
����������
�������

Citation: Bassolillo, S.R.; Blasi, L.;

D’Amato, E.; Mattei, M.; Notaro, I.

Decentralized Triangular Guidance

Algorithms for Formations of UAVs.

Drones 2022, 6, 7. https://doi.org/

10.3390/drones6010007

Academic Editor: Oleg Yakimenko

Received: 24 November 2021

Accepted: 24 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Decentralized Triangular Guidance Algorithms for Formations
of UAVs

Salvatore Rosario Bassolillo 1, Luciano Blasi 1 , Egidio D’Amato 2,* , Massimiliano Mattei 3

and Immacolata Notaro 1

1 Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy;
salvatorerosario.bassolillo@unicampania.it (S.R.B.); luciano.blasi@unicampania.it (L.B.);
immacolata.notaro@unicampania.it (I.N.)

2 Department of Science and Technology, University of Naples Parthenope, 80143 Naples, Italy
3 Department of Electrical Engineering and Information Technologies, University of Naples Federico II,

80125 Naples, Italy; massimiliano.mattei@unina.it
* Correspondence: egidio.damato@uniparthenope.it

Abstract: This paper deals with the design of a guidance control system for a swarm of unmanned
aerial systems flying at a given altitude, addressing flight formation requirements that can be formu-
lated constraining the swarm to be on the nodes of a triangular mesh. Three decentralized guidance
algorithms are presented. A classical fixed leader–follower scheme is compared with two alternative
schemes: the former is based on the self-identification of one or more time-varying leaders; the latter
is an algorithm without leaders. Several operational scenarios have been simulated involving swarms
with obstacles and an increasing number of aircraft in order to prove the effectiveness of the proposed
guidance schemes.

Keywords: UAV swarm; formation flight; decentralized control; anti-collision

1. Introduction

In the last decade, research on civil unmanned aerial systems has been growing due to
their great versatility and adaptability to several kinds of missions and lower operating
costs as well. However, the use of a single Unmanned Aerial Vehicle (UAV) may be not
effective for some missions, whereas the cooperation of more UAVs as a team allows more
complex tasks to be accomplished, reducing time and/or space required to achieve the
mission goals or to enhance the robustness of the overall missions [1–3].

Several advantages can be obtained with UAV formations. For instance, the com-
ponents of a team can simultaneously collect information from multiple locations, thus
reducing the time needed to acquire all the data necessary for decision-making, or they can
take actions in multiple locations, reducing the reaction time. Another important feature is
related to the complementarity of flight formation members; for example, the efficiency
of the system can be improved by distributing different sensors on multiple UAVs, thus
reducing payload and, in the case of redundancy, increasing at the same time the robustness
of the whole system, no longer related to the reliability of a single aircraft. As the costs of a
single aircraft exponentially increase with the take-off weight, the use of several smaller
UAVs can also be effective in reducing production and operating costs [4,5]. Furthermore,
smaller vehicles have a better capability to move in confined spaces and, by operating
many of them, it is possible to survey a wider area than a single, larger aircraft, even if
equipped with better sensors [6–11].

A real improvement can be achieved if all the aircraft can properly collaborate to
accomplish the mission target by coordinating their tasks. Within this frame, an extensive
research field focuses on the swarming behavior, or flocking, known in nature as the
collective behavior of a large number of agents able to interact and share a common
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objective [12–20]. In particular, flocking is the ability of a group of autonomous agents
(being aircraft or robots) to move like a swarm of birds or insects.

At this scope, consensus control algorithms guide each agent to find the agreement on
a certain state. In the literature, the multi-agent formation stabilization problem is defined
with the objective of designing a decentralized control law for a fleet of mobile robots
used to stabilize an assigned formation shape. Another important problem is related to
the determination of the right geometric shape, based on local measures as displacements,
distances and bearings.

Two standard strategies for formation control using consensus are the most used:
distance-based control and position-based control. In the distance-based control, each
vehicle keeps an assigned distance from its adjacent robots. In this case, a rigid graph
topology [21–24] is defined to describe the fleet network. In the displacement-based
control, each robot follows the desired position as a deviation from a pre-defined formation
center. However, all agents must know the formation center. Finally, the position-based
formation strategy can be expensive, needing a plan and being less adaptive to changes
in the environment, while its results are unnecessary if the position of each robot is not
strictly required.

To reduce the information exchange and to improve the robustness of the control
strategy, the displacement-based formation strategy has been extensively studied [25–29].
This method can also be considered consensus-based since the formation problem can be
transformed into a consensus problem [27,30–32].

The classical model for swarm control is based on three heuristic rules [33]: cohesion,
separation and alignment; however, several concepts of UAV formations can be operated.
One concept considers a physical coupling between aircraft that are constrained in their
flight. A typical example can be the transportation of heavy loads by using many drones.
In this case, the main problem in the coordination algorithm is to take into account forces
due to the constraints [34].

A second concept is the use of formations with a fixed shape or with constraints
on the shape. Aircraft must coordinate to accomplish mission targets and maintain their
relative position while avoiding collision with other vehicles and obstacles. The focus is
the management of the aircraft relative positions that can also be optimized, taking into
account the overall aerodynamic efficiency of flight, especially in the case of fixed-wing
aircraft [35] or the mission objectives [36–42].

A different concept arises, especially with a (large) number of aircraft in swarms, where
guidance does not care about flying in a shaped formation but is focused on collective
behaviors and, in particular, on scalability and decentralization issues [43–45].

Finally, in some cases, the swarm is conceived as the sum of single UAVs that move
according to trajectories planned for individual tasks in order to accomplish the overall
desired result [46]. In this case, problems such as multi-UAV task allocation, high-level
planning, plan decomposition and conflict resolution have to be solved [47–50].

This paper deals with the design of three different decentralized distance-based guid-
ance algorithms for a swarm of UAVs combining the Triangular Formation Algorithm [51]
with a potential field approach [52,53]. The proposed guidance algorithms force aircraft
to fly while keeping a triangular-shaped mesh. This guarantees a fixed nominal distance
between neighboring UAVs, which can be important for communication and/or sensing
purposes, and the required coverage of a given amount of terrestrial surface as well.

Several contributions are presented in this paper: the first is about the use of a Visibility
(sub)graph concept for the selection of neighboring vehicles, for which it is useful to apply
the Triangular Formation Algorithm in the presence of obstacles. As for the swarm control
architecture, this paper deals with the comparison between three different schemes with
and without a leader–follower structure. Furthermore, the definition of a distributed
leader auto-selection criterion allows, in the presence of a leader–follower structure, greater
flexibility in the role identification for the (leader or follower) for each aircraft of the swarm.
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The paper is organized as follows: in Section 2, the guidance problem is precisely
stated; in Section 3, the Triangular Formation Algorithm (TFA) is recalled; Section 4 focuses
on the proposed Swarm Guidance Algorithm (SGA), including the Collision Avoidance
Algorithm (CAA) and Trajectory Tracking Algorithm (TTA), while in Section 5, the three
different guidance system architectures are presented. Finally, in Section 6, numerical
results are shown to prove the effectiveness of the proposed strategies in several scenarios.

2. Problem Statement and Modeling

Consider N fixed-wing aircraft flying together as a single swarm at a fixed altitude.
The fleet must reach a destination point P f , representing the center of the target area,
preserving as much as possible the mutual distances and a triangular mesh flight formation
structure. Since we assume that each aircraft is equipped with its own Flight Control
System (FCS), the i-th closed-loop vehicle dynamics can be described by the following
kinematic equations: 

ẋi(t) = Vi(t) cos ψi(t)
ẏi(t) = Vi(t) sin ψi(t)
V̇i(t) = uVi (t)
ψ̇i(t) = uψi (t)

(1)

where Pi(t) = [xi(t), yi(t)]T is the position at time t, Vi(t) is the speed, ψi(t) is the heading
angle, uψi (t) and uVi (t) are, respectively, the reference turning rate and the acceleration to
the Flight Control System.

3. Triangular Formation Algorithm

Triangular mesh-based formations have been proposed in several works. In [54], the
authors show that the formation of three robots converges exponentially quickly to the
desired triangular formation from any initially non-collinear position.

In [55], it is shown that the control law can cause any initially non-collinear, positively-
oriented (or negatively-oriented) triangular formation to converge exponentially quickly to
the desired positively-oriented (negatively-oriented) triangular formation. The equilibrium
set was the union set combined by the desired set of equilibrium points and the collinear set.
In [56,57] negative gradient control laws are proposed to stabilize a triangular formation.
In [21], an adaptive perturbation method is used in order to guarantee that the equilibrium
set of the overall system is unique, which is exactly the desired formation. In [58], the stabil-
ity properties of distance-based formations have been examined. The authors demonstrate
that the tree structure in the formation graph is a necessary and sufficient condition for
distance-based formation stabilization with negative gradient control laws.

The Triangular Formation Algorithm (TFA) is based on local interactions between
aircraft, guaranteeing that, in the absence of perturbations or obstacles, each aircraft is able
to assume a local dynamic equilateral triangular formation with its neighbors [51].

There is no need for synchronization or communication between aircraft except for
sharing their current state. At each discrete-time step, the i-th aircraft computes the desired
position P̂i(t) = [x̂i(t), ŷi(t)]T , trying to form an isosceles triangle with its neighbors. The
resulting configuration consists of a series of equilateral triangles. The desired distance
d between vehicles is a parameter chosen according to the prescribed minimum safety
distance dsa f ety (d > dsa f ety) between UAVs.

Consider the i-th aircraft position Pi(t) and its two nearest vehicles in the swarm,
whose positions are Pj(t) and Pk, respectively.

If only a neighbor exists, whose position is Pj(t), then a fictitious point Pk(t) is defined,
placed symmetrically to Pj(t) with respect to the current flight direction:

Pk(t) =
[
xi(t)−

∣∣Pi(t)− Pj(t)
∣∣ sin ψi(t), yi(t) +

∣∣Pi(t)− Pj(t)
∣∣ cos ψi(t)

]
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where ψi(t) is the actual heading of the i-th vehicle, and
∣∣Pi(t)− Pj(t)

∣∣ is the distance from
its neighbour j.

Under the assumptions that
∣∣Pi(t)− Pj(t)

∣∣ ≤ |Pi(t)− Pk(t)| and |Pj(t)− Pk(t)| < 2d,
the desired position P̂i(t) = [x̂i(t), ŷi(t)] can be computed as follows:{

x̂i(t) = xM(t)− h sin θjk(t)
ŷi(t) = yM(t) + h cos θjk(t)

if 0 ≤ ∆θ(t) < π{
x̂i(t) = xM(t) + h sin θjk(t)
ŷi(t) = yM(t)− h cos θjk(t)

if π ≤ ∆θ(t) < 2π

(2)

where PM(t) =
(
Pk(t) + Pj(t)

)
/2 = (xM(t), yM(t))T is the mean point between Pj(t) and

Pk(t); h =
√

d
2 − |PM(t)− Pj(t)|2; ∆θ(t) =

⌊
θjk(t)− θi,M(t)

⌋2π

0
with:

θjk(t) =
⌊
atan2

(
yj(t)− yk(t), xj(t)− xk(t)

)⌋2π

0 ,

θi,M(t) = batan2(yM(t)− yi(t), xM(t)− xi(t))c2π
0 .

atan2(·, ·) represents the 2-argument arctangent function, and the operator b·c2π
0 wraps the

angles in the range [0, 2π[.
In accordance with Equation (2), as shown in Figure 1, the resulting triangle PjP̂iPk

is an isosceles.

Figure 1. TFA triangle construction cases. Time information has been omitted.

If the length of one of the edges in the triangle PjPiPk is greater than twice the desired
distance between aircraft, then the desired position P̂i(t) is computed as:

P̂i(t) =
Pi(t) + Pj(t) + Pk(t)

3
(3)

in order to approach the vehicles before creating the triangle-based formation. The proce-
dure is summarized in Algorithm 1.
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Algorithm 1: Triangular Formation Algorithm (Time information has been omitted).
Data: Pi, Pj,Pk

Parameters: d
Result: P̂i

if (d <
PjPk

2 ) ∨ (d < PiPk
2 ) ∨ (d <

PiPj
2 ) then

P̂i =
Pi+Pj+Pk

3 ;
else

PM =
(Pj+Pk)

2 ;

θjk =
⌊
atan2

(
yj − yk, xj − xk

)⌋2π

0 ;

θi,M = batan2(yM − yi, xM − xi)c2π
0 ;

∆θ =
⌊

θjk − θi,M

⌋2π

0

h =
√

d
2 − |PM − Pj|2

if 0 ≤ ∆θ < π then

P̂i =
(

xM − h sin θjk, yM + h cos θjk

)
else

P̂i =
(

xM + h sin θjk, yM − h cos θjk

)
end

end

4. The Distributed Guidance System

Figure 2, shows the common architecture of the Guidance Algorithm of each aircraft
that is composed of the following elements.

Swarm
Awareness

Trajectory
Tracking

Figure 2. Generalized Scheme of the Guidance Algorithm (Time information has been omitted).

- A Swarm Awareness Algorithm (SAA) devoted to computing the neighbors set Ni(t),
needed to execute the Swarm Control Algorithm.

- A Swarm Control Algorithm (SCA) aimed at calculating the next desired position
P̃i(t) and speed Ṽi(t), at each time instant, in order to reach the target area at P f and
keep the aircraft within the formation.

- A Collision Avoidance Algorithm (CAA) that modifies the reference signal for the
Trajectory Tracking Algorithm, ψTTA

i (t) and VTTA
i (t), in order to avoid collision with

the obstacles and the adjacent vehicles.
- A Trajectory Tracking Algorithm (TTA) that computes the control signals uψi (t) and

uVi (t) to be supplied to the FCS.

4.1. The Swarm Awareness Algorithm

At any time t, the swarm topology can be described by a direct weighted graph
G f (t) = (V , E(t)), whose node set V is composed by the vehicles i ∈ {1, 2, ..., N}, whereas
the edges are set by
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E(t) =
N⋃

i=1

(i, j) with j ∈ N ∗i (t)

where N ∗i (t) is the set of neighbour (adjacent) vertices to node i. At each arc (i, j) ∈ E(t)
is associated a weight equal to the distance between the node i and the node j: dij(t) =∣∣Pi(t)− Pj(t)

∣∣.
On the basis of information received by the other vehicles, the SAA builds the i-th row

of the adjacency matrix of the graph.
Therefore, for each vehicle j , with j ∈ {1, 2, . . . , N} and j 6= i, the line of sight vector

between the vehicle i and j is defined as LOSij = Pj(t)− Pi(t). With reference to the LOSij,
consider the following angle ∆θi,j(t):

∆θi,j(t) =
⌊

θi, f (t)− θij(t)
⌋π

−π
(4)

where

• the operator b·cπ−π wraps the angle to the interval [−π, π[,

• θij(t) =
⌊
atan2

(
yj(t)− yi(t), xj(t)− xi(t)

)⌋2π

0 defined in the range [0, 2π[,

• θi, f (t) =
⌊

atan2
(

y f − yi(t), x f − xi(t)
)⌋2π

0
, defined in the range [0, 2π[.

At the time t, the set N ∗i of all the vehicles neighboring the i-th UAV, by evaluating
the angle ∆θi,j:

N ∗i (t) =
{

j ∈ {1, . . . , N}, j 6= i :
∣∣∆θi,j(t)

∣∣ ≤ π

2

}
(5)

The set Ni(t) ⊆ N ∗i (t) is obtained by selecting the two nearest vehicles in the set
N ∗i (t) on the basis of the actual distance dij(t).

4.2. The Swarm Control Algorithm

After the SAA, the SCA computes a reference direction Γi(t) = [xΓi (t), yΓi (t)]
T , tak-

ing into account the target location P f and/or the desired point provided by TFA P̂i(t)
as follows:

Γi(t) = kTFA
P̂i(t)− Pi(t)∣∣∣P̂i(t)− Pi(t)

∣∣∣ + kTarget
P f − Pi(t)∣∣P f − Pi(t)

∣∣ (6)

where the constants kTFA and kTarget have properly defined values. In order to avoid
undesired turns, thus assuring that the follower always flies towards the final target point,
the desired position P̂i(t) is constrained to be in the semi-plane Ti containing P f and
bounded by the perpendicular to the line connecting P f to Pi(t). According to this:

P̂i(t) ∈ Ti if
∣∣ψ̂i(t)− ψi(t)

∣∣ ≤ π
2

P̂i(t) /∈ Ti if
∣∣ψ̂i − ψi(t)

∣∣ > π
2

(7)

The reference heading is then computed on the basis of reference direction Γi(t)
as follows:

ψ̃i(t) =


⌊

atan2
(

yΓi((t), xΓi (t)
)⌋2π

0
if Ni(t) 6= ∅ ∩

∣∣ψ̂i(t)− ψi(t)
∣∣ ≤ π

2

⌊
atan2

(
y f − yi(t), x f − xi(t)

)⌋2π

0
if Ni(t) = ∅ ∪

∣∣ψ̂i(t)− ψi(t)
∣∣ > π

2

(8)

The reference speed must respect constraints on minimum and maximum speed and
is computed as follows:
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Ṽi(t) ∈ [Vmin, Vmax] =



Vr if Ni(t) = ∅

|P̂i(t)−Pi(t)|
2·∆t if Ni(t) 6= ∅ ∩

∣∣ψ̂i(t)− ψi(t)
∣∣ ≤ π

2

Vmin if Ni(t) 6= ∅ ∩
∣∣ψ̂i(t)− ψi(t)

∣∣ > π
2

(9)

where

• Vmin and Vmax are the minimum and maximum allowable speeds;

•
∣∣∣P̂i(t)− Pi(t)

∣∣∣ is the current distance from the next desired position P̂i(t);

• ψi(t) ∈ [0, 2π[ is the actual heading;
• ∆t is the control algorithm sampling time;
• ψ̂i(t) = batan2(ŷi(t)− yi(t), x̂(t)i − xi(t))c1π

0 ;
• Vr is the desired reference speed.

4.3. The Collision Avoidance and Trajectory Tracking Algorithms

The Collision Avoidance Algorithm must be designed to guarantee that every aircraft
in the formation is able to avoid collisions with the other vehicles and/or possible obstacles
or no-fly zones.

Consider No fixed circular obstacles. Each j-th obstacle is modeled as a circumference
of radius Rj , centered at point Cj = [xCj , yCj ]

T . At any time t, for any fixed obstacle, Cj is
contained in the semi-plane Ti, the CAA verifies if any distance from the obstacles is less
than the prescribed safety distance dsa f ety.

At time t, the set of possible colliding obstacles Oi(t) is the following:

Oi(t) =
{
∀Cj ∈ Ti :

∣∣Pi(t)−Cj
∣∣− Rj ≤ dsa f ety

}
(10)

Since any generic vehicle j can also be described as a moving circular obstacle Cj

of radius Rj and centered at point Pj(t) at time t, the CAA computes the set of colliding
aircraft as follows:

Oi(t) =
{
∀Cj :

∣∣Pi(t)− Pj(t)
∣∣− Rj ≤ dsa f ety

}
(11)

Once the set Oi(t) and Oi(t) have been computed, only the nearest colliding obstacle
is considered [2,59].

Without a loss of generality, assume that the nearest collision occurs with the obsta-
cle Cj∗ .

The reference signals for the tracking system ψi(t)TTA are the following:

ψTTA
i (t) =



ψ̃i(t) if
∣∣ψ̃i(t)− θj∗i(t)

∣∣ < π
2

argminΘ


∣∣∣θj∗i(t)− θi, f (t)

∣∣∣∣∣∣α1
i (t)− θi, f (t)

∣∣∣∣∣∣α2
i (t)− θi, f (t)

∣∣∣

 otherwise
(12)

where

- ψ̃i(t) is provided by the Swarm Control Algorithm,

- θj∗i(t) =
⌊
atan2

(
yi(t)− yC,j∗ , xi(t)− xC,j∗

)⌋2π

0 ,

- α1
i (t) =

⌊
θij∗ (t) + π

2

(
|Pi(t)−Cj∗ |−Rj∗

dsa f ety

)⌋2π

0
and α2

i (t) =
⌊

θij∗ (t)− π
2

(
|Pi(t)−Cj∗ |−Rj∗

dsa f ety

)⌋2π

0
are the

direction of tangent to the obstacles in Pi(t) modified by the term
(
|Pi(t)−Cj∗ |−Rj∗

dsa f ety

)
in

order to allow the aircraft to leave the circumference of radius Rj∗ + dsa f ety,

- Θ =
[
θj∗i(t), α1

i (t), α2
i (t)

]T (see Figure 3).
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Figure 3. Collision avoidance angles definition (Time information has been omitted). For example,

with
∣∣∣Pi(t)−Cj∗

∣∣∣ = Rj∗ + dsa f ety.

Therefore, ψTTA
i (t) is equal to the angle provided by the SCA, if this direction allows

collision avoidance with the obstacle, otherwise it is chosen in order to minimize deviation
from the direction pointing to the target point P f .

If the colliding obstacle is fixed, the reference speed to be passed to the tracking system,
VTTA

i (t), is assumed to be equal to Ṽi(t); if the collision occurs with another vehicle, the
reference speed , VTTA

i (t), is computed by taking into account the difference between the
desired and the current heading:

VTTA
i (t) =


Ṽi(t) if Cj∗ ∈ Oi
Vmin if Cj∗ ∈ Oi ∩

∣∣ψTTA
i (t)− ψi(t)

∣∣ > π
2

Vmax if Cj∗ ∈ Oi ∩
∣∣ψTTA

i (t)− ψi(t)
∣∣ ≤ π

2

(13)

According to the Proportional Navigation (PN) approach, whose stability is proven
in [60–64], the commanded turn rate is proportional to the error between the current
heading ψi(t) and the desired one ψTTA

i (t):

uψi (t) = kψ

(
ψTTA

i (t)− ψi(t)
)

(14)

Analogously, the commanded longitudinal acceleration is proportional to the error
between the current speed Vi(t) and the desired one VTTA

i (t):

uVi (t) = kV

(
VTTA

i (t)−Vi(t)
)

(15)

where kψ and kV are suitable constants. To consider aircraft performance limits, the control
signal is saturated as −ψ̇max ≤ uψ ≤ ψ̇max.

5. The Proposed SCA Schemes

On the basis of Section 4, three different architectures can be defined, namely:

• Fixed Leader–Follower SCA;
• Free Leader–Follower SCA;
• No Leader SCA;
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5.1. Fixed Leader–Follower SCA

The Fixed leader–follower scheme is shown in Figure 4. In this scheme, the swarm
topology is considered preassigned and cannot change during flight. Consequently, the
graph G f = (V , E) cannot change its structure. On the other hand, even if the mutual
distance between the aircraft can change in time, the neighbors set of each UAV i is
considered to be assigned. Consequently, the SAA is not involved in computing the
neighbors set Ni, since this set is time-invariant of the fleet topology.

In this scheme, we consider that the neighbors set of the leader, denoted by index
i = 1, has cardinality equal to 0 (N1 = ∅), whereas the followers, i 6= 1, are connected with
two vehicles of the fleet.

Trajectory
Tracking

Trajectory
Tracking

Trajectory
Tracking

Figure 4. Distributed Guidance system based on leader–follower architecture (Time information has
been omitted). The first row represents the Leader Guidance algorithm, whereas the following rows
are related to the other vehicles (followers) in the swarm.

Since N1 = ∅, the leader plans its desired trajectory to reach the target location
P f = [x f , y f ]T avoiding obstacles. Therefore, for the leader, the constants kTFA and kTarget
in Equation (6) are set equal to zero and different from zero, respectively. The followers’
guidance system is based on TFA. Being the swarm structure preassigned, each follower,
taking into account the expected position of neighboring vehicles, computes its own desired
position P̂i(t). For the follower, the constant kTFA, in Equation (6), is different from zero,
whereas the constant kTarget is set equal to zero.

5.2. Free Leader–Follower SCA

To have more flexibility, a decentralized algorithm should be able to auto-select one or
more leaders to form sub swarms if, for example, an obstacle is encountered. In this case, a
so-called Swarm Awareness Algorithm is needed to determine the role of each aircraft in
the swarm and identify its nearest neighbors to be used for the TFA. Figure 5 shows the
general guidance system architecture.

If the cardinality of setNi(t) is equal to 0, the vehicle acts as a leader, pointing towards
the final point P f , and the constants kTFA and kTarget in Equation (6) are chosen equal to
zero and different from zero, respectively.

If the cardinality of the set Ni(t) is equal to or greater than 1, the aircraft acts as a
follower. Consequently, the SCA computes the next desired position P̂i(t) by using the
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TFA, in Equation (6), constant kTFA is assumed different from zero, whereas constant kTarget
is set equal to zero.

Trajectory
Tracking

Trajectory
Tracking

Trajectory
Tracking

Figure 5. Free leader–follower control scheme (Time information has been omitted).

5.3. No Leader SCA

As an alternative to the leader–follower strategy, a full decentralized scheme (shown
in Figure 6) can be defined by combining the contributions of two different controllers, one
devoted to the maintenance of the flight formation, the other dedicated to the target tracking.

Therefore, both constants kTFA and kTarget in Equation 6 are set different from zero.

Trajectory
Tracking

Figure 6. Decentralized control system architecture based on No Leader SCA (Time information has
been omitted).

6. Numerical Results

To test and compare the three proposed guidance algorithms (see Section 4), several
numerical simulations were performed on four different scenarios using an ad-hoc simula-
tor developed in Matlab. Such operational scenarios are represented in a box of 1× 1 km
and present different sets of obstacles. The objective is to define simulation environments
compliant with formations of micro/mini quadrotor-type UAVs [65] with 10–15 min of
flight endurance.

The simulation parameters are resumed in Table 1. Initial conditions were assigned
such that the formation starts from an assigned graph, being not in equilibrium. How-
ever, we repeated the execution 10 times for each scenario, starting from different initial
conditions, to compute the averaged performance indices not depending on an arbitrary
starting point.
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Each scenario is executed considering formations of 3, 4, 5, 7, 10 and 20 aircraft. The
results are resumed by comparing trajectories obtained in a specific configuration using the
three proposed control schemes and by computing some performance indices in order to
evaluate the algorithm effectiveness. In particular, we computed the mean distance, dmean,
between every pair of visible aircraft in the formation graph, the maximum and minimum
distances, dmax and dmin, between each pair of vehicles in the swarm:

dmean(t) =
∑N

i=1 ∑j∈Ni(t)
∣∣Pi(t)− Pj(t)

∣∣
∑N

i=1 card(Ni(t))
(16)

dmax(t) = max
l
D(t) (17)

dmin(t) = min
l
D(t) (18)

where D(t) is the set of mutual distances between all couples of aircraft computed at time t:

D(t) =
{

dl(t) =
∣∣Pi(t)− Pj(t)

∣∣ : i, j ∈ {1, 2, ..., N}, i 6= j
}

(19)

Another performance index can be defined by considering that the formation coop-
eratively tries to solve a packing problem without a prescribed external boundary. The
triangular mesh generated by vehicles should tend to a hexagonal packing that represents
the most efficient one in terms of the occupied area. The packing density can be measured
as the ratio between the sum of areas of N circles with a radius equal to the desired distance
and the average area occupied by the formation during the flight. The hexagonal packing
density represents a maximum, but in our problem, circles can be overlapped, i.e., aircraft
may have mutual distances shorter than the desired one. For this reason, the density can
reach values near or greater than 1.

Table 1. Simulation parameters.

Description Value

Cruise speed Vc (m/s) 5
Minimum speed Vmin (m/s) 2
Maximum speed Vmax (m/s) 12
Maximum turn rate ψ̇max (deg/s) 60
Safety distance dsa f ety (m) 10
Desired distance d (m) 50

6.1. Scenario #1

Scenario #1 consists of three circular objects of different sizes placed between the
starting and the target point.

Figure 7 shows the results in terms of UAVs trajectories obtained by using the three
proposed guidance algorithms with three aircraft. The positions reached by UAVs at
different time steps are also marked to highlight the formation mesh during flight. Green
solid lines indicate the obtained formation graph.

Although UAVs are forced to change their trajectory near obstacles in all the simula-
tions, they are able to re-establish the triangular formation with all three of the proposed
approaches.

Figure 8 shows the distances of vehicle 1 in respect to the other aircraft. Solid lines
indicate distances with neighboring vehicles, while dashed lines highlight non-adjacent
UAVs. In the fixed leader scheme, UAV 1 is the leader that, according to the proposed
architecture, points to the target, while followers try to realize the triangle-based formation.
The free leader scheme does not prescribe a fixed leader, leaving aircraft to choose their own
role. For this reason, UAV 1 does not always act as the leader, sometimes by applying
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TFA with UAV 2. Near obstacles, the distances increase as a result of the formation
spreading, decreasing after them. The no leader scheme is totally distributed without
a leader. Every vehicle points toward the target while maintaining the triangle-based
formation. Trajectories pass nearer to the obstacles as a result of the target tracking.

Figure 9 shows the average distance dmean(t) obtained during simulation, using
Equation (16). It is possible to notice that the fixed leader architecture tends to maintain
a more compact triangular flight formation in the presence of obstacles, unlike the free
leader and no leader schemes that allow the aircraft to spread out when passing around
the obstacles.
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Figure 7. Scenario #1—3 aircraft: UAVs trajectories. Obstacles are represented in red, colored
circular markers indicate the positions of followers at different time instants, whereas colored square
markers are for the leader. Green straight lines are used to highlight the connection graph. (a) Fixed
leader–follower SCA. (b) Free leader–follower SCA. (c) No Leader SCA.
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Figure 8. Scenario #1—3 aircraft: distances between UAV 1 and the other swarm vehicles. Solid lines
are used for neighboring vehicles, dashed lines indicate the absence of the arc in the connection graph.
The desired distance is highlighted using a dotted red line. (a) Fixed leader–follower SCA. (b) Free
leader–follower SCA. (c) No Leader SCA.
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Figure 9. Scenario #1—3 aircraft: average distance dmean between adjacent aircraft compared to the
desired distance. (a) Fixed leader–follower SCA. (b) Free leader–follower SCA. (c) No Leader SCA.
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Figures 10–12 show the results obtained in the same scenario with a formation of
10 vehicles. Looking at the trajectories, it is evident that the capability of the fixed leader
scheme to maintain a more compact flight formation and to avoid the spreading while
passing the obstacles.

As shown in Figure 12, the distance between aircraft tends to remain around the
desired value, d, though large deviations can clearly be observed close to the obstacles.
Since the algorithm is decentralized, each vehicle takes its own obstacle-avoidance strategy,
forcing the remaining formation to adapt. The displacement of the aircraft, moving from
their starting position and approaching the desired flight formation, is quite clear in the
initial phase of the simulations.

Scenario #1 was used to perform simulations with 3, 4, 5, 7, 10 and 20 vehicles.
Figure 13 shows the results in terms of average, minimum and maximum distances dmean,
dmin and dmax. It shows that the SCA and the collision avoidance strategy are effective,
being dmean ≈ d and dmin > dsa f ety in every configuration.
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Figure 10. Scenario #1—10 aircraft: UAV’s trajectories. Obstacles are represented in red, colored
circular markers indicate positions of followers at different time instants, whereas colored square
markers are for the leader. Green straight lines are used to highlight the connection graph. (a) Fixed
leader–follower SCA. (b) Free leader–follower SCA. (c) No Leader SCA.
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Figure 11. Scenario #1—10 aircraft: distances between UAV 1 and the other swarm vehicles. Solid
lines are used for neighboring vehicles, dashed lines indicate the absence of the arc in the connection
graph. The desired distance is highlighted using a dotted red line. (a) Fixed leader–follower SCA.
(b) Free leader–follower SCA. (c) No Leader SCA.

0 50 100 150 200 250 300 350

50

100

150

200

250

300

(a)

0 50 100 150 200 250 300 350

50

100

150

200

250

300

(b)

0 50 100 150 200 250 300 350

50

100

150

200

250

300

(c)
Figure 12. Scenario #1—10 aircraft: average distance dmean between adjacent aircraft compared with
desired distance. (a) Fixed leader–follower SCA. (b) Free leader–follower SCA. (c) No Leader SCA.
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Figure 13. Scenario #1: Results in terms of average, minimum and maximum distances, dmean, dmin

and dmax.

Figure 14 shows the results in terms of packing densities, considering formations of 3,
4, 5, 7, 10 and 20 aircraft. The average, minimum and maximum densities are indicated
by using bars to highlight algorithms’ performance during the flight. This figure proves
that the fixed leader scheme makes the flight formation more compact, followed by the free
leader scheme. The no leader scheme suffers from a greater aircraft separation in several
sub-swarms, affecting the packing density.

3 4 5 7 10 20
Number of aircraft N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ac

ki
ng

 d
en

si
ty

Figure 14. Scenario #1: Packing densities. Bars indicate minimum and maximum values during the
simulation. Values close to 1 indicate the maximum efficiency in the packing problem, i.e., a compact
fleet with the desired mutual distances.

6.2. Scenario #2

Scenario #2 consists of four large obstacles placed between the starting and the target
points. The positions of the obstacles were chosen in order to spread the swarm with a first
big obstacle, before passing through a narrow channel formed by two nearby large circular
objects. After that, the last obstacle forces the formation to spread again before reaching the
target point. This scenario was built to stress the capability of the swarm to rendezvous
after the spreading.
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Figure 15 shows the trajectories of a flight formation made up of 7 UAVs. Scenario #2
confirms the previous results, where the fixed leader architecture tends to make the flight
formation more compact in the presence of obstacles, forcing aircraft to always maintain
the same connecting graph (Figure 15a), while the free leader and no leader schemes allow
aircraft to spread around the obstacles (Figure 15b,c). In this case, the ability of the no leader
scheme to create independent sub-swarms is more evident, and the formation rendezvous
after the first obstacle is not completely achieved, being a sub-fleet of two vehicles passing
outside the narrow channel.

Aircraft change their trajectories near obstacles but, once passed, they are able to
re-establish the triangular mesh with all of the three proposed approaches. Similar to the
previous scenario, there is an initial transient phase during which aircraft move from their
starting position and approach to form the desired flight formation.

Some oscillations can be observed in the trajectories, even far from the obstacles, that
are better damped in the no leader scheme. More smoothed trajectories result though the
rendezvous after obstacles appears clearly delayed due to the target tracking contribution
in the controller (Figure 15c).
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Figure 15. Scenario #2—7 aircraft: UAVs trajectories. Obstacles are represented in red, colored
circular markers indicate positions of followers at different time instants, whereas colored square
markers are for the leader. Green straight lines are used to highlight the connection graph. (a) Fixed
leader–follower SCA. (b) Free leader–follower SCA. (c) No Leader SCA.

Scenario #2 was used to perform simulations with 3, 4, 5, 7, 10 and 20 vehicles.
Figure 16 shows the results in terms of average, minimum and maximum distances, dmean,
dmin and dmax. dmin is always higher than the minimum required for all the three control
strategies in every configuration, thanks to the collision avoidance strategy.
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Figure 16. Scenario #2: Results in terms of average, minimum and maximum distances, dmean, dmin

and dmax.

Packing densities obtained by the proposed schemes are resumed in Figure 17 for for-
mations of 3, 4, 5, 7, 10 and 20 aircraft. The average, minimum and maximum densities are
indicated by using bars to highlight algorithms’ performance during the flight. Again, the
fixed leader scheme is more efficient in terms of packing, followed by the free leader scheme.
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Figure 17. Scenario #2: Packing densities. Bars indicate minimum and maximum values during the
simulation. Values close to 1 indicate the maximum efficiency in the packing problem, i.e., a compact
fleet with the desired mutual distances.

6.3. Scenario #3

Scenario #3 consists of three large obstacles and a group of small nearby objects placed
between the starting and the target point. In Figure 18, the trajectories of a 20-UAV fleet,
obtained by using the three proposed guidance algorithms, are shown. To highlight the
swarm status during time, the positions reached by the UAVs at different time steps are
marked. At the beginning of the simulation, the fleet is forced to pass through a narrow
channel created by the first two large obstacles. Then, the formation must pass through a
group of several small objects that stress the Collision Avoidance Algorithm. After that, a
final large obstacle separates the fleet from the target point.
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Figure 18. Scenario #3—20 aircraft: UAV’s trajectories. Obstacles are represented in red, colored
circular markers indicate positions of followers at different time instants, whereas colored square
markers are for the leader. Green straight lines are used to highlight the connection graph. (a) Fixed
leader–follower SCA. (b) Free leader–follower SCA. (c) No Leader SCA.

Scenario #3 confirms the previous results, where the fixed leader architecture tends to
make the flight formation more compact in the presence of obstacles, forcing the aircraft
to always maintain the same connecting graph, while the free leader and no leader schemes
allow aircraft to spread around the obstacles.

Although aircraft change their trajectory near obstacles, they are able to re-establish
the triangular mesh with all the three proposed approaches. As in Scenario #2, it is clear
that both the fixed leader and free leader scheme have less smooth trajectories due to the
fact that the aircraft always tend to chase each other. This behavior further stresses the
Collision Avoidance Algorithm far from obstacles. The no leader scheme provides more
regular (straight) trajectories thanks to the damping factor given by the target tracking
contribution in the controller. On the other hand, as in the previous scenario, with a greater
number of aircraft shown in Figure 18, sub-swarms created to overcome obstacles fail to
meet again downstream from the last one (Figure 18c). Anyway, the minimum distance
between aircraft never falls below the minimum required value (dsa f ety), regardless of the
swarm control scheme used. For the sake of clarity, Figure 19 shows the results in terms of
average, minimum and maximum distances, dmean, dmin and dmax, using fleets of 3, 4, 5, 7,
10 and 20 UAVs.
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Figure 19. Scenario #3: Results in terms of average, minimum and maximum distances, dmean, dmin

and dmax.

Figure 20 shows the results in terms of packing densities for fleets of 3, 4, 5, 7, 10 and
20 aircraft. The average, minimum and maximum densities are indicated by using bars to
highlight algorithms’ performance during the flight. In this scenario, the no leader scheme
is not always the worst one in terms of packing density, even if the presence of the last big
obstacle avoids a fast rendezvous at the end of the simulation.
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Figure 20. Scenario #3: Packing densities. Bars indicate minimum and maximum values during the
simulation. Values close to 1 indicate the maximum efficiency in the packing problem, i.e., a compact
fleet with the desired mutual distances.

6.4. Scenario #4

To analyze the formation behavior when it is necessary to make the entire fleet to follow
the target, Scenario #4 considers a target moving from an initial position P0

f = [0, 1500]T ,
with a cruise speed Vf = 5 m/s and a heading angle ψ f = −π/6. Some static obstacles are
also present in the scenario to increase the challenge. Figure 21 shows the results in terms
of trajectories of a 7-UAV fleet. Being very far from the fleet, the target is not represented in
the figure.

The ability of the no leader scheme to create sub-swarms is highlighted again. After the
first obstacle, two separated sub-fleets were created that find a rendezvous only after the
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final obstacle. Figure 22 shows the results in terms of average, minimum and maximum
distances, dmean, dmin and dmax, using fleets of 3, 4, 5, 7, 10 and 20 UAVs. The minimum
distance is always guaranteed to be greater than the assigned safety distance dsa f ety, while
the average distance between neighboring vehicles is near the desired d.

Figure 23 shows the results in terms of packing densities for fleets of 3, 4, 5, 7, 10 and
20 aircraft. The average, minimum and maximum densities are indicated by using bars to
highlight algorithms’ performance during the flight.
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Figure 21. Scenario #4—7 aircraft: UAV’s trajectories. Obstacles are represented in red, colored
circular markers indicate positions of followers at different time instants, whereas colored square
markers are for the leader. Green straight lines are used to highlight the connection graph. (a) Fixed
leader–follower SCA. (b) Free leader–follower SCA. (c) No Leader SCA.
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Figure 22. Scenario #4: Results in terms of average, minimum and maximum distances, dmean, dmin

and dmax.
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Figure 23. Scenario #4: Packing densities. Bars indicate minimum and maximum values during the
simulation. Values close to 1 indicate the maximum efficiency in the packing problem, i.e., a compact
fleet with the desired mutual distances.

7. Conclusions

In this paper, three decentralized guidance systems based on different UAV formation
control schemes are presented. The first two are based on a “leader–follower” swarm
control algorithm, while the third one does not require the definition of any leader so that
all the swarm vehicles follow the target and simultaneously maintain the shape of the
flight formation.

Each aircraft computes its own desired position in the swarm by using the Triangular
Formation Algorithm, and consequently, the UAV swarm shape appears like a triangular
mesh. To avoid any possible collision between aircraft or with any obstacles, a Collision
Avoidance Algorithm has been implemented in the guidance control system, based on a
modified potential field approach.

To test the effectiveness of the proposed swarm control system, different operational
scenarios have been defined involving an increasing number of air vehicles. The results
obtained show that all of the proposed guidance algorithms work properly with some
peculiar characteristics, in particular:
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• The fixed leader and free leader schemes provide less smooth trajectories. Oscillations
are clearly observed, even around the steady-state condition, that are better damped
in the no leader scheme; this result is strictly related to the SCA operating philosophy
according to which, whenever a leader is present, followers are forced to follow a
point that is at a distance comparable with the TFA triangular elements, whereas in
the no leader scheme, they point to the target and are less affected by the positions of
their neighboring vehicles.

• Near obstacles, the mutual distances among aircraft tend to increase, being very
different from the desired value; however, some differences can be observed: the
fixed leader architecture makes the flight formation more compact, forcing aircraft to
maintain the formation shape for a longer time, while the free leader and no leader
schemes allow the spreading of the formation near obstacles. It is worth noticing that
the no leader architecture not only provides more regular (straight) trajectories, but it
allows faster recovery of the desired distances once the obstacle is passed compared to
the free leader scheme. In such a case, in fact, the selection process of the leader tends
to delay the air vehicle’s rendezvous after the flight formation spreads in the presence
of obstacles.

• However, as the number of vehicles increases, the no leader scheme has a draw-back: as
shown in Scenario #3, sub-swarms are not able to meet again after passing the obstacle.
This is due to the fact that each aircraft applies TFA with the two nearest vehicles
present both ahead and behind, not following a leader but rather pointing to the target.
On the other hand, in the free-leader scheme, only vehicles present forward are taken
into account, reducing the number of possible edges in the mesh and resulting in
increasing importance of vehicles marked as leaders guiding the followers to the target.
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