learning,
which are fundamental to understanding the core characteristics of these approaches. The
discussion focuses on the domain features that are useful and commonly adopted in specific
space-based applications. The research on machine learning (ML) and deep learning (DL)
is complex and extremely vast. In order to acquire proper knowledge on the topic, the
author suggests referring to [1]. Hereby, only the most relevant concepts are reported in
order to contextualize the work developed in the paper. The first important distinction to
mark is that between the terms machine learning and deep learning. The highlights of the
two approaches are reported in Figure 1.

Figure 1. Differences between machine learning and deep learning [1].

Machine Learning learns to map input to output given a certain world representation
(features) hand-crafted for each task.

Deep learning is a particular kind of machine learning that aims at representing the
world as a nested hierarchy of concepts, which are self-detected by the deep learning
architecture itself.

The paradigm of ML and DL is to develop algorithms that are data-driven. The
information to carry out the task is gathered and derived from either structured or un-
structured data. In general, one would have a given experience E , which can be easily
thought as a set of data D = (x1, x2, . . . , xn). It is possible to divide the algorithms into
three different approaches:

• Supervised learning: Given the known outputs T = (t1, t2, . . . , tn), we learn to yield
the correct output when new datasets are fed.

• Unsupervised Learning: The algorithms exploit regularities in the data to generate an
alternative representation used for reasoning, predicting or clustering.

• Reinforcement Learning: Producing actions A = (a1, a2, . . . , an) that affect the envi-
ronment and receiving rewards R = (r1, r2, . . . , rn). Reinforcement learning is all
about learning what to do (i.e., mapping situations to actions) so as to maximize a
numerical reward.

Even though the boundaries between the approaches are often blurred, the focus of
this survey is to discuss algorithms that take advantage and inspiration from supervised
and reinforcement learning. For this reason, few additional details are provided for such
approaches. Tentative clusters of the different learning approaches and their most used
algorithms are reported in Table 2.

Drones 2022, 6, 270 4 of 39

Table 2. A comprehensive summary for the different learning approaches.

Learning
Approach Features Task Algorithms

Supervised
Learning

It learns by exploiting
input–output
data pairs

Classification

Support Vector Machines,
Discriminant Analysis, Nearest
Neighbour, Artificial
Neural Networks

Regression

Linear regression, Ensemble methods,
Decision Trees, Support Vector
Regression, Artificial
Neural Networks

Unsupervised
Learning

It learns to
extrapolate patterns
and properties of the
structure of
the dataset

Clustering

K-means, Spectral clustering,
Hierarchical clustering, Gaussian
Mixture, Hidden Markov Models,
Artificial Neural Networks

Dimensionality
Reduction

Principal Component Analysis,
Linear Discriminant Analysis,
Artificial Neural Networks

Reinforcement
Learning

It learns the action to
undertake based on
some inputs, in order
to maximize a
given reward.

Model-based
Dynamica Programming,
Model-given methods,
Model-learned methods

Model-free Value based methods,
Policy-based methods

2.1. Supervised Learning

Supervised learning consists of learning to associate some output with a given input,
coherently with the set of examples of inputs~x and targets~t [1]. Quite often, the targets
~t are provided by a human supervisor. Nevertheless, supervised learning refers also to
approaches in which target states are automatically retrieved by the machine learning
model; we use the term this way often throughout this survey. The typical applications of
supervised learning are classification and regression. In a few words, classification is the task
of assigning a label to a set of input data from among a finite group of labels. The output is
a probability distribution of the likelihood of a certain input of belonging to a certain class.
On the other hand, regression aims at modeling the relationships between a certain number
of features and a continuous target variable. The regression task is largely employed in
supervised learning reported in this survey. Supervised learning is applicable to multiple
tasks, both offline [13,14] and online [15,16].

2.2. Unsupervised Learning

Unsupervised learning algorithms are fed with a dataset containing many features.
The system learns to extrapolate patterns and properties of the structure of this dataset. As
reported in [1], in the context of deep learning, the aim is to learn the underlying probability
distribution of dataset, whether explicitly as in density estimation or implicitly for tasks
such as synthesis or de-noising. Some other unsupervised learning algorithms perform
other tasks, such as clustering, which consists of dividing the dataset into separate sets, i.e.,
clusters of similar experiences and data. The unsupervised learning approach has not yet
seen widespread employment in the spacecraft GNC domain.

2.3. Reinforcement Learning

Reinforcement learning is learning what to do, how to map observations to actions, so
as to maximize a numerical reward signal. The learner is not told which actions to take, but
instead must discover which actions yield the most reward by trying them [5].

Drones 2022, 6, 270 5 of 39

One of the challenges that arises in reinforcement learning, and not in other kinds of
learning, is the trade-off between exploration and exploitation. The agent typically needs
to explore the environment in order to learn a proper optimal policy, which determines
the required action in a given perceived state. At the same time, the agent needs to exploit
such information to actually carry out the task. In the space domain, only for online
deployed applications, the balance must be shifted towards exploitation, for practical
reasons. Another distinction that ought to be made is between model-free and model-based
reinforcement learning techniques, as shown in Table 3. Model-based methods rely on
planning as their primary component, and model-free methods primarily rely on learning.
Although there are remarkable differences between these two kinds of methods, there are
also great similarities. We call an environmental model whatever information the agent can
use to make predictions on what will be the reaction of the environment to a certain action.
The environmental model can be known analytically, partially or completely unknown, i.e.,
to be learned. The model-based algorithms need a representation of the environment. If
the agent requires learning the model completely, the exploration is still very important,
especially in the first phases of the training. It is worth mentioning that some algorithms
start off by mostly exploring, and adaptively trade off exploitation and exploration during
optimization, typically ending with very little exploration. For the reasons above, the
model-based approach seems to be beneficial in the context of this survey, as it merges the
advantages of analytical base models, learning and planning. It is important to report some
of the key concepts of reinforcement learning:

• Policy: defines the learning agent’s way of behaving at a given time. Mapping from
perceived states of the environment to actions to be taken when in those states.

• Reward: at each time step, the environment sends to the reinforcement learning agent
a single number called the reward.

• Value Function: the total amount of reward an agent can expect to accumulate in the
future, starting from that state.

Table 3. Differences between model-based and model-free reinforcement learning. In space, a deter-
ministic representation of a dynamical model is generally available. Nevertheless, some scenarios are
unknown (small bodies) or partially known (perturbations).

Model-Free Model-Based

Unknown system dynamics Learnt system dynamics
The agent is not able to make predictions The agent makes prediction

Need for explorations More sample efficient
Lower computational cost Higher computational cost

The standard reinforcement learning theory states that an agent is capable of obtaining
a policy which provides the mapping between a set of states x ∈ X, where X is the set of
possible states, for an action a ∈ A, where A is the set of possible actions. The dynamics of
the agent are basically represented by a transition probability p(xk+1|xk, ak) from one state
to another at a given time step. In general, the learned policy can be deterministic π(xk)
or stochastic π(ak|xk), meaning that the control action follows a conditional probability
distribution across the states. Every time the agent performs an action, it receives a reward
r(xk, ak): the ultimate goal of the agent is to maximize the accumulated discounted reward
R = ∑N

i=k γi−kr(xi, ai) from a given time step k to the end of the horizon N, which could be
N = ∞ in an infinite horizon. The coefficient γ is the discount rate, which determines how
much more current rewards are to be preferred to future rewards. As mentioned, the value
function Vπ is the total amount of reward an agent can expect to accumulate in the future,
in a given state. Note that the value function is obviously associated with a policy:

Vπ(xk) = E[R|xk, ak = π(xk)] (1)

Drones 2022, 6, 270 6 of 39

In most of the reinforcement learning applications, a very important concept is the
action-value function Qπ :

Qπ(xk, ak) = r(xk, ak) + γ ∑
xk+1

p(xk+1|xk, ak)Vπ(xk+1) (2)

The remarkable difference between it and the value function is the fact that the action-
value function tells you the expected cumulative reward at a certain state, given a certain
action. The optimal policy is the one that maximizes the value function π̃ = argmaxπVπ(xk).
In general, an important remark is that reinforcement learning was originally developed
for discrete Markov decision processes. This limitation, which is not solved for many RL
methods, implies the necessity of discretizing the problem into a system with a finite number
of actions. This is sometimes hard to grasp in a domain in which the variables are typically
continuous in space and time (think about the states or the control action) or often discretized
in time for implementation. Thus, the application of reinforcement learning requires smart
ways to treat the problem and dedicated recasting of the problem itself. The reinforcement
learning problem has been tackled using several approaches, which can be divided into
two main categories: the policy-based methods and the value-based methods. The former
ones search for the policy that behaves correctly in a specific environment [17–22]; the
latter ones try to value the utility of taking a particular action in a specific state of the
environment [23,24]. A common categorization adopted in the literature for identifying the
different methods is described below:

• Value-based methods: These methods seek to find optimal value function V and action-
value function Q, from which the optimal policy π is directly derived. The value-
based methods evaluate states and actions. Value-based methods are, for instance,
Q-learning, DQN and SARSA [24].

• Policy-based methods: They are methods whose aim is to search for the optimal policy
π∗ directly, which provides a feasible framework for continuous control. The most
employed policy-based methods are: advantage actor+critic, cross-entropy methods,
deep deterministic policy gradient and proximal policy optimization [17–22].

An additional distinction in reinforcement learning is on-policy and off-policy. On-
policy methods attempt to evaluate or improve the policy that is used to make decisions
during training, whereas off-policy methods evaluate or improve a policy different from
the one used to generate the data, i.e., the experience.

A thorough review, beyond the scope of this paper, is necessary to survey the methods
and approaches of reinforcement learning and deep reinforcement learning to space. Some
very promising examples were developed in [18–20,23,24], and the most active topics in
space applications are reviewed in Section 4.3.

2.4. Artificial Neural Networks

Artificial neural networks represent nonlinear extensions to the linear machine learn-
ing (or deep learning) models presented in Section 2. A thorough description of artificial
neural networks is far beyond the scope of this work. Hereby, the set of concepts necessary
to understand the work is reported. In particular, the universal approximation theory is
described, which forms the foundation for all the algorithms developed in this paper. The
most significant categorization of deep neural networks is into feedforward and recurrent
networks. Deep feedforward networks, also often called multilayer perceptrons (MLPs),
are the most common deep learning models. The feedforward network is designed to
approximate a given function f. According to the task to execute, the input is mapped to an
output value. For instance, for a classifier, the network N maps an input x to a category
y. A feedforward network defines a mapping y = N (x, w) and learns the values of the
parameters w (weights) that result in the best function approximation. These models are
called feedforward because information flows from the input layer, through the intermedi-
ate ones, up to the output y. Feedback connections are not present in which outputs of the

Drones 2022, 6, 270 7 of 39

model are fed back as input to the network itself. When feedforward neural networks are
extended to include feedback connections, they are called recurrent neural networks.

The essence of deep learning, and machine learning also, is learning world structures
from data. All the algorithms falling into the aforementioned categories are data-driven.
This means that, despite the possibility of exploiting an analytical representation of the
environment, the algorithms need to be fed with structures of data to perform the training.
The learning process can be defined as the algorithm by which the free parameters of a
neural network are adapted through a process of stimulation by the environment in which
it works. The type of learning is the set of instructions for how the parameters are changed,
as explained in Section 2. Typically, the following sequence is followed:

1. the environment stimulates the neural network;
2. the neural network makes changes to the free parameters;
3. the neural network responds in a new way according to the new structure.

As one might easily expect, there are several learning algorithms that can consequently
be split into different types. It is possible to divide the supervised learning philosophy into
batch and incremental learning [4]. Batch learning is suitable for the spatial distribution of
data in a stationary environment, meaning that there is no significant time correlation of
data, and the environment reproduces itself identically in time. Thus, for such applications,
it is possible to gather the data into a whole batch that is presented to the learner simulta-
neously. Once the training has been successfully completed, the neural networks should
be able to capture the underlying statistical behavior of the stationary environment. This
kind of statistical memory is used to make predictions exploiting the batch dataset that was
presented. This does not mean that batch learning is not capable of transferring knowledge
to unseen environments or adapting to real-time applications, as shown in [18,25]. On
the other hand, in several applications, the environment is non-stationary, meaning that
information signals coming from the environment may vary with time. Batch learning in
then inadequate, as there are no means to track and adapt to the varying environmental
stimuli. Hence, for on-board learning applications, it is favorable to employ what is called
incremental learning (or online or continuous learning) in which the neural network con-
stantly adapts its free parameters to the incoming information in a real-time fashion, as
proposed in [15,16,26–30].

2.4.1. Universal Approximation Theorem

The universal approximation theorem takes the following classical form [4]. Let
ϕ : R → R be a non-constant, bounded and continuous function (called the activation
function). Let Im denote the m-dimensional unit hypercube [0, 1]m. The space of real-valued
continuous functions on Im is denoted by C(Im). Then, given any ε > 0 and any function
f ∈ C(Im), there exist an integer N, real constants vi, bi ∈ R and real vectors wi ∈ Rm for
i = 1, . . . , N, such that we may define:

F(x) =
N

∑
i=1

vi ϕ
(

wT
i x + bi

)
(3)

As an approximate realization of the function f,

|F(x)− f (x)| < ε (4)

For all x ∈ Im.

2.4.2. Training Algorithms

The basis for most of the supervised learning algorithms is represented by back-
propagation. In general, finding the weights of an artificial neural network means determin-
ing the optimal set of variables that minimizes a given loss function. Given N structured

Drones 2022, 6, 270 8 of 39

data, comprising input x and target t, one can define the loss function at the output of
neuron j for the pth datum presented:

εj(p) = tj(p)− yj(p) (5)

where yj(p) is the output value of the jth output neuron. It is possible to extend this
definition to derive a mean indication of the loss function for the complete output layer.
We can define a total energy error of the network for the pth presented input–target pair:

E =
1
2 ∑

j∈Cj

ε2
j (p) (6)

where Cj is the set of output neurons of the network. As stated, the total energy error of the
network represents the loss function to be minimized during training. Indeed, this function
is dependent on all the free parameters of the network, synaptic weights and biases. In
order to minimize the energy error function, we need to find those weights that vanish the
derivative of the function itself and minimize the argument:

(w, b)T = argmin E(~w,~b) (7)

Closed-form solutions are practically never available, thus it is common practice to
use iterative algorithms that make use of the derivative of the error function to converge to
the optimal value. The back-propagation algorithm is basically a smart way to compute
those derivatives, which can then be employed using traditional minimization algorithms,
such as [31,32]:

• Batch gradient descent;
• Stochastic gradient descent;
• Conjugate gradient;
• Newton and quasi-Newton methods;
• Levenberg–Marquardt;
• Backpropagation through time.

A slightly different approach, highly tailored to the specific application, is the training
through Lyapunov stability-based methods, which will be discussed for the particular
application of dynamics reconstruction. Let us consider a simple method that can be
applied specifically to sequential learning, in the most common network architecture, but
easily extended to batch learning. With reference to Figure 2, the induced local field of
neuron j, which is the input of the activation function φj(·) at neuron j, can be expressed as:

vj(p) = ∑
i∈Ci

wjiyi(p) + bj (8)

where Ci is the set of neurons that share a connection with layer j and bj is the bias term of
neuron j. The output of a neuron is the result of the application of the activation function
to the local field vj:

yj(p) = φj(vj(p)) (9)

In gradient-based approaches, the correction to the synaptic weights wij is performed
according to the direction identified by the partial derivatives (i.e., gradient), which can be
calculated according to the chain rule as:

∂E(p)
∂wij(p)

=
∂E(p)
∂εj(p)

∂εj(p)
∂yj(p)

∂yj(p)
∂vj(p)

∂vj(p)
∂wij(p)

(10)

Drones 2022, 6, 270 9 of 39

Figure 2. Elementary artificial neuron architecture.

Hence, the update to the synaptic weights ∆wij is calculated as a gradient descent step
in the weight space using the derivative of Equation (10):

∆wij = −η
∂E(p)

∂wij(p)
(11)

where η is the tunable learning-rate parameter. The back-propagation algorithm entails
two passages through the network: the forward pass and the backward pass. The former
evaluates the output of the network and the function signal of each neuron. The weights are
unaltered during the forward pass. The backward pass starts from the output layer by passing
the loss function back to the input layer, calculating the local gradient for each neuron.

2.4.3. Incremental Learning

Incremental learning stands for the process of updating the weights each time a pair
of input–target ((x, t)p) is presented. The two mentioned passes are executed at each step.
This is the mode utilized for an online application where the training process can potentially
never stop, as the data keep on being presented to the network. In incremental learning,
often referred to online learning, the system is trained continuously as new data instances
become available. They could be clustered in mini-batches or come as datum by datum.
Online learning systems are tuned to set how fast they should adapt to incoming data:
typically, such a parameter is referred to as learning rate [33]. A high learning rate means
that the system reacts immediately to new data, by adapting itself quickly. However, a
high learning rate means that the system will also tend to forget and replace the old data.
On the other hand, a low learning rate makes the system more stiff, meaning that it will
learn more slowly. Additionally, the system will be less sensitive to noise present in the
new data or to mini-batches containing non-representative data points, such as outliers. In
addition, Lyapunov-based methods are very suitable for incremental learning due to their
inherent step-wise trajectory evaluation of the stability of the learning rule. Two examples
of incremental learning system are shown in Figures 3 and 4.

Figure 3. Schematics of online incremental learning for spacecraft guidance [27].

Drones 2022, 6, 270 10 of 39

Figure 4. Example of incremental learning for spacecraft navigation [29].

2.4.4. Batch Learning

Batch learning algorithms execute the weight updates only after all the input–target
data are presented to the network [1,33]. One complete presentation of the training dataset
is typically called an epoch. Hence, after each epoch it is possible to define an average
energy error function, which replaces Equation (6) in the back-propagation algorithm:

Ẽ =
1

2N
N
∑
p=1

∑
j∈Cj

ε2
j (p) (12)

The forward and backward passes are performed after each epoch. In batch learning,
the system is not capable of learning while running. The training dataset consists of all the
available data. This generally takes a lot of time and computational effort, given the typical
dataset sizes. For this reason, the batch learning is generally performed on the ground. The
system that is trained with batch learning first learns offline and then is deployed and runs
without updating itself: it just applies what it has learned.

2.4.5. Overfitting and Online Sampling

In machine learning, a very common issue encountered in a wrong training process is
overfitting. In general terms, overfitting refers to the behavior of a model to perform well
on the training data, without generalizing correctly. Complex models, such as deep neural
networks, are capable of extracting underlying patterns in the data, but if the dataset is
not chosen coherently, the model will most likely form non-existing patterns, or simply
patterns that are not useful for generalization [1,33]. The main causes of overfitting can be:

• the training dataset is too noisy;
• the training dataset is too small, which causes sampling noise;
• the training set includes uninformative features.

For instance, in dynamics reconstruction, a high sampling frequency of the state and
action is not beneficial for the training. Suppose the first batch of data for learning is very
much localized in a given portion of space, say,R9. Several hyper-surfaces approximate the
given transition between xk and xk+1. For the sake of explanation, Figure 5 demonstrates
the concept in a fictitious 1D model identification. The learning data are enclosed in a
restricted region; hence, several curves yield a low loss function in the back-propagation
algorithm, but the model is definitely not suitable for generalization. The limitation of the
dataset to a bounded and restricted region is not beneficial for identification of dynamics.

Drones 2022, 6, 270 11 of 39

Especially in a preliminary learning process, this would drive the neural network to a
wrong convergence point.

Figure 5. 1D dataset for incremental online learning [27].

3. Types of Artificial Neural Networks

This section provides insights on the most used architecture in the space domain. The
reader is suggested to refer to [1,3] for a comprehensive outlook on the core working princi-
ples of neural networks. This survey targets the application of artificial neural networks in
space systems; thus, only relevant architectures, namely, those actually investigated and
implemented in spacecraft GNC systems, are detailed. A summary of the most common
neural network architectures is reported in Table 4.

Table 4. Most popular activation functions used in MLP.

Activation Function Φ Φ
′ Codomain Ref.

Hyperbolic Tangent tanh x 1− tanh x (−1, 1) [27,34]
Sigmoid 1/(1 + e−x) Φ(x)(1−Φ(x)) (0, 1) [34,35]

ReLu max(0, x) max(0, x) [0, ∞) [27,36,37]
Signum sgn(x) 2δ0 [−1, 1]

Heaviside step (sgn(x) + 1)/2 δ0 [0, 1] [38]
Softmax exi / ∑n

j exj Φi(δij −Φj) (0, 1) output

3.1. Feed-Forward Networks

Feedforward neural networks (FFNN) are the oldest and most common network
architecture, and they form the fundamental basis for most of the deep learning models.
The term feedforward refers to the information flow that the network possesses: the
network is evaluated starting from ~x to the output ~y. The network generates an acyclic
graph. Two important design parameters to take into account when designing a neural
network are:

• Depth: Typical neural networks are actually nested evaluations of different functions,
commonly named input, hidden and output layers. In practical applications, low-level
features of the dataset are captured by the initial layers up to high-level features
learned in the subsequent layer, all the way to the output layer.

• Width: Each layer is generally a vector valued function. The size of this vector valued
function, represented by the number of neurons, is the width of the model or layer.

Feedforward networks are a conceptual stepping stone on the path to recurrent
networks [1,3,4].

Drones 2022, 6, 270 12 of 39

3.1.1. Multilayer Perceptron

The multilayer perceptron is the most used deep model that is developed to build an
approximation of a given function f̃ [1,3,4]. The network ~y = N (~x, ~w) defines the mapping
between input and output and learns the optimal values of the weights ~w that yield the
best function approximation. The elementary unit of the MLP is the neuron. With reference
to Figure 2, the induced local field of neuron j, which is the input of the activation function
φj(·) at neuron j, can be expressed as:

vj(p) = ∑
i∈Ci

wjiyi(p) + bj (13)

where Ci is the set of neurons that share a connection with layer j; bj is the bias term of
neuron j. The output of a neuron is the result of the application of the activation function
to the local field vj:

yj(p) = φj(vj(p)) (14)

The activation function (also known as unit function or transfer function) performs
a non-linear transformation of the input state. The most common activation functions
are reported in Table 5. Among the most commonly used, at least in spacecraft related
applications, are the hyperbolic tangent and the ReLu unit. The softmax function is
basically an indirect normalization: it maps a n-dimensional vector x into a normalized
n-dimensional output vector. Hence, the output vector values represent probabilities for
each of the input elements. The softmax function is often used in the final output layer of
a network; therefore, it is generally different from the activation functions used in each
hidden layer. For the sake of completeness, a perceptron is originally defined as a neuron
that has the Heaviside function as the activation function. An example of an MLP is
reported in Section 4. The MLP has been successfully applied in classification, regression
and function approximations.

3.1.2. Radial-Basis Function Neural Network

A radial-basis-function neural network is a single-layer shallow network whose neu-
rons are Gaussian functions. This network architecture possesses a quick learning process,
which makes it suitable for online dynamics identification and reconstruction. The high-
lights of the mathematical expression of the RBFNN are reported here for clarity. For a
generic state input ~δχ ∈ Rn, the components of the output vector ~γ ∈ Rj of the network are:

γl(~δχ) =
m

∑
i=1

wilΦi(~δχ) (15)

In a compact form, the output of the network can be expressed as:

γ(~δχ) = WTΦ(~δχ) (16)

where ~W = [wil] for i = 1, ..., m, l = 1, ..., j is the trained weight matrix and
~Φ(δχ) = [Φ1(δχ) Φ2(δχ) · · · Φm(δχ)]T is the vector containing the output of the radial

basis functions, evaluated at the current system state. The RBF network learns to designate
the input to a center, and the output layer combines the outputs of the radial basis function
and weight parameters to perform classification or inference. Radial basis functions are
suitable for classification, function approximation and time series prediction problems.
Typically, the RBF network has a simpler structure and a much faster training process with
respect to MLP, due to the inherent capability of approximating nonlinear functions using
shallow architecture. As one could note, the main difference in the RBFNN with respect to
the MLP is that the kernel is a nonlinear function of the information flow: in other words,
the actual input to the layer is the nonlinear radial function Φ(δχ) evaluated at the input

Drones 2022, 6, 270 13 of 39

data δχ, most commonly Gaussian ones. The most used radial-basis functions that can be
used and that are found in space applications are [15,29,39]:

Gaussian : Φ(r) = e−
(r−c)2

2σ2

Φ(r) =
1

(σ2 + r2)α

Linear : Φ(r) = r

Thin-plate Spline : Φ(r) = r2ln(r)

Logistic Function : Φ(r) =
1

1 + e(r/σ2)−θ

where r is the distance from the origin, c is the center of the RBF, σ is a control
parameter to tune the smoothness of the basis function and θ is a generic bias. The number
of neurons is application-dependent, and it shall be selected by trading off the training
time and approximation [29], especially for incremental learning applications. The same
consideration holds for the parameters η = 1

σ , which impact the shape of the Gaussian
functions. A high value for η sharpens the Gaussian bell-shape, whereas a low value
spreads it on the real space. On the one hand, a narrow Gaussian function increases the
responsiveness of the RBF network; on the other hand, in the case of limited overlapping
of the neuronal functions due to overly narrow Gaussian bells, the output of the network
vanishes. Hence, ideally, the parameter η is selected based on the order of magnitude of the
exponential argument in the Gaussian function. The output of the neural network hidden
layer, namely, the radial functions evaluation, is normalized:

~Φnorm(δχ) =
Φ(δχ)

∑m
i=1 Φi(δχ)

(17)

The classic RBF network presents an inherent localized characteristic, whereas the
normalized RBF network exhibits good generalization properties, which decreases the
curse of dimensionality that occurs with classic RBFNN [39]. A schematic of a RBFNN is
reported in Figure 6.

Figure 6. Architecture of the RBF network. The input, hidden and output layers have J1, J2 and J3
neurons, respectively [39].

Drones 2022, 6, 270 14 of 39

Table 5. Summary of most common ANN architecture used in space dynamics, guidance, navigation
and control domain. The training types are supervised (S), unsupervised (U) and reinforcement
learning (R).

Network Type Architecture Training Algorithm Space Applications

Feedforward

MLP S/R Backpropagation
Dynamics approximation,
value function
approximation

RBFNN S/U/R
Backpropagation/
Lyapunov/K-means
clustering

Dynamics approximation,
regression, time-series
prediction

AE U Backpropagation

Dimensionality reduction,
state-space modelling, data
encoding, anomaly
detection

CNN S Backpropagation
Feature detection, image
classification, vision-based
navigation

Recurrent

LRNN S/R Backpropagation
through time

Dynamics approximation,
time-series prediction

NARX S/R Backpropagation
through time

Dynamics approximation,
time-series prediction

HNN S Backpropagation
through time

Combinatorial
optimization, system
identification

LSTM S/R Backpropagation
through time

Time-series prediction,
dynamics approximation

GRU S/R Backpropagation
through time

Time-series prediction,
dynamics approximation,
anomaly detection

3.1.3. Autoencoders

The autoencoder is a particular feedforward neural network trained using unsuper-
vised learning. The autoencoder learns to reproduce the unit mapping from a certain
information input vector ~I ∈ Rn×n to ~I itself. The topological constraint dictates that
the number of neurons in the next layer must be lower than the previous one. Such a
constraint forces the network to learn a description of the input vector that belongs to
the lower-dimensional space of the subsequent layers without losing information. The
amount of information lost while encoding a downsizing the input vector is measured by
the fitting discrepancy between the input and the reconstructed vector ~I [31,32,40]. The
desired lower-dimensional vector concentrating the information contained in the input
vector is the layer at which the network starts growing again; see Figure 7. It is important to
note that the structure of an autoencoder is exactly the same as the MLP, with the additional
constraint of having the same numbers of input and output nodes.

The autoencoders are widely used for unsupervised applications: typically, they are
used for denoising, dimensionality reduction and data representation learning.

3.1.4. Convolutional Neural Networks

Feedforward networks are of extreme importance to machine learning applications
in the space domain. A specialized kind of feedforward network, often referred as a
stand-alone type, is the convolutional neural network (CNN) [11]. Convolutional networks
are specifically tailored for image processing; for instance, CNNs are used for object
recognition, image segmentation and classification. The main reason why traditional
feedforward networks are not suitable for handling images is due to the fact that one

Drones 2022, 6, 270 15 of 39

image can be thought of as a large matrix array. The number of weights, or parameters,
to efficiently process large two-dimensional images (or three if more image channels are
involved) quickly explodes as the image resolution grows. In general, given a network
of width W and depth D, the number of parameters nw for a fully connected network is
nw ∼ DW2 + W. For instance, a low resolution image ~I ∈ R32×32 has a width of W2, by
simply unrolling the image into a 1D array: this means that nw 106. A high resolution
image, e.g.,~I ∈ R1024×1024, quickly reaches nw ∼ 1012. This shortcoming results in complex
training procedures, very much subject to overfitting. The convolutional neural network
paradigm stands for the idea of reducing the number of parameters starting from the
main assumptions:

1. Low-level features are local;
2. Features are translationally invariant;
3. High-level features are composed of low-level features.

Such assumptions allow a reduction in the number of parameters while achieving
better generalization and improved scalability to large datasets. Indeed, instead of using
fully connected layers, a CNN uses local connectivity between neurons; i.e., a neuron
is only connected to nearby neurons in the next layer [32]. The basic components of a
convolutional neural network are:

• Convolutional layer: the convolutional layer is core of the CNN architecture. The
convolutional layer is built up by neurons which are not connected to every single
neuron from the previous layer but only to those falling inside their receptive field.
Such architecture allows the network to identify low-level features in the very first
hidden layer, whereas high-level features are combined and identified at later stages
in the network. A neuron’s weight can be thought of as a small image, called the
filter or convolutional kernel, which is the size of the receptive field. The convolutional
layer mimics the convolution operation of a convolutional kernel on the input layer
to produce an output layer, often called the feature map. Typically, the neurons that
belong to a given convolutional layer all share the same convolutional kernel: this
is referred to as parameter sharing in the literature. For this reason, the element-wise
multiplication of each neuron’s weight by its receptive field is equivalent to a pure
convolution in which the kernel slides across the input layer to generate the feature
map. In mathematical terms, a convolutional layer, with convolutional kernel ~W,
operating on the previous layer ~I (being either an intermediate feature map or the
input image), performs the following operation:

fi,j = (~I ∗ ~W) (18)

where fi,j is the (i, j) position of the output feature map.
• Activation layer: An activation function is utilized as a decision gate that aids the

learning process of intricate patterns. The selection of an appropriate activation func-
tion can accelerate the learning process [11]. The most common activation functions
are the same as those used for the MLP and are presented in Table 4.

• Pooling layer: The objective of a pooling layer is to sub-sample the input image or the
previous layer in order to reduce the computational load, the memory usage and the
number of parameters, which prevents overfitting while training [11,33]. The pooling
layer works exactly with the same principle of the receptive field. However, a pooling
neuron has no weights; hence, it aggregates the inputs by calculating the maximum or
the average within the receptive field as output.

• Fully-connected layer: Similarly to MLP as for traditional CNN architectures, a fully
connected layer is often added right before the output layer to further capture non-
linear relationships of the input features [11,32]. The same considerations discussed
for MLP hold for CNN fully connected layers.

An example of a CNN architecture is shown in Figure 8.

Drones 2022, 6, 270 16 of 39

Figure 7. Basic autoencoder structure.

Figure 8. Example CNN architecture with convolutional, max-pooling and fully connected layers.

3.2. Recurrent Neural Networks

Recurrent neural networks comprise all the architectures that present at least one feed-
back loop in their layer interactions [1]. A subdivision that is seldom used is between finite
and infinite impulse recurrent networks. The former is given by a directed acyclic graph
(DAG) that can be unrolled in time and replaced with a feedforward neural network. The
latter is a directed cyclic graph (DCG) that cannot be unrolled and replaced similarly [32].
Recurrent neural networks have the capability of handling time-series data efficiently. The
connections between neurons form a directed graph, which allows internal state memory.
This enables the network to exhibit temporal dynamic behaviors.

3.2.1. Layer-Recurrent Neural Network

The core of the layer-recurrent neural network (LRNN) is similar to that of the standard
MLP [1]. This means that the same considerations for model depth, width and activation
functions hold in the same manner. The only addition is that in the LRNN, there is a
feedback loop with a single delay around each layer of the network, except for the last layer.
A schematic of the LRNN is sketched in Figure 9.

3.2.2. Nonlinear Autoregressive Exogenous Model

The nonlinear autoregressive exogenous model is an extension of the LRNN that
uses the feedback coming from the output layer [41]. The LRNN owns dynamics only at
the input layer. The nonlinear autoregressive network with exogenous inputs (NARX) is
a recurrent dynamic network with feedback connections enclosing several layers of the
network. The NARX model is based on the linear ARX model, which is commonly used in
time-series modeling. The defining equation for the NARX model is

yk = N (yk−1, yk−2, . . . , yk−n, uk−1, uk−2, . . . , uk−n) (19)

Drones 2022, 6, 270 17 of 39

where y is the network output and u is the exogenous input, as shown in Figure 10. Basically,
it means that the next value of the dependent output signal y is regressed on previous
values of the output signal and previous values of an independent (exogenous) input signal.
It is important to remark that, for a one tap-delay NARX, the defining equation takes the
form of an autonomous dynamical system.

Figure 9. Schematic of a layer-recurrent neural network. The feedback loop is a tap-delayed
signal rout.

Figure 10. Schematic of a nonlinear autoregressive exogenous model. The feedback loop is a tap-
delayed signal rout [27].

3.2.3. Hopfield Neural Network

The formulation of the network was due to Hopfield [42], but the formulation by
Abe [43] is reportedly the most suited for combinatorial optimization problems [44], which
are of great interest in the space domain. For this reason, here the most recent architecture
is reported. A schematic of the network architecture is shown in Figure 11.

Figure 11. The Hopfield neural network structure [44].

Drones 2022, 6, 270 18 of 39

In synthesis, the dynamics of the i-th out of N neurons is written as:

dpi
dt

=
N

∑
j=1

wijsj − bi (20)

where pi is the total input of the i-th neuron; wij and bi are parameters corresponding, respec-
tively, to the synaptic efficiency associated with the connection from neuron j to neuron i
and the bias of the neuron i. The term si is basically the equivalent of the activation function:

si = ci tanh
pi
β

(21)

where β > 0 is a user-defined coefficient, and ci is the user-defined amplitude of the
activation function. The recurrent structure of the network entails the dynamics of the
neurons; hence, it would be more correct to refer to p(t) and s(t) as functions of time or any
other independent variable. An important property of the network, which will be further
discussed in the application for parameter identification, is that the Lyapunov stability
theorem can be used to guarantee its stability. Indeed, since a Lyapunov function exists, the
only possible long-term behavior of the neurons is to asymptotically approach a point that
belongs to the set of fixed points, meaning where dV

dt = 0, V being the Lyapunov function
of the system, in the form:

V = −1
2

N

∑
i=1

N

∑
j=1

wijsisj +
N

∑
i=1

bisi = −
1
2
~sTW~s +~sT~b (22)

where the right-hand term is expressed in a compact form, with~s, the vector of s neuron
states, and~b, the bias vector. A remarkable property of the network is that the trajectories
always remain within the hypercube [−ci, ci] as long as the initial values belong to the
hypercube too [44,45]. For implementation purposes, the discrete version of the HNN is
employed, as was done in [44,46].

3.2.4. Long Short-Term Memory

The long-short term memory network is a type of recurrent neural network widely
used for making predictions based on times series data. LSTM, first proposed by Hochre-
iter [47], is a powerful extension of the standard RNN architecture because it solves the
issue of vanishing gradients, which often occur in network training. In general, the repeating
module in a standard RNN contains a single layer. This means that if the RNN is unrolled,
you can replicate the recurrent architecture by juxtaposing a single layer of nuclei. LSTMs
can also be unrolled, but the repeating module owns four interacting layers or gates. The
basic LSTM architecture is shown in Figure 12.

The core idea is that the cell state lets the information flow: it is modified by the
three gates, composed of a sigmoid neural net layer and a point-wise multiplication
operation. The sigmoid layer of each gate outputs a value ∈ [0, 1] that defines how much
of the core information is let through. The basic components of the LSTM network are
summarized here:

• Cell state (C): The cell state is the core element. It conveys information through
different time steps. It is modified by linear interactions with the gates.

• Forget gate (f): The forget gate is used to decide which information to let through. It
looks at the input xk and output of the previous step yk−1 and yields a number ∈ [0, 1]
for each element of the cell state. In compact form:

f = σ(W f · [yk−1, xk] +~b f] (23)

• Input gate (i): The input gate is used to decide what piece of information to include in
the cell state. The sigmoid layer is used to decide on which value to update, whereas

Drones 2022, 6, 270 19 of 39

the tanh describes the entities for modification, namely, the values. It then generates a
new estimate for the cell state C̃:

i = σ(Wi · [yk−1, xk] +~bi)

C̃k = tanh(Wc · [yk−1, xk] +~bc)
(24)

• Memory gate: The memory gate multiplies the old cell state with the output of the
forget gate and adds it to the output of the input gate. Often, the memory gate is not
reported as a stand-alone gate, due to the fact that it represents a modification of the
cell state itself, without a proper sigmoid layer:

Ck = f � Ck−1 + i� C̃k (25)

• Output gate: The output gate is the final step that delivers the actual output of the
network yk, a filtered version of the cell state. The layer operations read:

o = σ(Wo · [yk−1, xk] +~bo)

yk = o� tanh Ck
(26)

Figure 12. The core components of the LSTM are the cell (C), the input gate (i), the output gate (o) and
the forget gate (f) [47].

In contrast to deep feedforward neural networks, having a recurrent architecture,
LSTMs contain feedback connections. Moreover, LSTMs are well suited not only for
processing single data points, such as input vectors, but efficiently and effectively handle
sequences of data. For this reason, LSTMs are particularly useful for analyzing temporal
series and recurrent patterns.

3.2.5. Gated Recurrent Unit

The gated recurrent unit (GRU) was proposed by Cho [48] to make each recurrent unit
adaptively capture dependencies of different time scales. Similarly to the LSTM unit, the
GRU has gating units that modulate the flow of information inside the unit, but without
having a separate memory cells [48,49]. The basic components of GRU share similarities
with LSTM. Traditionally, different names are used to identify the gates:

• Update gate (u): The update gate defines how much the unit updates its value or
content. It is a simple layer that performs:

u = σ(Wu · [yk−1, xk] +~bu) (27)

Drones 2022, 6, 270 20 of 39

• Reset gate r: The reset gate effectively makes the unit process the input sequence,
allowing it to forget the previously computed state:

r = σ(Wr · [yk−1, xk] +~br) (28)

The output of the network is calculated through a two-step update, entailing a candi-
date update activation ỹk calculated in the activation h layer and the output yk:

ỹk = tanhWh · [yk−1, xk] +~bh

yk = (1− u)� yk−1 + u� ỹk
(29)

A schematic of GRU network is reported in Figure 13.

Figure 13. The core components of the GRU are the reset gate (r) and the update gate (u) coupled with
the activation output composed of the tanh layer.

3.3. Spiking Neural Networks

Spiking neural networks (SNN) are becoming increasingly interesting to the space
domain due to their low-power and energy efficiency. Indeed, small satellite missions
entail low-computational-power devices and in general lower system power budgets.
For this reason, SNNs represent a promising candidate for the implementation of neural-
based algorithms used for many machine learning applications: among those, the scene
classification task is of primary importance for the space community. SNNs are the third
generation of artificial neural networks (ANNs), where each neuron in the network uses
discrete spikes to communicate in an event-based manner. SNNs have the potential
advantage of achieving better energy efficiency than their ANN counterparts. While
generally a loss of accuracy in SNN models is reported, new algorithms and training
techniques can help with closing the gap in accuracy performance while keeping the low-
energy profile. Spiking neural networks (SNNs) are inspired by information processing in
biology. The main difference is that neurons in ANNs are mostly non-linear but continuous
function evaluations that operate synchronously. On the other hand, biological neurons
employ asynchronous spikes that signal the occurrence of some characteristic events by
digital and temporally precise action potentials. In recent years, researchers from the
domains of machine learning, computational neuroscience, neuromorphic engineering
and embedded systems design have tried to bridge the gap between the big success of
DNNs in AI applications and the promise of spiking neural networks (SNNs) [50–52]. The
large spike sparsity and simple synaptic operations (SOPs) in the network enable SNNs to
outperform ANNs in terms of energy efficiency. Nevertheless, the accuracy performance,

Drones 2022, 6, 270 21 of 39

especially in complex classification tasks, is still superior for deep ANNs. In the space
domain, the SNNs are at the earliest stage of research: mission designers strive to create
algorithms characterized by great computational efficiency and low power applications;
hence, the SNNs represent an interesting opportunity that ought to be mentioned in this
review, although they are not yet applied to guidance, navigation and control applications.
Finally, SNNs on neuromorphic hardware exhibit favorable properties such as low power
consumption, fast inference and event-driven information processing. This makes them
interesting candidates for the efficient implementation of deep neural networks particularly
utilized in image classification.

The most peculiar feature of SNNs is that the neurons possess temporal dynamics:
typically, an electrical analogy is used to describe their behavior. Each neuron has a voltage
potential that builds up depending on the input current that it receives. The input current is
generally triggered by the spikes the neuron receives. A schematic of the neuron parameters
can be seen in Figures 14 and 15. There are numerous neural architectures that combine
these notions into a set of mathematical equations; nevertheless, the two most common
alternatives are the integrate-and-fire neuron and the leaky-integrate-and-fire neuron.

Figure 14. Architecture of a simple spiking neuron. Spikes are received as inputs, which are then
either integrated or summed depending on the neuron model. The output spikes are generated when
the internal state of the neuron reaches a given threshold.

Figure 15. An illustrative schematic depicting the membrane potential reaching the threshold, which
generates output spikes [51].

Drones 2022, 6, 270 22 of 39

3.3.1. Types of Neurons

• Integrate and fire (IF): The IF neuron model assumes that spike initiation is governed
by a voltage threshold. When the synaptic membrane reaches and exceeds a certain
threshold, the neuron fires a spike and the membrane is set back to the resting voltage
Vrest. In mathematical terms, its simplest form reads:

C
dV(t)

dt
= i(t) (30)

• Leaky integrate and fire (LIF): The LIF neuron is a slightly modified version of the
IF neuron model. Indeed, it entails an exponential decrease in membrane potential
when not excited. The membrane charges and discharges exponentially in response to
injected current. The differential equation governing such behavior can be written as:

C
dV(t)

dt
+ λV(t) = i(t) (31)

where λ is the leak conductance and V is again the membrane potential with respect
to the rest value.

As mentioned, the list is not extensive, and the reader is suggested to refer to [53] for a
comprehensive review of neuron models.

3.3.2. Coding Schemes

The transition between dense data and sparse spiking patterns requires a coding
mechanism for input coding and output decoding. For what concerns the input coding, the
data can be transformed from dense to sparse spikes in different ways, among which the
most used are:

• Rate coding: it converts the input intensity into a firing rate or spike count;
• Temporal (or latency) coding: it converts the input intensity to a spike time or relative

spike time.

Similarly, in output decoding, the data can be transformed from sparse spikes to
network output (such as classification class) in different ways, among which the most
used are:

• Rate coding: it selects the output neuron with the highest firing rate, or spike count,
as the predicted class;

• Temporal (or latency) coding: it selects the output neuron that fires first, or before a
given threshold time, as the predicted class

Roughly speaking, the current literature agrees on specific advantages for both the
coding techniques. On one hand, the rate coding is more error tolerant given the re-
duced sparsity of the neuron activation. Moreover, the accuracy and learning convergence
have shown superior results in rate-based applications so far. On the other hand, given
the inherent sparsity of the encoding-decoding scheme, latency-based approaches tend
to outperform the rate-based architectures in inference, training speed and, above all,
power consumption.

4. Applications in Space

This section provides an overview of the space domain tasks that are currently being
investigated by the research community. The paper highlights the characteristics that
are peculiar to GNC algorithms, referencing other domains’ literature when needed. In
addition, a short paragraph on the challenges of dataset availability and data validation
is presented.

Drones 2022, 6, 270 23 of 39

4.1. Identification of Neural Spacecraft Dynamics

The capability of using an ANN to approximate the underlying dynamics of a space-
craft is used to enhance the on-board model accuracy and flexibility to provide the space-
craft with a higher degree of autonomy. There are different approaches in the literature
that could be adopted to tackle the system identification and dynamics reconstruction task,
as show in Figure 16. In the following section, the three analyzed methods are described;
recall the universal approximation theorem reported in Section 2.

Dynamics Reconstruction

Figure 16. Identification of system dynamics: different approaches to reconstructing system dynami-
cal behavior.

4.1.1. Fully Neural Dynamics Learning

The dynamical model of a system delivers the derivative of the system state, given the
actual system state and external input. Such an input–output structure can be fully approx-
imated by an artificial neural network model. The dynamics are entirely encapsulated in
the weights and biases of the network N . The neural network is stimulated by the actual
state and the external output. In turn, the time derivative of the state, or simply the system
state at the next discretization step, is yielded as output, as shown in Figure 17:

~̇x = N (~x,~u)→ ~xk+1 = Ñ (~xk,~uk) (32)

Input Layer ∈ ℝ� Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹� Output Layer ∈ ℝ�

System State

Control Input

Prediction

Figure 17. Dynamical reconstruction as a neural network model.

The method relies on the universal approximation theorem, since it is based on the
assumption that there exists an ANN that approximates the dynamical function with a
predefined approximation error. The training set is simply composed of input–output pairs,
where the input is a stacked vector of system states and control vectors.

The result is that the full dynamics is encapsulated into a neural network model that
can be used to generate prediction of future states [16,54]. The dynamics reconstruction

Drones 2022, 6, 270 24 of 39

based solely on artificial neural networks largely benefits by the employment of recurrent
neural networks, rather than simpler feedforward networks. Indeed, literature, although
rather poor, employ Recurrent Neural Networks to perform the task [25,27,54]. The re-
current architecture owns an inherently more complex structure but maintains a brief
evaluation time make it a suitable architecture for on-board applications. As mentioned,
Recurrent Networks have the capability of handling time-series data efficiently because the
connections between neurons form a directed graph, which allows an internal state mem-
ory. This enables the network to exhibit temporal dynamic behaviors. When dealing with
dynamics identification, it is crucial to exploit the temporal evolution of the states; hence,
RNN shows superior performances with respect to MLP. In [16], the different propagation
of the feedforward (MLP) and recurrent neural networks, initialized equally and trained in
the same scenario, are compared. The prediction position and velocity accuracy, compared
with the analytical nonlinear J2-perturbed model, demonstrates the superior performance
in dynamics reconstruction by employing recurrent architectures.

The methodology reported so far relied on FFNN or RNN that are based on the
function approximation of the state-space representation of the dynamics. They do not
explicitly reconstruct the definition of the Markov problem. An alternative is to use a
predictive autoencoder (AEs), a modified version of traditional autoencoders, which is
able to learn a nonlinear model in a state-space representation from a dataset comprising
input–output tuples [40].

A tentative qualitative summary of the most used ANN architecture for system iden-
tification is reported in Table 6. The learning time represents the effectiveness of the
incremental learning performed on-board; hence, it is estimated with reference to the
characteristic time of the motion, for instance, the orbital period.

Table 6. Summary of typical and most successful neural networks for fully neural dynamics learning.

Application Type of ANN Accuracy Learning Time Ref.

Fully-Neural MLP Low Fast [27,55]
LRNN High Slow [27]

Dynamics Learning NARX High Slow [27,56,57]
AE Medium Fast [40,58]

4.1.2. Dynamical Uncertainties and Disturbance Reconstruction

The second method uses the capability of the artificial neural networks to approximate
an unknown function. In particular, it is wise to exploit all analytical knowledge we may
have of the environment. Nevertheless, most of the time, the analytical models encompass
linearization and do not model perturbations, either because they are analytically complex
or are simply unknown. In view of future space missions involving other bodies, such
as asteroids that produce gravitational perturbations which are highly uncertain and are
subjected to unknown physical influences, the capability of ANNs to estimate the states
of the satellites can also be used to estimate the uncertainties that could be analyzed
further while understanding the physical phenomena. To improve the performance of
the navigation or the control, neural networks are employed to compensate for the effects
of the modeling error, external disturbance and nonlinearities. Most of the researchers
focused their efforts on coupling the neural network with a controller to take into account
modeling errors, as found in [34,35,38,59]. In this field, the ANN is used to compensate for
external disturbance [35], or to compensate for model inversion [59] or spacecraft uncertain
properties [34]. Nevertheless, besides eliminating spacecraft uncertainties used in the
controller, the system identification can be used also to enhance disturbance estimation
and navigation overall, as in [29,30]. In [29], a radial-basis-function-neural-network-aided
adaptive extended Kalman filter (RBFNN-AEKF) for state and disturbance estimation was
developed. The neural network estimates the unmodeled terms which are fed into the EKF
as an additional term to the state and covariance prediction step. The approach proposed
by Harl et al. [30], the modified state observer, allows for the estimation of uncertainties

Drones 2022, 6, 270 25 of 39

in nonlinear dynamics, and in addition, providing estimates of the system states. The
observer structure contains neural networks whose outputs are the uncertainties in the
system. In brief, the methods can be summarized into three key-points:

• The ANN is used to learn and output an estimate of the disturbance or mismodeled
terms that is used in the guidance, navigation and control to deliver a better state,
disturbance or error estimate.

• The ANN learning is fully performed incrementally online. This means that no prior
knowledge or learning has to be performed beforehand. This dramatically increases
the flexibility of the approach.

• The ANN learning does not replace the GNC system, but it rather enhances it and
makes it more robust.

Regardless of the application, the goal of this dynamics reconstruction approach is
to reconstruct a perturbation term, whatever the source is. It is remarkable that one could
derive an underlying architecture that is common to all the mentioned researches. The idea
is to have an observer and a supervised learning method that makes use of the Lyapunov
stability theorem to guarantee convergence of the estimation. In general, the simplest form
of each algorithm can be developed as follows. Let us assume the actual system dynamics
are described by the following set of non-linear differential equations:

~̇x = f (~x) + dext (33)

where d is the external disturbance term. The actual system dynamics can be rewritten as:

~̇x = A ·~x + d(~x) (34)

where the term d captures all the non-linearities together with the disturbances external to
the system, namely, d = f (~x)− A + dext. The state observer can be constructed as follows:

~̇̂x = A · ~̂x + d̂(~̂x) + Kh(~x− ~̂x) (35)

where d̂ is estimated using the ANN system that we are deploying and Kh is the observer
gain matrix. The observer error dynamics can be derived as:

~e = ~x− ~̂x (36)

~̇e = ~̇x− ~̇̂x = d(~x)− d̂(~̂x)− Kh(~x− ~̂x) (37)

The neural network learning, meaning the weights update rule, generally relies on
the observer error dynamics [29,30,59], targeting convergence and stability of the weights
matrix Ŵ and the error e. Let us assume that we want to use radial-basis-function neural
network: when invoking the universal approximation theorem for neural networks, we
can assume there exists an ideal approximation of the disturbance term d:

d(~x) = WTΦ(~x) + ε (38)

where ε is a bounded arbitrary approximation error. Consequently, the error in estimation
can be written as:

d(~x)− d̂(~̂x) = WTΦ(~x) + ε− ŴTΦ(~̂x) (39)

By adding and subtracting the term W · Φ(~̂x) and performing few mathematical
manipulations, Equation (39) can be expressed as:

d̃ = W̃TΦ(~̂x) + ε′ (40)

Drones 2022, 6, 270 26 of 39

where W̃ = W − Ŵ and the bounded term ε′ = ε + W · [Φ(~x)− Φ(~̂x)]. The aim of the
learning rule is to drive the dynamics error to zero, and also to force the weights to converge
to the ideal ones. Namely:

~e→~0, W̃ → ~[0]

If we reason for a single channel, i.e., the single state approach, by introducing
Wi = [w1i w2i ... wmi]

T , i = 1:6, the following Lyapunov function can be constructed to
derive the stable learning rule:

Vi =
1
2

W̃T
i W̃i +

1
2

e2
i (41)

By recalling Equations (37) and (40), the derivative of the Lyapunov function can be
written as:

V̇i = W̃T
i (

˙̃Wi + eiΦ(~̂x)) + eiε
′ − Khe2

i (42)

In order to fulfill the hypothesis of the Lyapunov stability theorem, the weights update
rule is derived to drive the derivative in Equation (42) < 0. Recalling from Equation (40)
that ˙̃W = − ˙̂W, the expression for a single-state weight update rule:

˙̂Wi = eiΦ(~̂x) (43)

In compact form, we can express the weights matrix update rule:

˙̂W = Φ(~̂x)~eT (44)

The reader may want to modify the presented core algorithm into a more sophisticated
architecture. Nevertheless, the literature currently adopts this as a consolidated approach.
A tentative qualitative summary of the most used ANN architecture for a disturbance
dynamics term reconstruction is reported in Table 7. As previously mentioned, the learning
time represents the effectiveness of the incremental learning performed on-board; hence,
it is estimated with reference to the characteristic time of the motion, for instance, the
orbital period.

Table 7. Summary of typical and most successful neural networks for dynamics uncertainty learning.

Application Type of ANN Accuracy Learning Time Ref.

Uncertainties and
disturbance estimation

MLP Medium Medium [34,35,38,59]
RBFNN High Fast [29,30,60]

4.1.3. System Identification through Reconstruction of Parameters

The third method has been developed under the framework of parameter reconstruc-
tion. Basically, the artificial neural network is employed to refine the uncertain parameters
of a given dynamical model. This method is particularly suitable when the uncertain envi-
ronment influences primal system constants (e.g., inertia parameters, spherical harmonics
and drag coefficients). Differently from the disturbance approximation, the analytical
framework is here known, and only characteristic values of system parameters are recon-
structed. Moreover, given the physical knowledge of the parameters to be reconstructed,
the method has a very promising scientific outcome. For instance, the gravity expansion of
asteroids and planets can be approximated online while flying, delivering a rough shape
reconstruction of the body. Nevertheless, many applications overlap with the disturbance
reconstruction approach, in which the disturbance function to approximate is a constant
parameter, as assumed in many estimation algorithms, such as the well-established Kalman
Filter. For this reason, many researchers used MLP neural networks to carry out the task.
For instance, Chu et al. [36] proposed a deep network MLP to estimate inertia parameters.
The angular rates and control torques of combined spacecraft are set as the input of a deep

Drones 2022, 6, 270 27 of 39

neural network model, and conversely, the inertia tensor is then set as the output. Training
the MLP model refers to the process of extracting a higher abstract feature, i.e., the inertia
tensor [36,37]. Another approach to solve the parametric reconstruction is to use a recurrent
neural network. In particular, Hopfield neural networks are investigated in [44,45,61]. The
core of the algorithm is the following: if the model is reformulated into linear-in-parameter
form, the identification problem can be reformulated as an optimization problem:

~y = A(~r) · ~C (45)

In particular, when defining a general prediction error ~e = ~y −A · ~C∗, the resulting
combinatorial optimization problem is [44]:

min
~C

{
sup

t

(
1
2
~eT ·~e

)}
(46)

where ~y typically correspond to measurements, A is the linear-in-parameter matrix and
~C∗ is the estimated parameter vector [44]. Other examples entail the usage of BPANN,
another name for MLP, for the Earth or other bodies gravity field approximation, as
presented in [62,63]. A tentative qualitative summary of the most used ANN architecture
for parametric dynamics reconstruction is reported in Table 8.

Table 8. Summary of typical and most successful neural networks for parametric learning. The
learning times for the MLP applications are not available.

Application Type of ANN Accuracy Learning Time Ref.

System Identification MLP High - [36,37,62,63]
HNN High Fast [44,45,61]

4.2. Convolutional Neural Networks for Vision-Based Navigation

Convolutional neural networks are the best candidates with which to process vi-
sual data. For this reason, CNNs have quickly become of great interest to vision-based
navigation designers. In particular, CNNs have been employed in end-to-end or hybrid
approaches for spacecraft navigation, mainly in two scenarios: proximity operations dur-
ing a close approach with uncooperative targets and planetary or asteroid landing. The
algorithm architecture typically relies on a CNN that either segments or classifies im-
ages, whose output is fed to the navigation system, composed of estimation and sensor
fusion algorithms.

4.2.1. CNN for Pose Estimation

CNNs have been recently becoming a promising solution for the pose estimation and
initialization of target spacecraft. Most of the algorithms used in spacecraft GNC are hybrid
approaches and make use of artificial neural networks only partially. Nevertheless, end-to-
end methods are currently being explored. A targeted review of CNNs for pose estimation
is reported in [64]. Generally, in a CNN-based method, a pre-training is necessary to
develop a model capable of performing regression or classification to estimate the pose.
The monocular image is then fed to such a model online to retrieve the pose. Depending on
the selected architecture adopted to solve for the relative pose, these methods can either rely
on a wire-frame 3D model of the target spacecraft or solely on the 2D images used in the
training, and hence they can either be referred to as non-model based or model-based [64].
One solution to the problem of satellite pose estimation was provided by [65]. It is a typical
approach for model-based hybrid architecture, exploiting object detection networks and
requiring 3D models of the spacecraft. It consists of a monocular pose estimation technique
composed of different steps:

Drones 2022, 6, 270 28 of 39

1. An object detection network is used to identify a bounding box surrounding the target
spacecraft. Typical CNN architectures are HRNet and Faster RCNN.

2. A second regressive network is used to predict the position of the landmark features
utilized during training.

3. A traditional PnP problem was solved using 2D–3D correspondences to retrieve the
camera pose.

Another approach is the end-to-end pose estimation architecture presented in [66]. The
approach entails a feature extraction method using a pre-trained CNN (modified ResNet
50) backbone. CNN features are fed into a sub-sampling convolution for compression. The
generated intermediate feature vectors are then used as input to two separate branches:
the first branch uses a shallow MLP that regresses the 3D locations of the features. The
second branch uses probabilistic orientation soft classification to generate an orientation
estimate. Sharma et al. [67] proposed a three-branch architecture. The first branch of the
CNN bootstraps a state-of-the-art object detection algorithm to detect a 2D bounding box
around the target spacecraft in the input image. The region inside the 2D bounding box
is then used by the other two branches of the CNN to determine the relative attitude by
initially classifying the input region into discrete coarse attitude labels before regressing to
a finer estimate. The SPN method then uses a novel Gauss–Newton algorithm to estimate
the relative position by using the constraints imposed by the detected 2D bounding box
and the estimated relative attitude. Recently, the approach presented in [68] replicates the
three-module structure entailing the object detection, keypoint regression and single image
pose estimation in three different neural networks. The first module uses an object detection
network to generate a 2D bounding box. Such task is executed by a CNN YOLOv3 with
a MobileNetv2 backbone, which are well-established CNN architectures. The bounding
box output is used in the second module to extract a region of interest from the input
image. The cropped image is fed to a keypoint regression network (KRN) which regresses
locations of known surface keypoints of the target. Eventually, a traditional PnP solver is
used to retrieve the single-image pose estimation. Given the usage of PnP algorithms, the
estimated 2D keypoints require the corresponding 3D locations, meaning that a 3D model
of the spacecraft is needed. Nevertheless, a potential solution to the model unavailability is
the 3D keypoints recovery preparatory step. Finally, Pasqualetto et al. [69] investigated the
potentials of using a hourglass neural network to extract the corners of a target spacecraft
prior to the pose estimation. In this method, the output of neural network is a set of so
called heatmaps around the features used in the offline training. The coordinates of each
heatmap’s peak intensity characterize the predicted feature location; the intensity indicates
the confidence of locating the corresponding keypoint at this position.

4.2.2. CNNs for Planetary and Asteroid Landing

The use of AI in scenarios for the moon or planetary landing is still at an early stage,
and few works exist in the literature concerning image-based navigation with AI. The
presented solutions are all based on a supervised learning approach. Images with different
lighting and surface viewing conditions are used for training. One idea is to substitute
classical IP algorithms, providing a first estimate of the lander state (e.g., pose or altitude
and position), which can be later refined by means of a navigation filter. Similar approaches
have been implemented in the robotics field, where by pre-training on a large dataset, the
methods estimate the absolute camera pose in a scene. In a landing scenario, the knowledge
of the landing area can be exploited, if available. Therefore, the convolutional neural
network can be trained with an appropriate dataset of synthetic images of the landing area
at different relative poses and in different illumination conditions. The CNN is used to
extract features that are then passed to a fully connected layer, which performs a regression
and directly outputs the absolute camera pose. The regression task can be executed by
an LSTM. The CNN-LSTM has proven excellent performance and is very well developed
for image processing and model prediction. The use of a recurrent network brings the
advantage of also retrieving time-series information. This can allow also estimating the

Drones 2022, 6, 270 29 of 39

velocity of the lander. According to an extensive review of the applications, one can make a
general distinction between two macro-methods:

• Hybrid approaches: they utilize CNNs for processing images, extracting features
and classifying or regressing the state at the initial condition, but they are always
coupled with traditional image processing or a navigation algorithm (e.g., PnP and
feature tracking).

• End-to-end approaches: they are developed to complete the whole visual odometry
pipeline, from the image input to the state estimate output.

As an interesting example, although not directly applied to space systems, the tech-
nique presented in [70] relies on end-to-end learning for estimating the pose of a UAV
during landing. In particular, the global position and orientation of the robot are the final
output of the AI architecture. The AI system processes two kinds of inputs: images and
measurements from an IMU. The architecture comprises a CNN that takes as input streams
of images and acts as a feature extractor. Such a CNN is built starting from ResNet18,
pre-trained on the ImageNet dataset. An LSTM processes the IMU measurements, which
are available at a higher frequency than images. An intermediate fully connected layer
fuses the inertial and visual features coming from the CNN and the LSTM. Then, such
vector is passed to the core LSTM, along with the previous hidden state, allowing one
to model the dynamics and connections between sequences of features. Finally, a fully
connected layer maps the feature to the desired pose output. Similarly, the architecture
proposed by Furfaro et al. [25] comprises a CNN and an LSTM. The final output of the AI
system is a thrust profile to control the spacecraft landing. The CNN’s input consists of
three subsequent static images. This choice is motivated by the need of retrieving some dy-
namical information [25]. The whole visual odometry pipeline has been learned completely
in the work by Wang [71]. The approach proposed in [71] exploits a deep learning system
based on a monocular visual odometry (VO) algorithm to estimate poses from raw RGB
images. Since it is trained and deployed in an end-to-end manner, it infers poses directly
from a sequence of raw RGB images without adopting any module in the conventional
VO pipeline. The AI system comprises the convolutional neural network that automati-
cally learns effective feature representation for the visual odometry problem, but also a
recurrent network, which implicitly models sequential dynamics and relations. The final
output is the absolute pose of the vehicle. This architecture differs from the one presented
in [70], because here two consecutive frames are stacked together and only images are
considered as inputs. A hybrid approach specifically developed for lunar landing was
presented by [72] and re-adapted by [14,73,74]. The approach is based on the work by
Silburt et al. [75]: a deep learning approach was used to identify lunar craters; in particular,
a Unet-CNN, shown in Figure 18, was used for input images’ segmentation, as shown
in Figure 19. Some traditional navigation strategies are based on lunar crater matching;
therefore, an AI method was investigated as part of a hybrid approach, as in [72,76,77],
where a RANSAC-based nearest neighbor algorithm was used for matching the detected
craters to database ones. The advantage of such a hybrid approach is to combine a crater
detection method that is robust to illumination conditions and the reliability of a traditional
pose estimation pipeline. An example of an input image and an output mask is shown
in Figure 18. This is a powerful technique for absolute navigation where database objects
can be used for learning. The state estimation requires a navigation filter or feature post-
processing, such as computation of an essential matrix or retrieval of relative vectors, to
complete the navigation pipeline. A qualitative summary of the most promising methods
is reported in Table 9.

A very interesting application of an ANN to planetary landing is the autonomous
collision avoidance presented by Lunghi et al. [78]. An MLP is fed with an image of
the landing area. The neural system outputs a hazard map, which is then exploited to
select the best target, in terms of safety, guidance constraints and scientific interest. The
ANN’s generalization properties allow the system to correctly operate also in conditions
not explicitly considered during calibration.

Drones 2022, 6, 270 30 of 39

Figure 18. Input image and output mask from the CNN [14].

Figure 19. Convolutional neural network (CNN) architecture, based on Unet [75,79]. Boxes represent
cross-sections of sets of square feature maps.

Table 9. Summary of neural-aided methods for optical navigation for planetary and lunar landing.
IP stands for image processing and represents the necessity for an hybrid method to be implemented
(e.g., matching and PnP).

Application Type Accuracy Training Needs Robustness Adaptability

Optical
Navigation

CNN + IP High Medium High Medium
CNN + LSTM Medium High High High

4.3. Reinforcement Learning and Meta-Reinforcement Learning for Adaptive Guidance and Control
4.3.1. Reinforcement Learning

An active research field is to use reinforcement learning and meta reinforcement
learning to create an adaptive guidance and control system. In particular, deep rein-
forcement learning has been used to generate autonomous guidance and control during
proximity operations and landing trajectories [23,24,80]. Reinforcement learning has been
used to generate autonomous trajectory planning for different scopes. Pesce et al. [81],
Piccinin et al. [82,83] and Chan et al. [84] analyzed the autonomous mapping of asteroids
using DQN and neural fitted Q as value-based methods. Federici et al. [85] proposed
an actor–critic proximal policy optimization framework for real-time optimal spacecraft
guidance during terminal rendezvous maneuvers, in the presence of both operational
constraints and stochastic effects, such as inaccurate knowledge of the initial spacecraft
state and the presence of random in-flight disturbances. Brandonisio et al. [24] proposed a

Drones 2022, 6, 270 31 of 39

guidance and control law to perform the inspection of an uncooperative spacecraft. In [24],
a DQN and advantage actor–critic (A2C) methods. State–action value functions are approx-
imated using artificial neural networks (ANN); in particular, simple MLPs are employed. A
discrete action space is maintained, whereas the state space is continuous. Transfer learning
(TL) is also applied to facilitate training on more complex tests. One of the transfer learning
techniques consists of pre-training the RL agent on a simpler task before training on the
main task. In the paper, the various tasks are represented by increasing complexities of the
reward models. Many researchers claim superior performance by policy-based methods.
Among those, proximal policy optimization (PPO) and derivatives are some of the most
adopted schemes [17,18,85]. In order to improve the stability and robustness of the agent
in different scenario conditions, a formulation of PPO exploiting recurrent neural networks
(RNN) is commonly exploited. As anticipated in Section 3, the capability of recurrent layers
to store past states’ information may strongly affect the agent-safe trajectory planning
and getting to the mission goals faster. In addition, the work on [17] claims that training
an RNN is beneficial to refining the agent’s environmental conditions sensitivity, which
works in favor of the agent’s robustness, regardless of the specific operational environ-
ment. The work in [22] proposes a guidance strategy for spacecraft proximity tracking
operations leveraging deep reinforcement learning. In [22], the distributed distributional
deep deterministic policy gradient (D4PG) algorithm was used. Such algorithm operates in
continuous state and action spaces, and it has a deterministic output. The D4PG algorithm
is an extension of the actor–critic algorithm.

4.3.2. Meta Reinforcement Learning

The robustness to uncertain spacecraft model and environments is a crucial topic on
the development of autonomous systems. In particular, this aspect is very challenging when
it comes to the the reinforcement learning methods. Neural networks learn well within the
training distributions, but they generally fail when performing extrapolation outside the
training distributions [21]. This may pose a risk of instability of the guidance law when the
spacecraft experiences states that are outside the training distribution envelope. Several
researchers [19,21] claim that sampling inefficiency is another weakness of traditional
reinforcement learning: a large amount of experience is needed to learn even the simple
tasks. In [86] was proposed a reinforcement learning framework to control a spacecraft
around a small celestial body with an unknown gravity field. In particular, the hovering
task was investigated. The authors performed a direct policy search (DPS) with a genetic
algorithm to obtain controller policies with high utility. The policy architecture used was a
simple MLP.

Recent advancements in meta reinforcement learning aimed at addressing these weak-
nesses of the traditional framework. Meta reinforcement learning trains the policy agent
on a distribution of environments, or Markov decision processes (MDP). This forces the
agent to experience and learn multiple different situations. Consequently, the system tends
to converge faster to quasi-optimal solutions. Recent works claim superior performance
of meta-RL with respect to classical RL when uncertain environments and actuator fail-
ures are considered [18,20,21]. Gaudet et al. [18,20] developed a guidance law based on
meta-RL which is able to perform a six degrees-of-freedom Mars landing. Moreover, in [20],
meta reinforcment learning was used to create a guidance law for hovering on irregularly
shaped asteroids using LIDAR sensor data. In certain works, the different environments
are called tasks: the tasks can be thought of as ensembles of potential situations, nominal
and non-nominal, one can expect the agent to experience. For instance, in the application of
meta-RL for planetary and asteroid landing [18], the tasks range from landing with engine
failures to large mass variations or highly-corrupted navigation and unknown dynamics.

In [87], a meta reinforcement learning framework is employed for relative trajectory
planning between spacecraft. The training trajectories are divided as sub-training samples
and fake testing samples. The meta-reinforced agent is trained by alternating training and
testing phases. To this end, the gradient information of the meta learner is obtained through

Drones 2022, 6, 270 32 of 39

a combination of the results on the training subsets and the performance on the fake testing
samples. The authors of [87] claimed that this approach forces the agent to explicitly
take the potential testing performance into consideration. In this way, the overfitting
phenomenon, potentially arising using few training trajectories, is reduced. In most of the
studies works, as for traditional reinforcement learning applications, the meta reinforcement
learning policy is optimized using proximal policy optimization (PPO) [18,21] with both
the policy and value functions implementing recurrent layers in their networks. Using
recurrent neural networks results in creating agents that can adapt more easily to uncertain
environments, yielding a much more robust guidance policy compared with classical
reinforcement learning [19]. If we examine a particular scenario, such as planetary landing,
by recalling what was described in Section 3, it is easier to understand how recurrent
layers result in an adaptive agent. During the training to generate an autonomous landing
agent, the next observation depends not only on the state and action, but also on the
ground truth agent mass and any external forces acting on the agent at each step [18].
Consequently, during training, the recurrent layers force their hidden states to evolve
differently depending on the observations acquired from the environment during the
trajectory, which are governed by the actions output by the policy. Specifically, the trained
policy’s hidden state captures unobserved information, such as external forces or agent
mass, that is useful in minimizing the cost function [18]. Obviously, this holds for any
scenario one could be interested in, even those not related to space operations.

4.4. Image Dataset Availability and Validation

The successful deployment of ML and AI techinques requires a large amount of data
to properly train, validate and test the applications. In particular, this review reported
several examples where image-based algorithms use optical measurements to synthesize
the navigation, generate the guidance or even to control the spacecraft directly. One major
challenge in space AI-based algorithm development is the lack of representative data. This
obviously comes from the limited availability of the space environment, with respect to
other scenarios, such as autonomous terrestrial driving, for instance. Hence, it is crucial to
focus the research on the generation and validation of non-space images that can be used
as representative for orbital applications.

According to the state of art, several laboratory setups exist to recreate rendezvous
approaches around a mockup of a target space object (i.e., asteroid, moon surface or space-
craft) with a monocular camera, i.e., the Testbed for Rendezvous and Optical Navigation
(TRON) at Stanford University [88], the GNC Rendezvous, Approach and Landing Sim-
ulator (GRALS) at the European Space Research and Technology Centre (ESTEC) [89],
the European Proximity Operations Simulator (EPOS) at the German Aerospace Agency
(DLR) [90], the Platform-art facility at GMV [91] and the ARGOS facility at Politecnico di
Milano [92,93].

In this context, a fundamental challenge arises from the need to bridge the quality gap
between the synthetic renderings and the laboratory-representative images. If a synthetic
dataset used to train the adopted CNN fails at representing the textures of the target mockup
and the specific illumination in the laboratory setup, the performance on laboratory-
generated images will in fact result in inaccurate pose estimates. To overcome this, recent
works addressed the impact of augmented synthetic datasets on CNN performance in either
laboratory-generated or space-based imagery [88,93–96]. These augmented datasets were
built on a backbone of purely synthetic images of the target by adding noise; randomized
and real Earth backgrounds; and randomized textures of the target model.

By condensing the literature outcomes, we can point at four indications to evaluate
the representativeness of the synthetic images with respect to laboratory ones (or real, if
available) [93]:

1. Image histogram. The histogram’s information is a low-level information, which
gives a good representation of the image content. Such a method has been already
used to evaluate images quality for testing of space navigation algorithms [88].

Drones 2022, 6, 270 33 of 39

2. Shadow index. The synthetic and laboratory images are thresholded to identify shad-
ows. The value of the threshold is identified automatically using the Otsu algorithm.
The Otsu method is a deterministic and automatic way to discriminate shadowy and
illuminated target parts. Then, the two resulting binary images are subtracted to
obtain a shadow disparity map. The accuracy of the shadow representation, which
can be considered as representative of the accuracy of the general shape of the sample,
is evaluated by a scalar shadow index (Js), defined as:

Js = 1− Ds

Sreal
(47)

where Ds is the sum of the disparity map and Sreal is the sum of the pixels classified
as shadow in the real image. Js expresses the fraction of pixels in shadows correctly
reproduced in the synthetic model.

3. Contrast index. A second index is then identified. For both images, real and synthetic,
an illumination ratio RI is identified as:

RI =
IL
Is

(48)

where IL is the mean intensity of the pixel classified as in light, and IS is the mean
intensity of the pixel classified as in shadow. Then, the contrast index Jc is defined as:

Jc =
RIreal
RIrend

(49)

4. Feature quality index. Typical navigation algorithms rely on feature extraction steps;
thus, a comparison among real and synthetic images is considered a good indication
of the similarity of behavior among the two. The feature quality index (FQI) indicates
the similarity of features extracted in two corresponding frames (a real and a synthetic
one), and it is defined as:

FQI = 1− µ(Hd)

Hd,max
(50)

where Hd is the Hamming distance between two corresponding features descriptors
and Hd,max is the maximum possible hamming distance. The mean value µ(Hd) is
computed on a user-defined set of corresponding matched features.

The higher the indexes, the better the image is represented. The requirements to satisfy
are user defined and still represent an arbitrary variable in the process. For instance, in [93]
it is required Jc > 0.90, Js > 0.75 and FQI > 0.80.

4.5. Technical Challenges for AI-Based Algorithms’ Deployment

The technical challenges for the consistent deployment of AI-based solutions to actual
spacecraft are heterogeneous. This section provides a very brief outline of the main topics
where research is active to pursue the above-mentioned objective.

• Data Availability: A large amount of data is required to generate effective AI-based
algorithms. One critical problem is creating representative data, especially images, in
synthetic or laboratory environments, as discussed in Section 4.4.

• Model Compression: High-performance AI solutions, based on DNN, often require very
large models to be deployed. This negatively affects the following aspects:

– Storage capacity: A DNN model can achieve significant accuracy when it uses a
large number of parameters, which requires considerable storage.

– Computational requirements: A large number of floating point operations (FLOPs)
involved in the DNN operation can exceed the limited computational capacity of
the dedicated hardware.

Drones 2022, 6, 270 34 of 39

– Execution time: A large DNN model requires a long time for both training and
inference. This could potentially jeopardize its real-time inference performance.

Optimization and model compression techniques are currently being investigated,
such as pruning and weight sharing, which help also in terms of energy consumption.

• Validation: Given the difficulties in making the AI-based algorithms analytically
tractable, it is mandatory to establish a consolidated pipeline to validate the models.
Monte Carlo approaches may be the most appropriate solutions to characterizing the
behavior, also outside of the training datasets, where inappropriate responses may
yield dramatic outcomes.

• Dedicated Hardware: A lot of effort is focused on building and testing dedicated hard-
ware, particularly tailored to execute AI-based models, optimized for inference.

5. Conclusions

This paper presented an overview of the applications of machine learning, deep learn-
ing and artificial neural networks in the spacecraft guidance, navigation and control domain.
In particular, a brief outline of the theoretical foundations of the Artificial-Intelligence-
based methods has been presented, in order to provide the reader a tailored introduction
to the novel approaches. The goal of the paper was to highlight the concepts of Artificial
Intelligence that are spreading in the space community and to underline what are the
constraints and limitations of these methods in the challenging space environment. A
thorough review of the most employed neural network architectures has been presented,
along with the working principle behind each of them. The peculiarity of each artificial
neural network has been stressed and linked to specific applications in the research domain.
One of the most interesting applications in the spacecraft dynamics, guidance, navigation
and control domain involves the usage of sensed data to retrieve temporal structures,
approximate disturbances, encapsulate the dynamical behavior or perform parametric
system identification. Typically, recurrent neural networks exhibit superior performance
in approximating temporal series, at the cost of high training complexity. The wide pool
of convolutional neural networks are employed to process images coming from optical
sensors, meaning that the most promising application is to couple neural-based methods
and image processing techniques to carry out the task of optical navigation. Indeed, two
applications were reviewed which report the state-of-the-art in CNN-based methods for
pose estimation and planetary landing. Additionally, the paper introduced the vast domain
of deep reinforcement learning, analyzing its applications to autonomous guidance and
control in multiple scenarios, such as planetary landing and proximity operations. More-
over, different strategies to increase algorithms’ robustness were reviewed and described,
such as using transfer-learning and meta-reinforcement-learning approaches. However,
there are some unresolved challenges to applying AI algorithms to GNC systems, for
instance, inadequate data sets for training, the theoretical understanding and modeling
of the behavior of any AI system, the generalization of the learned features to different
scenarios and the validation. Moreover, we point out two additional shortcomings of the
current status of ML and AI in view of spacecraft GNC deployment:

• The trade-off between adaptivity and robustness in the design of the GNC system.
On the one hand, we are trying to design machine learning systems that evolve
continuously by learning via interaction with the dynamical and physical environment.
On the other hand, we should pursue optimized solutions that are robust, explainable
and secure.

• The AI and ML algorithms borrowed from data science often lack efficiency, robust-
ness and interpretation, being purely data-driven approaches. The foundation of
classical GNC theory instead lies in the mapping of physics into the model-based
design concept.

In conclusion, we aimed to developing a useful review and tutorial for professionals in
the space sector that specifically want to adopt deep learning and artificial neural networks

Drones 2022, 6, 270 35 of 39

or desire to be updated on the most relevant and pertinent concepts of Artificial Intelligence
for space applications.

Author Contributions: Conceptualization, S.S.; methodology, S.S.; software, S.S.; validation, S.S.;
formal analysis, S.S.; investigation, S.S.; resources, S.S.; data curation, S.S.; writing—original draft
preparation, S.S.; writing—review and editing, S.S.; visualization, S.S.; supervision, M.L.; project
administration, M.L.; funding acquisition, M.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data sharing not applicable

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

A2C Advantage Actor Critic
AE Autoencoders
AEKF Adaptive Extended Kalman Filter
AI Artificial Intelligence
ANN Artificial Neural Network
BPANN Back Propagation Artificial Neural Network
CNN Convolutional Neural Network
D4PG Distributed Distributional Deep Deterministic Policy Gradient
DCG Directed Cyclic Graph
DL Deep Learning
DPS Direct Policy Search
DQN Deep Q-Network
FFNN Feed-Forward Neural Networks
GNC Guidance, Navigation & Control
GRU Gated-Recurrent Unit
HNN Hopfield Neural Network
IF Integrate and Fire
IMU Inertial Measurement Unit
KRN Keypoint Regression Network
LIF Leaky-Integrate and Fire
LRNN Layer-Recurrent Neural Network
LSTM Long-Short Term Memory network
MDP Markov Decision Process
ML Machine Learning
MLP Multi-Layer Perceptron
NARX Nonlinear Autoregressive Exogenous Model
PnP Perspective n-Points
PPO Proximal Policy Optimization
RBF Radial-Basis Function
RBFNN Radial-Basis Function Neural Network
RL Reinforcement Learning
RNN Recurrent Neural Network
SNN Spiking Neural Network
TL Transfer Learning
VO Visual Odometry

Drones 2022, 6, 270 36 of 39

References
1. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Massachusetts Institute of Technology: Massachusetts, MA, USA, 2016.
2. Ross, S.; Gordon, G.J.; Bagnell, J.A. No-regret reductions for imitation learning and structured prediction. In Proceedings of

the 14th International Conference on Artificial Intelligence and Statistics, Lauderdale, FL, USA, 11–13 April 2011; Volume 15,
pp. 627–635.

3. Fausett, L. Fundamentals of Neural Networks; Pearson: London, UK, 1994.
4. Lippmann, R. Neural Networks, a Comprehensive Foundation; Prentice Hall: Hoboken, NJ, USA, 2005; Volume 5, pp. 363–364.

[CrossRef]
5. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; Libris: London, UK, 2017; p. 10884. [CrossRef]
6. Shirobokov, M.; Trofimov, S.; Ovchinnikov, M. Survey of machine learning techniques in spacecraft control design. Acta Astronaut.

2021, 186, 87–97. [CrossRef]
7. Song, J.; Rondao, D.; Aouf, N. Deep Learning-based Spacecraft Relative Navigation Methods: A Survey. Acta Astronaut. 2022,

191, 22–40. [CrossRef]
8. Murphy, J.; Ward, J.E.; Namee, B.M. Machine Learning in Space: A Review of Machine Learning Algorithms and Hardware for

Space Applications. CEUR Workshop Proc. 2021, 3105, 72–83.
9. Izzo, D.; Märtens, M.; Pan, B. A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics

2019, 3, 287–299. [CrossRef]
10. Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Campoy, P. A review of deep learning methods and applications for unmanned

aerial vehicles. J. Sens. 2017, 2017, 3296874. [CrossRef]
11. Khan, A.; Sohail, A.; Zahoora, U.; Saeed, A. A Survey of the Recent Architectures of Deep Convolutional Neural Networks; Springer:

Amsterdam, The Netherlands, 2020; Volume 53, pp. 5455–5516. [CrossRef]
12. Tipaldi, M.; Iervolino, R.; Massenio, P.R. Reinforcement learning in spacecraft control applications: Advances, prospects, and

challenges. Annu. Rev. Control. 2022, in press. [CrossRef]
13. Cheng, L.; Wang, Z.; Jiang, F.; Zhou, C. Real-Time Optimal Control for Spacecraft Orbit Transfer via Multiscale Deep Neural

Networks. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2436–2450. [CrossRef]
14. Silvestrini, S.; Lunghi, P.; Piccinin, M.; Zanotti, G.; Lavagna, M. Artificial Intelligence Techniques in Autonomous Vision-Based

Navigation System for Lunar Landing. In Proceedings of the 71st International Astronautical Congress, Online, 12–14 October
2020; pp. 12–14.

15. Silvestrini, S.; Lavagna, M. Neural-aided GNC reconfiguration algorithm for distributed space system: Development and PIL test.
Adv. Space Res. 2021, 67, 1490–1505. [CrossRef]

16. Silvestrini, S.; Lavagna, M. Neural-Based Predictive Control for Safe Autonomous Spacecraft Relative Maneuvers. J. Guid. Control.
Dyn. 2021, 44, 2303. [CrossRef]

17. Brandonisio, A. Sensitivity analysis of Adaptive Guidance via Deep Reinforcement Learning for Uncooperative Space Objects
Imaging. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Orlando, FL, USA, 9–11 August 2021; pp. 1–20.

18. Gaudet, B.; Linares, R.; Furfaro, R. Adaptive guidance and integrated navigation with reinforcement meta-learning. Acta
Astronaut. 2020, 169, 180–190. [CrossRef]

19. Gaudet, B.; Linares, R.; Furfaro, R. Terminal adaptive guidance via reinforcement meta-learning: Applications to autonomous
asteroid close-proximity operations. Acta Astronaut. 2020, 171, 1–13. [CrossRef]

20. Gaudet, B.; Linares, R.; Furfaro, R. Six degree-of-freedom body-fixed hovering over unmapped asteroids via LIDAR altimetry
and reinforcement meta-learning. Acta Astronaut. 2020, 172, 90–99. [CrossRef]

21. Scorsoglio, A.; D’Ambrosio, A.; Ghilardi, L.; Gaudet, B.; Curti, F.; Furfaro, R. Image-Based Deep Reinforcement Meta-Learning
for Autonomous Lunar Landing. J. Spacecr. Rocket. 2021, 1, 1–13. [CrossRef]

22. Hovell, K.; Ulrich, S. Deep reinforcement learning for spacecraft proximity operations guidance. J. Spacecr. Rocket 2021,
58, 254–264. [CrossRef]

23. Brandonisio, A. Deep Reinforcement Learning to Enhance Fly-Around Guidance for Uncooperative Space Objects Smart Imaging.
Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2020.

24. Brandonisio, A.; Lavagna, M.; Guzzetti, D. Reinforcement Learning for Uncooperative Space Objects Smart Imaging Path-
Planning. J. Astronaut. Sci. 2021, 68, 1145–1169. [CrossRef]

25. Furfaro, R.; Bloise, I.; Orlandelli, M.; Di Lizia, P.; Topputo, F.; Linares, R. Deep Learning for Autonomous Lunar Landing. In
Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Portland, ME, USA, 19–23 August 2018.

26. Silvestrini, S.; Lavagna, M. Inverse Reinforcement Learning for Collision Avoidance and Trajectory Prediction in Distributed
Reconfigurations. In Proceedings of the 70th International Astronautical Congress, Washington, DC, USA, 21–25 October 2019;
pp. 21–25.

27. Silvestrini, S.; Lavagna, M. Relative Trajectories Identification in Distributed Spacecraft Formation Collision-Free Maneuvers
using Neural-Reconstructed Dynamics. In Proceedings of the AIAA Scitech 2020 Forum, Kissimmee, FL, USA, 8–12 January 2020;
pp. 1–14. [CrossRef]

28. Silvestrini, S.; Lavagna, M. Processor-in-the-Loop Testing of AI-aided Algorithms for Spacecraft GNC. In Proceedings of the 71st
International Astronautical Congress, Online, 12–14 October 2020; pp. 12–14.

http://doi.org/10.1142/s0129065794000372
http://dx.doi.org/10.1016/S1364-6613(99)01331-5
http://dx.doi.org/10.1016/j.actaastro.2021.05.018
http://dx.doi.org/10.1016/j.actaastro.2021.10.025
http://dx.doi.org/10.1007/s42064-018-0053-6
http://dx.doi.org/10.1155/2017/3296874
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1016/j.arcontrol.2022.07.004
http://dx.doi.org/10.1109/TAES.2018.2889571
http://dx.doi.org/10.1016/j.asr.2020.12.014
http://dx.doi.org/10.2514/1.G005481
http://dx.doi.org/10.1016/j.actaastro.2020.01.007
http://dx.doi.org/10.1016/j.actaastro.2020.02.036
http://dx.doi.org/10.1016/j.actaastro.2020.03.026
http://dx.doi.org/10.2514/1.A35072
http://dx.doi.org/10.2514/1.A34838
http://dx.doi.org/10.1007/s40295-021-00288-7
http://dx.doi.org/10.2514/6.2020-1918

Drones 2022, 6, 270 37 of 39

29. Pesce, V.; Silvestrini, S.; Lavagna, M. Radial basis function neural network aided adaptive extended Kalman filter for spacecraft
relative navigation. Aerosp. Sci. Technol. 2020, 96, 105527. [CrossRef]

30. Harl, N.; Rajagopal, K.; Balakrishnan, S.N. Neural network based modified state observer for orbit uncertainty estimation. J.
Guid. Control. Dyn. 2013, 36, 1194–1209. [CrossRef]

31. Shrestha, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [CrossRef]
32. Emmert-Streib, F.; Yang, Z.; Feng, H.; Tripathi, S.; Dehmer, M. An Introductory Review of Deep Learning for Prediction Models

With Big Data. Front. Artif. Intell. 2020, 3, 1–23. [CrossRef]
33. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media: Sebastopol, CA, USA, 2019.
34. Leeghim, H.; Choi, Y.; Bang, H. Adaptive attitude control of spacecraft using neural networks. Acta Astronaut. 2009, 64, 778–786.

[CrossRef]
35. Bae, J.; Kim, Y. Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks. J.

Frankl. Inst. 2012, 349, 578–603. [CrossRef]
36. Chu, W.; Wu, S.; Wu, Z.; Wang, Y. Least square based ensemble deep learning for inertia tensor identification of combined

spacecraft. Aerosp. Sci. Technol. 2020, 106, 106189. [CrossRef]
37. Chu, W.; Wu, S.; He, X.; Liu, Y. Deep learning-based inertia tensor identification of the combined spacecraft. J. Aerosp. Eng. 2020,

234, 1356–1366. [CrossRef]
38. Zou, A.M.; Kumar, K.D. Neural network-based distributed attitude coordination control for spacecraft formation flying with

input saturation. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1155–1162. [CrossRef] [PubMed]
39. Wu, Y.; Wang, H.; Zhang, B.; Du, K.L. Using Radial Basis Function Networks for Function Approximation and Classification.

ISRN Appl. Math. 2012, 2012, 1–34. [CrossRef]
40. Masti, D.; Bemporad, A. Learning Nonlinear State-Space Models Using Deep Autoencoders. In Proceedings of the IEEE

Conference on Decision and Control, Paris, France, 11–13 December 2019; Volume 2018-12, pp. 3862–3867. [CrossRef]
41. Nelles, O. Nonlinear System Identification; Springer: London, UK, 2003; Volume 39, pp. 564–568.
42. Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl.

Acad. Sci. USA 1984, 81, 3088–3092. [CrossRef]
43. Abe. Theories on the Hopfield neural networks. In Proceedings of the International 1989 Joint Conference on Neural Networks,

Washington, DC, USA, 6 August 1989; Volume 1, pp. 557–564.
44. Pasquale, A.; Silvestrini, S.; Capannolo, A.; Lavagna, M. Non-Uniform Gravity Field Model On-Board Learning During Small

Bodies Proximity Operations. In Proceedings of the 70th International Astronautical Congress, Washington, DC, USA, 21–25
October 2019, pp. 21–25.

45. Atencia, M.; Joya, G.; Sandoval, F. Parametric identification of robotic systems with stable time-varying Hopfield networks.
Neural Comput. Appl. 2004, 13, 270–280. [CrossRef]

46. Hernández-Solano, Y.; Atencia, M.; Joya, G.; Sandoval, F. A Discrete Gradient Method to Enhance the Numerical Behaviour of
Hopfield Networks. Neurocomputers 2015, 164, 45–55. [CrossRef]

47. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
48. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: London,
UK, 2014; pp. 1724–1734. [CrossRef]

49. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. In
Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, BC, Canada, 12 December 2014.

50. Ponulak, F.; Kasiński, A. Information Processing, Learning and Applications; Springer: Amsterdam, The Netherlands, 2011;
pp. 409–433.

51. Eshraghian, J.K.; Ward, M.; Neftci, E.; Wang, X.; Lenz, G.; Dwivedi, G.; Bennamoun, M.; Jeong, D.S.; Lu, W.D. Training Spiking
Neural Networks Using Lessons from Deep Learning; Cornell University: Ithaca, NY, USA, 2021; pp. 1–44.

52. Pfeiffer, M.; Pfeil, T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Front. Neurosci. 2018, 12, 774.
[CrossRef]

53. Nguyen, D.A.; Tran, X.T.; Iacopi, F. A review of algorithms and hardware implementations for spiking neural networks. J. Low
Power Electron. Appl. 2021, 11, 23. [CrossRef]

54. Biggs, J.D.; Fournier, H.; Ceccherini, S.; Topputo, F. Optimal de-tumbling of spacecraft with four thrusters. In Proceedings of the
5th CEAS Conference on Guidance, Navigation & Control, Milan, Italy, 3–5 April 2019; pp. 1–13.

55. Silvestrini, S.; Lavagna, M. Model-Based Reinforcement Learning for Distributed Path Planning. In Proceedings of the Advanced
Space Technologies for Robotics and Automation, Big Sky, MN, USA, 2–9 March 2019; pp. 1–7.

56. Sahoo, H.; Dash, P.; Rath, N. NARX model based nonlinear dynamic system identification using low complexity neural networks
and robust H-infinity filter. Appl. Soft Comput. 2013, 13, 3324–3334. [CrossRef]

57. Ma, Y.; Liu, H.; Zhu, Y.; Wang, F.; Luo, Z. The NARX Model-Based System Identification on Nonlinear, Rotor-Bearing Systems.
Appl. Sci. 2017, 7, 911. [CrossRef]

http://dx.doi.org/10.1016/j.ast.2019.105527
http://dx.doi.org/10.2514/1.55711
http://dx.doi.org/10.1109/ACCESS.2019.2912200
http://dx.doi.org/10.3389/frai.2020.00004
http://dx.doi.org/10.1016/j.actaastro.2008.12.004
http://dx.doi.org/10.1016/j.jfranklin.2011.08.009
http://dx.doi.org/10.1016/j.ast.2020.106189
http://dx.doi.org/10.1177/0954410020904555
http://dx.doi.org/10.1109/TNNLS.2012.2196710
http://www.ncbi.nlm.nih.gov/pubmed/24807141
http://dx.doi.org/10.5402/2012/324194
http://dx.doi.org/10.1109/CDC.2018.8619475
http://dx.doi.org/10.1073/pnas.81.10.3088
http://dx.doi.org/10.1007/s00521-004-0421-4
http://dx.doi.org/10.1016/j.neucom.2014.10.091
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.3389/fnins.2018.00774
http://dx.doi.org/10.3390/jlpea11020023
http://dx.doi.org/10.1016/j.asoc.2013.02.007
http://dx.doi.org/10.3390/app7090911

Drones 2022, 6, 270 38 of 39

58. De la Rosa, E.; Yu, W.; Li, X. Nonlinear system modeling with deep neural networks and autoencoders algorithm. In Proceedings
of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016;
pp. 2157–2162. [CrossRef]

59. Gurfil, P.; Idan, M.; Kasdin, N.J. Adaptive neural control of deep-space formation flying. J. Guid. Control. Dyn. 2003, 26, 491–501.
[CrossRef]

60. Gao, Y.; Zhao, T.; Jin, B.; Chen, J.; Xu, B. Autonomous Orbit Determination for Lagrangian Navigation Satellite Based on Neural
Network Based State Observer. Int. J. Aerosp. Eng. 2017, 2017. [CrossRef]

61. Alonso, H.; Mendonça, T.; Rocha, P. Hopfield neural networks for on-line parameter estimation. Neural Netw. Off. J. Int. Neural
Netw. Soc. 2009, 22, 450–462. [CrossRef]

62. Turgut, B. Application of back propagation artificial neural networks for gravity field modelling. Acta Montan. Slov. 2016,
21, 200–207.

63. Gret, A.; Klingele, E.; Kahle, H.G. Application of artificial neural networks for gravity interpretation in two dimensions: A test
study. Boll. Geofis. Teor. Appl. 2000, 41, 1–20.

64. Pasqualetto Cassinis, L.; Fonod, R.; Gill, E. Review of the robustness and applicability of monocular pose estimation systems for
relative navigation with an uncooperative spacecraft. Prog. Aerosp. Sci. 2019, 110, 100548. [CrossRef]

65. Chen, B.; Cao, J.; Parra, A.; Chin, T. Satellite Pose Estimation with Deep Landmark Regression and Nonlinear Pose Refinement.
In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28
October 2019; pp. 2816–2824. [CrossRef]

66. Proença, P.F.; Gao, Y. Deep Learning for Spacecraft Pose Estimation from Photorealistic Rendering. In Proceedings of the 2020
IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 30–31 May 2020; pp. 6007–6013.

67. Sharma, S.; D’amico, S. Pose estimation for non-cooperative spacecraft rendezvous using neural networks. Aas/Aiaa Astrodyn.
Spec. Conf. 2019, 168, 3527–3546.

68. Park, T.H.; Sharma, S.; D’amico, S. Towards robust learning-based pose estimation of noncooperative spacecraft. Aas/Aiaa
Astrodyn. Spec. Conf. 2020, 171, 3667–3686.

69. Cassinis, L.P.; Fonod, R.; Gill, E.; Ahrns, I.; Fernandez, J.G. Cnn-based pose estimation system for close-proximity operations
around uncooperative spacecraft. AIAA Scitechnol. 2020 Forum 2020, 1, 1–16. [CrossRef]

70. Baldini, F.; Anandkumar, A.; Murray, R.M. Learning Pose Estimation for UAV Autonomous Navigation andLanding Using
Visual-Inertial Sensor Data. In Proceedings of the 2020 American Control Conference, Denver, CO, USA, 1–3 July 2020.

71. Wang, S.; Clark, R.; Wen, H.; Trigoni, N. DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional
Neural Networks. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29–31 May 2017;
pp. 2043–2050. [CrossRef]

72. Downes, L.; Steiner, T.J.; How, J.P. Deep Learning Crater Detection for Lunar Terrain Relative Navigation. In Proceedings of the
AIAA Scitech 2020 Forum, Reston, VA, USA, 6 January 2020; pp. 1–12. [CrossRef]

73. Silvestrini, S.; Piccinin, M.; Zanotti, G.; Brandonisio, A.; Bloise, I.; Feruglio, L.; Lunghi, P.; Lavagna, M.; Varile, M. Optical
navigation for Lunar landing based on Convolutional Neural Network crater detector. Aerosp. Sci. Technol. 2022, 123, 107503.
[CrossRef]

74. Silvestrini, S.; Piccinin, M.; Zanotti, G.; Brandonisio, A.; Lunghi, P.; Lavagna, M. Implicit Extended Kalman Filter for Optical
Terrain Relative Navigation Using Delayed Measurements. Aerospace 2022, 9, 503. [CrossRef]

75. Silburt, A.; Ali-Dib, M.; Zhu, C.; Jackson, A.; Valencia, D.; Kissin, Y.; Tamayo, D.; Menou, K. Lunar crater identification via deep
learning. Icarus 2019, 317, 27–38. [CrossRef]

76. Downes, L.M.; Steiner, T.J.; How, J.P. Lunar Terrain Relative Navigation Using a Convolutional Neural Network for Visual Crater
Detection. In Proceedings of the 2020 American Control Conference (ACC), Denver, Co, USA, 1–3 July 2020; pp. 4448–4453.
[CrossRef]

77. Del Prete, R.; Saveriano, A.; Renga, A. A Deep Learning-based Crater Detector for Autonomous Vision-Based Spacecraft
Navigation. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa,
Italy, 18–22 September 2022; pp. 231–236.

78. Lunghi, P.; Ciarambino, M.; Lavagna, M. A multilayer perceptron hazard detector for vision-based autonomous planetary
landing. Adv. Space Res. 2016, 58, 131–144. [CrossRef]

79. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.,
Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

80. Ciabatti, G.; Daftry, S.; Capobianco, R. Autonomous planetary landing via deep reinforcement learning and transfer learning.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 2021, 1, 2031–2038. [CrossRef]

81. Pesce, V.; Agha-Mohammadi, A.A.; Lavagna, M. Autonomous navigation & mapping of small bodies. IEEE Aerosp. Conf. Proc.
2018, 2018, 1–10. [CrossRef]

82. Piccinin, M.; Pesce, V.; Silvestrini, S.; Lavagna, M. Smart autonomous imaging plan for small bodies efficient mapping. In
Proceedings of the ASTRA, Online, 11 November 2019.

83. Piccinin, M.; Lunghi, P.; Lavagna, M. Deep Reinforcement Learning-based policy for autonomous imaging planning of small
celestial bodies mapping. Aerosp. Sci. Technol. 2022, 120, 107224. [CrossRef]

http://dx.doi.org/10.1109/SMC.2016.7844558
http://dx.doi.org/10.2514/2.5072
http://dx.doi.org/10.1155/2017/9734164
http://dx.doi.org/10.1016/j.neunet.2009.01.015
http://dx.doi.org/10.1016/j.paerosci.2019.05.008
http://dx.doi.org/10.1109/ICCVW.2019.00343
http://dx.doi.org/10.2514/6.2020-1457
http://dx.doi.org/10.1109/ICRA.2017.7989236
http://dx.doi.org/10.2514/6.2020-1838
http://dx.doi.org/10.1016/j.ast.2022.107503
http://dx.doi.org/10.3390/aerospace9090503
http://dx.doi.org/10.1016/j.icarus.2018.06.022
http://dx.doi.org/10.23919/ACC45564.2020.9147595
http://dx.doi.org/10.1016/j.asr.2016.04.012
http://dx.doi.org/10.1109/CVPRW53098.2021.00231
http://dx.doi.org/10.1109/AERO.2018.8396797
http://dx.doi.org/10.1016/j.ast.2021.107224

Drones 2022, 6, 270 39 of 39

84. Chan, D.M.; Agha-Mohammadi, A.A. Autonomous Imaging and Mapping of Small Bodies Using Deep Reinforcement Learning.
IEEE Aerosp. Conf. Proc. 2019, 2019, 2147. [CrossRef]

85. Federici, L.; Benedikter, B.; Zavoli, A. Deep learning techniques for autonomous spacecraft guidance during proximity operations.
J. Spacecr. Rocket. 2021, 58, 1–18. [CrossRef]

86. Willis, S.; Izzo, D.; Hennes, D. Reinforcement learning for spacecraft maneuvering near small bodies. In Proceedings of the
AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, USA, 31 January 2016; Volume 158, pp. 1351–1368.

87. Li, H.; Gao, Q.; Dong, Y.; Deng, Y. Spacecraft Relative Trajectory Planning Based on Meta-Learning. IEEE Trans. Aerosp. Electron.
Syst. 2021, 57, 3118–3131. [CrossRef]

88. Kisantal, M.; Sharma, S.; Park, T.H.; Izzo, D.; Märtens, M.; D’Amico, S. Satellite pose estimation challenge: Dataset, competition
design, and results. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4083–4098. [CrossRef]

89. Zwick, M.; Huertas, I.; Gerdes, L.; Ortega, G. ORGL—ESA’s Test Facility for Approach and Contact Operations in Orbital and
Planetary Environments. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in
Space, Shanghai, China, 21–23 October 2018; pp. 1–11.

90. Krüger, H.; Theil, S. TRON—Hardware-in-the-Loop Test Facility for Lunar Descent and Landing Optical Navigation. IFAC
Proceedings Volumes In Proceedings of the 18th IFAC Symposium on Automatic Control in Aerospace, Mumbai, India,
6–10 September 2010; Volume 43, pp. 265–270. [CrossRef]

91. Dubanchet, V.; Romero, J.B.; Gregertsen, K.N.; Austad, H.; Gancet, J.; Natusiewicz, K.; Vinals, J.; Guerra, G.; Rekleitis, G.;
Paraskevas, I.S.; et al. Eross Project—European Autonomous Robotic Vehicle For On-Orbit Servicing; EROSS: New York, NY,
USA, 2020.

92. Silvestrini, S.; Lunghi, P.; Piccinin, M.; Zanotti, G.; Brandonisio, A.; Lavagna, M. Experimental Validation of Synthetic Training Set
for Deep Learning Vision-Based Navigation Systems for Lunar Landing. In Proceedings of the 71st International Astronautical
Congress (IAC 2021), Dubai, United Arab Emirates, 25–29 October 2020; pp. 1–11.

93. Piccinin, M.; Silvestrini, S.; Zanotti, G.; Brandonisio, A.; Lunghi, P.; Lavagna, M. ARGOS: Calibrated facility for Image based
Relative Navigation technologies on ground verification and testing. In Proceedings of the 72nd International Astronautical
Congress (IAC 2021), Dubai, United Arab Emirates, 25–29 October 2021; pp. 1–11.

94. Michele, B.; Paolo, L.; Michèle, L. Tango Spacecraft Dataset for Region of Interest Estimation and Semantic Segmentation;
Springer: Amsterdam, The Netherlands, 2022. [CrossRef]

95. Bechini, M.; Lunghi, P.; Lavagna, M. Tango Spacecraft Wireframe Dataset Model for Line Segments Detection; Springer: Amsterdam,
The Netherlands, 2022. [CrossRef]

96. Bechini, M.; Lunghi, P.; Lavagna, M. Spacecraft Pose Estimation via Monocular Image Processing: Dataset Generation and Valida-
tion. In Proceedings of the 9th European Conference for Aeronautics and Aerospace Sciences, Lille, France, 27 July–1 August 2022.

http://dx.doi.org/10.1109/AERO.2019.8742147
http://dx.doi.org/10.2514/1.A35076
http://dx.doi.org/10.1109/TAES.2021.3071226
http://dx.doi.org/10.1109/TAES.2020.2989063
http://dx.doi.org/10.3182/20100906-5-JP-2022.00046
http://dx.doi.org/10.5281/zenodo.6507864
http://dx.doi.org/10.5281/zenodo.6383001

	Introduction
	Machine Learning and Deep Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Artificial Neural Networks
	Universal Approximation Theorem
	Training Algorithms
	Incremental Learning
	Batch Learning
	Overfitting and Online Sampling

	Types of Artificial Neural Networks
	Feed-Forward Networks
	Multilayer Perceptron
	Radial-Basis Function Neural Network
	Autoencoders
	Convolutional Neural Networks

	Recurrent Neural Networks
	Layer-Recurrent Neural Network
	Nonlinear Autoregressive Exogenous Model
	Hopfield Neural Network
	Long Short-Term Memory
	Gated Recurrent Unit

	Spiking Neural Networks
	Types of Neurons
	Coding Schemes

	Applications in Space
	Identification of Neural Spacecraft Dynamics
	Fully Neural Dynamics Learning
	Dynamical Uncertainties and Disturbance Reconstruction
	System Identification through Reconstruction of Parameters

	Convolutional Neural Networks for Vision-Based Navigation
	CNN for Pose Estimation
	CNNs for Planetary and Asteroid Landing

	Reinforcement Learning and Meta-Reinforcement Learning for Adaptive Guidance and Control
	Reinforcement Learning
	Meta Reinforcement Learning

	Image Dataset Availability and Validation
	Technical Challenges for AI-Based Algorithms' Deployment

	Conclusions
	References

