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Abstract: The biophysical parameters of coffee plants can provide important information to guide
crop management. An alternative to traditional methods of sparse hand measurements to obtain
this type of information can be the 3D modeling of the coffee canopy using aerial images from RGB
cameras attached to remotely piloted aircraft (RPA). This study aimed to explore the use of RGB
aerial images to obtain 3D information of coffee crops, deriving plant height and volume information
together with yield data during three growing seasons in a commercial production area of 10.24 ha,
Minas Gerais state, Brazil. Seven data acquisition campaigns were conducted during the years 2019,
2020 and 2021. The flights were made at 70 m above ground level, with lateral and longitudinal
overlaps of 75% and 80%, respectively. The images were processed, obtaining canopy surface models
(CSMs) derived into plant height and volume data for each campaign. The results showed that it is
possible to extract the plant height of coffee plants with an R2 of 0.86 and an RMSE of 0.4 m. It was possible
to monitor the temporal variability of coffee plant height and volume based on aerial images and correlate
this information with yield data. The results of the modeling analysis demonstrated the possibility of using
these variables to help understand the spatial variability of coffee yield within the field.

Keywords: structure from motion; UAV; crop surface model; precision agriculture

1. Introduction

Remote sensing applications in agriculture have been trending over recent decades,
providing rapid and efficient insights for crop scouting based on the study of the spectral
responses of soil, water and vegetation [1]. Sensors can be attached on different platforms,
classified as proximal, aerial and satellite-based according to their distance in relation to
the target object [2]. Reflecting recent technology advances, the use of remotely piloted
aircraft systems (RPA) gained significant attention in agriculture; this was established as an
effective tool for small-scale remote sensing [3–5].

The use of RPA has been considered a promising tool with easy data acquisition
abilities and a higher operational flexibility in relation to classical platforms, providing
reliable data [5,6]. The application of remote sensing analysis coupled with aerial platforms
data provides an efficient, rapid and non-destructive assessment through the spectral
response of plants and its relationship with various environmental factors [7,8], mainly
because the spectral patterns of a crop vary due to several factors, such as the development
stage, vegetative vigor and management practices [9,10].

Several studies have explored the use of RPA with different on-board sensors for
crop monitoring. The applications vary from identifying the appropriate time to harvest
grapes [11], estimating the canopy height of olive trees [12], monitoring the growth of rice
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and barley crops [13,14], determining the spatial variability of water stress assessments in
vineyards [15] and estimating the biomass production of maize [16].

Some of these studies explore the use of consumer-grade red-green-blue (RGB) cam-
eras for aerial imaging, in which centimeter spatial resolution images are obtained and
processed to generate digital elevation models [17,18]. Based on structure from motion
(SfM) algorithms, RGB aerial images are processed, exploring photogrammetric methods
specifically developed for RPA imagery, resulting in 3D point clouds that can represent
crop canopy height [19]. According to Hoffmeister et al. [20], crop height information
is generated by subtracting a digital terrain model (DTM) from a digital surface model
(DSM). As crop height information has been successfully used as an estimate of plant
biomass in many crops, several studies have explored the use of crop surface model (CSM)
data derived from RGB imagery as a non-destructive method to assess crop biomass, with
successful results for onion, barley, wheat and maize [6,10,18,19].

In coffee production, the use of aerial imagery to explore spatial and temporal variabil-
ity is highlighted in studies developed by [21–23], in which biophysical variables of coffee
plants were estimated using RGB imagery data. Cunha et al. [21] sought to estimate the
biophysical variables of coffee plants in order to improve pesticide application efficiency.
Multispectral images obtained by RPAs have been also used for coffee [24–26]; however,
this was for exploring fruit ripeness monitoring.

As highlighted by [21,22], the height and volume of the canopy of coffee plants could
be determined in a practical and precise way through the digital processing of images
captured by RPA, indicating that the determination of these variables is fundamental, since
they can be related to coffee plant responses, such as biomass reduction, water stress, the
occurrence of pests and diseases, nutritional deficiencies, changes in chlorophyll content
and, ultimately, crop yield.

Mapping the yield of coffee plantations with a high level of detail is still a great
challenge, unlike other crops such as grains, for example, which already have relatively
consolidated yield monitoring methods [27]. In this sense, exploring alternative methods
that allow for the estimation of the yield of coffee areas is relevant for the sector, as the yield
map is considered the most complete and valid information to visualize the variability of
the crop [28].

Although some studies have shown the potential to estimate yield using models based
on the height and canopy diameter of coffee trees [29,30], none of them explored the use of
RGB images to estimate the height and volume of plants.

In addition, when RGB images obtained by RPA were explored, biophysical charac-
teristics correlated with coffee plant response variables, such as yield, were not assessed.
Moreover, most of the studies that contemplate the coffee culture do not consider the
spatial variability with high-density yield data within a coffee field but rather the average
differences between the fields, besides being limited to the comparison of point sampling
within a field over a single growing season.

Therefore, the objective of this study was to analyze the potential of RGB imagery data
acquired over three growing seasons to monitor the spatial and temporal variability of the
height and volume of coffee crops and their relation with high-density yield data.

2. Materials and Methods
2.1. Study Area

The area is located in the municipality of Patos de Minas, state of Minas Gerais, Brazil
(Figure 1a), in the Cerrado biome. The local climate is classified as Aw, according to
the Köppen classification [31], characterized by a tropical environment with dry winters
and rainy summers. The study was conducted in a commercial coffee area of 10.24 ha,
cultivated with the species Coffea arabica L., IAC Catuaí 144 variety. The coffee trees were
spaced by 0.5 m between plants and by 4.0 m between rows, resulting in a density of
approximately 5000 plants ha−1, with a drip irrigation system. In total, 35 rows of coffee,
each approximately 760 m in length, were evaluated.
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Figure 1. (a) General map of the study area; (b) map with details regarding the flight plan, ground
control points and height validation points.

2.2. RPA Flight and Image Acquisition

Seven campaigns were carried out between 2019 and 2021 (Table 1) to capture aerial
images, providing datasets at different growth stages throughout multiple growing sea-
sons. All flights were conducted close to solar noon with sunny and calm-wind weather
conditions.

Table 1. Details of each collection referring to date, phenological stages and number of images
obtained.

Collection Stage Date Local Time Images

C1 Pre-harvest 9 July 2019 11:57 407
C2 Post-harvest 13 July 2019 11:10 406
C3 Flowering 29 September 2019 11:02 401
C4 Fruit filling 20 March 2020 13:47 401
C5 Pre-harvest 29 May 2020 13:15 402
C6 Post-harvest 3 June 2020 12:15 404
C7 Pre-harvest 24 June 2021 12:49 405

A DJI Phantom 4 Advanced quadcopter (DJI, Shenzhen, Guangdong, China) was used
during the campaigns to capture RGB images. The built-in camera has a spectral resolution
within the visible spectrum (350~700 nm—RGB), featuring a 12.8 × 9.6 mm CMOS sensor
(Complementary Metal Oxide Semiconductor) controlled by a mechanical shutter, which
produces images with up to 20 megapixels (5472 × 3648 pixels). The flight campaigns were
planned using DroneDeploy mobile software (DroneDeploy Inc., San Francisco, CA, USA).
All the flights were conducted at 70 m above ground level, with side and forward overlaps
of 75 and 80%, respectively. The camera was set to capture images with 4864 × 3648 pixels
(4:3 aspect ratio). The aforementioned settings provided a ground sample distance (GSD)
of around 0.02 m, with over 400 images captured (Table 1). To ensure positional accuracy
during the georeferencing procedures, 13 ground control points (GCPs) were previously
installed in the field (wooden sticks) and remained in the field throughout the collection
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period, with their coordinates measured by a pair of RTK GNSS receivers (Topcon GR-3,
0.01 m accuracy, Topcon Corporation, Tokyo, Japan). Before each flight, the points were
highlighted with an agricultural lime in the shape of an “X”, approximately 2 m in diameter,
as shown in Figure 1b.

2.3. Canopy Surface Model Generation

To produce the digital elevation models (DEM), the RGB images obtained were pro-
cessed using Agisoft PhotoScan software (Agisoft LLC, São Peterburgo, Russia), which
features a structure from motion algorithm (SfM) for the 3D digital reconstruction of
scenes [32]. The workflow consists of importing the images into the software to perform
image alignment, followed by the GCPs insertion to optimize the previously obtained
image alignment, which provided a positional accuracy (root mean squared error—RMSE)
ranging from 0.01 to 0.03 m in the horizontal axis and from 0.03 to 0.05 m in the vertical
axis. Furthermore, the dense cloud can be generated and derived into a mesh surface
that represents the above surface structures (DSM). In order to obtain the digital terrain
model (DTM), the dense cloud previously generated needs to be filtrated, maintaining only
ground-level points [19]. To define appropriate parameters for the filtering process, an
empirical approach was implemented, testing different combinations of maximum angle,
maximum distance and cell size, observing the correspondence to the features overlayed
on the orthomosaic. Thus, the following parameters were defined: maximum angle of 1.5◦;
maximum distance of 0.25 m; cell size of 3 m. The selected points were then interpolated
and derived into a smoothed mesh surface obtained with a five-point threshold that repre-
sents the DTM. Both the DSM and DTM were exported as a TIFF file with a 0.03 m pixel−1

fixed spatial resolution. Figure 2 presents a flowchart of image processing.
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Using map algebra (Equation (1)) between the DSM and the DTM, the so-called crop
surface model (CSM) was obtained, which represents the plant height information [19].

CSM = DSM − DTM (1)

2.4. Extraction of Plant Height and Plant Volume Information

Before extracting plant height information from CSMs, we first developed a process
aiming to individualize each coffee tree using QGIS (QGIS Development Team) (Figure 3).
The first step consisted of clipping portions of the CSM with values ≥ 0.2 m, generating
a mask feature layer separating each coffee row. Furthermore, a transversal clip at every
0.5 m (assuming regular spacing between plants) was applied to the previously obtained
mask layer in order to separate each coffee plant within the row. This way, each plant was
individualized based on a polygon feature maintaining the variable width metrics of every
tree. Based on the obtained mask feature, zonal statistics were obtained, calculating the
maximum plant height, average plant height and area within each polygon representing
individual trees. By multiplying the average plant height (PH) by the area, the plant volume
(PV) of each tree was then obtained.
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2.5. Validation of Plant Height Derived from CSMs

For the validation of plant height information, 20 sampling points were distributed
across the field during C1 (Figure 1b). At each sampling location, six plants were selected
and had their maximum height measured using a topographic ruler, with the value being
compared to the CSM-based plant height. Based on the results of the 120 samples, a linear
regression was obtained between the ground-based plant height and the CSM-based plant
height, with the accuracy evaluated based on root mean squared error (RMSE).

2.6. Spatio-Temporal Relationship between Image Data and Coffee Crop Yield

Yield data were obtained based on the yield monitor system installed on a K3 Mil-
lenium coffee harvester (Jacto, Pompeia, Brazil). The yield datasets were first filtered,
eliminating headland maneuver data. Data close to roads that divide and cross the area
and discrepant data were filtered using the MapFilter 2.0 software [33], employing global
filtering with a threshold of 100%, and then interpolated using ordinary kriging with a
spatial resolution of 3 m according to the methodology described by Martello et al. [27].

A similar filtering approach was applied to the PH and PV data derived from CSMs.
Datasets obtained from C1 to C7 were filtered using the MapFilter 2.0 software [33], em-
ploying a global filtering with a threshold of 100% and a local filtering with a threshold of
10% and a search radius of 10 m, filtering discrepant data such as polygons that did not
have coffee plants. To perform the interpolation, the semivariogram was calculated in the
Vesper 1.6 software [34] with the following input parameters: 30 lags, 50% lag tolerance and
100 m maximum distance. These parameters were considered the best fit for calculating the
semivariogram based on the exponential model (lower RMSE). The interpolation of the PH
and PV data was performed in the same software using the ordinary kriging method with
the same spatial resolution as the yield maps (3 m × 3 m).

The spatio-temporal relationship of the PH and PV data with the coffee crop yield was
evaluated, comparing the PH and PV maps of C1 with the yield map of the first year (Y1);
the PH and PV maps of collections C1, C2, C3, C4 and C5 were also compared with the
yield map of the second year (Y2); and the yield map of the third year (Y3) was compared
with the PH and PV maps of C5, C6, and C7 (Figure 4). These data were compared using
Pearson’s correlation coefficient, and the ability of the PH and PV data to predict yield was
verified (n = 11,859, for all datasets). These comparisons allow for the evaluation of the
temporal relationship between the sensor data and the coffee yield.
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The calibrations of the predictive models were validated with full cross validation
using the following quality indicators: the coefficient of determination (R2), the residual
prediction deviation (RPD), the root-mean-square error (RMSE) and RMSE%. The RPD
was calculated as the ratio between the standard deviation of the measured yield and the
RMSE obtained in the prediction. Four RPD classes adapted from Chang et al. [35] were
used to evaluate the quality of models: poor models (RPD < 1.40), reasonable models
(1.40 ≤ RPD < 2.00), good models (2.00 ≤ RPD < 3.00) and excellent models (RPD ≥ 3.00).
The full cross validation results were used to create the predicted yield point maps.

3. Results and Discussion
3.1. Plant Height Validation

The regression model between the CSM-based plant height and reference measure-
ments yielded an R2 of 0.86, with an RMSE = 0.41 m and an RMSE% = 13.42% (Figure 5).
Some other studies that also employed RGB aerial images to assess plant height in coffee
production achieved an R2 value 0.52, which is considered a moderate correlation [36],
and 0.87, [22,23]. Other studies that explored the use of SfM algorithms to derive plant
height information from RPA-based imagery obtained similar results in terms of precision
for maize (R2 = 0.88) [16], black oat (R2 = 0.68–0.92) [37], wheat (R2 = 0.87–0.96) [6] and
grassland (R2 = 0.56–0.70) [38].
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In the coffee crop, Santos et al. [22] observed an RSME of 0.07 m, with height estimation
errors ranging from −0.3 to 0.2 m. Although the RSME value found by Santos et al. [22]
is smaller than that observed in Figure 5 (0.41 m), when we compare the RMSE% values
observed in other studies that explored the use of SfM algorithms to derive plant height
information from RPA-based imagery, values that ranged between 6% and 20% can be
observed. Panagiotidis et al. [39] obtained an RMSE% in the range of 11.42–12.62% for
tree height estimation. Zarco-Tejada et al. [40] compared the height data retrieved from
high-resolution images and ground measurements similarly; they determined that the
RMSE% ranged between 10 and 13, depending on the study area. In apple trees, Hobart
et al. [41] used the mean absolute error (MAE) and observed tree heights between 0.18 m
and 0.23 m, ranging from 9.2% to 15.3%. The correlations found in this study for coffee
height estimates from an RPA point cloud and reference data can also be compared with
the results obtained for olive plantations by Diaz-Varela [12], where the mean square errors
of the root varied between 6% and 20%.

3.2. Exploratoy Analysis

The descriptive statistics for PH and PV from all datasets are presented in Table 2. The
original PV data presented a coefficient of variation (CV) from 16.89 to 22.23%, while the
CV for the PH data presented a variation from 8.52 to 13.47%. With the filtered datasets, the
CV was smaller, presenting values from 8.5 to 15.79% for PV and values between 6.17 and
10.53% for PH. The reduction in the variation of values is a result of the filtering process,
which aims to exclude discrepant values in order to improve the understanding of the real
variability of the data. It is also noticeable that the filtering process removed more readings
from PV than from PH. Since the estimation of PV uses two variables (average height and
plant area), the variations found in the original values were greater, and, consequently, the
filtering step eliminated more discrepant points.
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Table 2. Descriptive statistics of raw and filtered PH and PV data.

Variable * Unit
n Mean Min Max SD CV (%) n Mean Min Max SD CV (%)

Raw Data Filtered Data

PV-C1 m3 51,196 2.30 0.04 4.64 0.48 21.10 27,329 2.31 1.44 3.42 0.31 13.50
PV-C2 m3 51,196 2.16 0.02 4.50 0.49 22.59 26,205 2.20 1.29 3.23 0.32 14.59
PV-C3 m3 51,196 2.21 0.02 4.91 0.49 22.23 29,441 2.25 1.19 3.29 0.36 15.79
PV-C4 m3 51,196 2.86 0.10 5.71 0.51 17.96 29,099 2.80 1.75 3.86 0.30 10.86
PV-C5 m3 51,196 2.84 0.18 5.58 0.49 17.42 28,143 2.79 1.81 3.67 0.26 9.31
PV-C6 m3 51,196 2.79 0.04 5.84 0.47 16.89 29,002 2.75 1.91 3.63 0.23 8.50
PV-C7 m3 51,196 2.83 0.02 5.77 0.58 20.58 25,495 2.81 1.69 3.97 0.36 12.92
PH-C1 m 51,196 2.66 0.44 3.66 0.32 12.13 42,364 2.71 1.66 3.41 0.26 9.55
PH-C2 m 51,196 2.60 0.36 4.06 0.35 13.47 40,196 2.67 1.52 3.37 0.28 10.53
PH-C3 m 51,196 2.66 0.32 3.70 0.33 12.52 43,160 2.71 1.72 3.43 0.27 9.98
PH-C4 m 51,196 2.93 0.65 3.86 0.25 8.52 46,971 2.95 2.00 3.59 0.20 6.78
PH-C5 m 51,196 2.82 0.48 3.75 0.24 8.54 45,982 2.85 2.00 3.41 0.18 6.47
PH-C6 m 51,196 2.89 0.61 3.97 0.25 8.59 45,703 2.93 2.09 3.54 0.18 6.17
PH-C7 m 51,196 2.94 0.33 3.90 0.33 11.29 42,838 2.99 1.9 3.7 0.27 9.11

* PH is plant height, PV is plant volume and C is collections.

The average plant height increased over time, starting from an average of 2.67 m
(C2—year 2019) all the way to 2.99 m (C7—year 2021). The average PV also showed
variations during the evaluation period, but in this case, the volume of the plant suffered a
negative impact after harvest. The average values of the volume before harvest, C1 and C5
(2.31 m3 and 2.79 m3), are greater them the average values of the datasets after harvest,
C2 and C6 (2.20 m3 and 2.75 m3), in which a decrease in the average volume of 0.11 and
0.04 m3 was observed. This negative variation can be explained by the impact that the
coffee trees suffer during the mechanized harvest of the fruits. As observed by [42], during
the harvest, the plant is exposed to constant vibrations to detach the fruits. These vibrations,
combined with the traffic of machines in the area, can cause damages to branches and a loss
of leaves, which can justify the decrease in the average volume of the plants. Despite that,
in fully mechanized systems, farmers normally consider the PV and PH to be generally
constant along the field, as shaped by the harvester and other mechanical operations.

From the end of harvest until the first rains, the plant remains in a vegetative resting
stage, and the change in plant volume is small (C2 to C3), but as soon as the rainy season
begins (C3), the plant moves to an active vegetative stage (C4), and this behavior can be
noticed when comparing the average volume of the C3 collection, which was 2.25 m3 and
changes to 2.80 in the C4 collection, an average increase of 0.55 m3.

Figure 6 presents the correlation matrix between PH (Figure 6a) and PV (Figure 6b)
over the seven campaigns. A positive correlation between the variables for all datasets
can be observed, with r values ranging from 0.53 to 0.94 for PH and from 0.46 to 0.91 for
PV. The lowest correlation values were found when comparing the data from C2 with
those from C5 and C6, with r values of PH 0.53 and PV 0.46, respectively. This decrease in
correlation can be explained by the physiological aspects of coffee plants, which need two
years to produce the fruit, the first year being a vegetative stage and the second year being
the reproductive stage. Therefore, when comparing the data with an interval of two years
(C2–C7), the results show a higher correlation between datasets, with r values of 0.88 PH
and 0.78 PV.
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3.3. Spatio-Temporal Relationship between Image Data and Coffee Crop Yield

The interpolated maps of PH and PV from all campaigns (C1 to C7) are presented
in Figure 7, in which the spatial behavior from all campaigns can be observed. The PV
maps from C1, C2 and C3 present a similar spatial behavior, with the same regions of high
(regions in green) and low (regions in red) plant volume. After collection C3 (Flowering),
due to the beginning of the rainy season in the Cerrado region, the plants present an increase
in vegetative vigor [43], which may influence the behavior of plant height, especially during
C4, when the spatial pattern of PH begins to display differences in relation to previous
collections (C1, C2 and C3). These differences increase in C5 and C6, because the area was
showing less variations in height, with a predominance of greener regions (Figure 7i,k)
and a with low CV (6.47 and 6.17%, respectively) (Table 2). During C7, once more, the area
presents a similar behavior to collections C1, C2 and C3, with regions of high and low plant
height well defined.

By comparing the PV and PH maps from the same campaign, it is possible to observe
that they have some differences in spatial behavior. The PV data present a greater defi-
nition of areas with a high (regions in green) and low (regions in red) volume of plants,
consequently presenting higher CV values (Table 2) in comparison with the PH datasets.
The behavior observed in the PH maps is repeated in the PV maps. Starting with C4, it is
possible to identify that the area presents a distinct behavior in comparison with collections
C1, C2, C3 and C7, also presenting some isolated regions that previously presented a low
volume (regions in red) in collections C1, C2, C3 and C7. During C4, C5 and C6, the same
regions presented inverse behavior with a high volume (regions in green). This inversion
may be linked to the biennial behavior of the plant, which presents opposite behaviors in
years of high and low yield [44,45].

Another point that is important to highlight is the possibility that this PH and PV
information can be used as a guide for the application of phytosanitary products that use
plant volume and height as a factor for determining the application dose [46,47]. The results
presented in Figure 7 generally present well-defined regions with PH and PV variation,
indicating that it could be used to direct spraying at a variable rate.

Table 3 presents the spatio-temporal relationship of the PH and PV together with yield
data obtained from harvests of 2019 (Y1) 2020 (Y2) and 2021 (Y3). When analyzing the
correlation between PH and PV data and yield, we observe that the correlation shows
negative values for yield data from Y1 and Y3 and a direct correlation (positive) with yield
data from Y2. This result may indicate that the volume and plant height have a more static
behavior, not following the reversal of yield, as shown in Figures 8–10, and, therefore, they
show a direct correlation with a year and an indirect correlation with the following year,
when yield zones invert, as observed by [27].
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Figure 7. PH and PV interpolated data. (a) PH obtained in C1; (b) PV obtained in C1; (c) PH obtained
in C2; (d) PV obtained in the C2; (e) PH obtained in C3; (f) PV obtained in C3; (g) PH obtained
in C4; (h) PV obtained in C4; (i) PH obtained in C5; (j) PV obtained in C5; (k) PH obtained in C6;
(l) PV obtained in C6; (m) PH obtained in C7; (n) PV obtained in C7.

Another interesting result observed in this study is the relationship of PH and PV data
from a specific campaign (e.g., C1 and C5) with the Y2 dataset. The PH and PV from C5,
during the pre-harvest of 2020, showed a low correlation (r = 0.43 and 0.28) with the yield
of that same year (Y2), while it showed higher values when compared to the data from the
C2 collection (one year earlier), with direct correlations of r = 0.90 for PV and r= 0.92 for
PH. The C5 and C6 datasets showed low values of correlation for both the Y2 and Y3 yields.
This might indicate that, for this area, the best time to conduct flight campaigns aiming to
predict crop yield would be in the odd years, because when we observe the data of the
Y3 yield, the highest values of correlation were found in collection C7 (pre-harvest 2021).
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Despite the inverse correlation, the predictive potential of using the volume data from C7
showed a reasonable performance (RPD = 1.56) in predicting the Y3 yield.

Table 3. Temporal relationship of the PH and PV data with the yields obtained in the 2019 (Y1),
2020 (Y2) and 2021 (Y3) crops. The results show the performance of yield prediction (obtained in the
full cross-validation) using simple linear regression models.

In Comparison with Y1 In Comparison with Y2 In Comparison with Y3

C1 C1 C2 C3 C4 C5 C5 C6 C7

———————————————-PHCSM———————————————
r −0.25 0.88 0.90 0.86 0.67 0.43 −0.15 −0.15 −0.65

R2 0.06 0.77 0.81 0.75 0.45 0.18 0.02 0.02 0.42
RMSE 0.28 0.24 0.22 0.25 0.37 0.45 0.43 0.43 0.33

RMSE% 21.38 11.88 10.72 12.37 18.18 22.27 29.10 29.13 22.38
RPD 1.03 2.07 2.30 1.99 1.35 1.11 1.01 1.01 1.32

———————————————-PVCSM———————————————
r −0.32 0.90 0.92 0.86 0.69 0.28 −0.10 −0.07 −0.77

R2 0.10 0.80 0.84 0.73 0.48 0.08 0.01 0.00 0.59
RMSE 0.27 0.22 0.20 0.26 0.36 0.48 0.43 0.43 0.28

RMSE% 20.92 10.93 9.77 12.75 17.77 23.62 29.30 29.38 18.84
RPD 1.05 2.25 2.52 1.93 1.39 1.04 1.01 1.00 1.56Drones 2022, 6, x FOR PEER REVIEW 12 of 17 
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with PV-C1.

The performance of the models using PH and PV data for yield prediction showed
distinct behavior, with the best models found for the C1 and C2 datasets when estimating
the yield of Y2, with an RPD greater than 2.00. According to the classification proposed
by [35], values of RPD between 2 and 3 indicate good models for prediction. The C3 dataset
versus the yield of Y2 and the C7 dataset versus the yield of Y3 showed reasonable results
(1.40 ≤ RPD < 2.00). In general, the performance of the PV data presented the lowest RMSE
and RMSE% values for yield estimation in comparison with the PH data.

By observing the average annual yield data (Figures 8–10), it is possible to identify the
crop behavior, going from a year of low productivity in Y1 to a year of high productivity
in Y2, again presenting low values of yield in the following season, Y3. In general, coffee
productivity has a biennial behavior, alternating between a year of high productivity and a
subsequent year of low productivity. This variation is explained by the morphophysiologi-
cal behavior of the coffee tree [46,47].
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Figure 9. (a) Harvest yield data Y2 (June 2020); (b) yield estimated with PH-C1; (c) yield estimated
with PV-C1; (d) yield estimated with PH-C2; (e) yield estimated with PV-C2; (f) yield estimated with
PH-C3; (g) yield estimated with PV-C3; (h) yield estimated with PH-C4; (i) yield estimated with
PV-C4; (j) yield estimated with PH-C5; (k) yield estimated with PV-C5.

Figure 8 shows the Y1 yield results, as well as the predicted yield maps obtained from
the linear regression using PH and PV independent variables. The maps were generated
using the same color scale, promoting a more reliable comparison. Visually, the estimated
maps did not present spatial similarity with the measured yield data, which corroborates
the results found in Table 3, with a low value of R2 and RPD; this behavior may be related
to the productive bienniality of coffee, since the Y1 harvest is characterized as a year of low
productivity due to the physiological characteristics of the plant [48]. The C1 collection, the
plants had a high vegetative activity, already indicating the productive variability for the
following year Y2, which is shown in Figure 9.
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with PV-C5; (d) yield estimated with PH-C6; (e) yield estimated with PV-C6; (f) yield estimated with
PH-C7; (g) yield estimated with PV-C7.

Unlike the result shown in Figure 8, the estimated yield maps in Figure 9 were
obtained using datasets from C1 to C5, in which it is possible to observe changes in the
spatial behavior of the estimated data, with C1 and C2 presenting a great spatial similarity
with the observed yield data. After the collection C3, the maps began to present greater
differences in comparison with Y2 due to the lower accuracies for yield prediction. This
change in behavior may be linked to the beginning of the rainy season that starts in October
in the Brazilian Cerrado region; in this sense, it is expected that the plants show an increase
in vegetative vigor [43] and may affect the behavior of the PH and PV of the plants. In
addition, the visual analysis indicates that the PV data presented smoother transitions
between classes, unlike the PH results; in addition, the models using PV showed the best
results in relation to the productivity estimate, with the lowest RMSE% values (10.93%,
9.77%, 12.75%) for collections C1, C2 and C3, respectively.

The yield data from Y3, along with the predicted yield results using datasets from
C5, C6 and C7, are presented in Figure 10. Similar to the results discussed for the maps of
Figures 8b,c and 9j,k, the results from C5 and C6 presented a low spatial similarity with
the observed yield data, whereas the results from C7 presented a greater similarity with
the observed yield in comparison to other campaigns. The PV results found in C7 present
a greater similarity with Y3 in comparison with the PH data. Nonetheless, even with the
greater similarity, the PV results still have limitations for yield prediction.

For commercial orange groves, ref. [49] suggested that the canopy volume for a given
yield can provide information on yield performance in recent years, although in some
cases, some unexpected results were found, where the highest yield occurred in zones with
medium or small trees.
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3.4. Limitations and Future Aspects

Although the main objective of this work was to evaluate the PH and PV data ex-
tracted from aerial images and compared with yield maps, we believe that there are other
approaches that can benefit from this information, which can be used to help understand
several limitations in coffee crops, as highlighted previously by [22]. As an example, we can
mention water deficit [50] and the solar radiation interception dynamics [51]. Moreover, it
can also serve as a guideline for site-specific management practices, especially for spraying
activities using variable rate systems based on plant height and volume information [46,47],
and along with other layers to aid in determining management zones [49].

We emphasize that the present study sought to provide an initial approach to the po-
tential use of aerial images for coffee fields, but more studies are still needed to explore new
methods and new scenarios, thus allowing for a greater understanding of the application of
data in understanding of spatial variability, as several factors can influence this variability,
including biennial behavior [52], the occurrence of diseases, pests and weeds [53–55] and
soil fertility and foliar nutrition [56,57], which were not addressed in this work.

4. Conclusions

In this study, we evaluated the spatio-temporal relationship of coffee productivity
throughout its biennial cycle using plant height and volume data. To achieve this goal, we
used RPA images and processing with the SfM technique.

The results of this study suggest that it is possible to map the height and volume of
coffee plants using aerial images, with height validation results similar to those of other
studies that also applied the SFM technique for other crops. It was also possible to map the
spatial variability of the volume and height of the plants throughout three years and seven
data collections. The volume data showed a greater spatial variability, with variations of
high- and low-volume regions in the same collection.

It was possible to observe the temporal relationship of the height and volume data
with the yield maps, in which collections carried out at the beginning of the coffee cycle (C1,
C2 and C3), before the rainy season that begins in October, present a positive correlation
with the coffee productivity of the same year (Y2). On the other hand, the following
collections (C5 and C6) showed a different behavior after the beginning of the rains, when
the vegetative activity of the plant increases.

This study presents the spatio-temporal variations in height and volume data in large
coffee fields, as well as their relationship with coffee crop productivity. More studies
are needed to deepen the practical applications of this data to support the optimized
management of inputs through precision agriculture practices in coffee production
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