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Abstract: Biodiversity monitoring is crucial in tackling defaunation in the Anthropocene, particu-
larly in tropical ecosystems. However, field surveys are often limited by habitat complexity, logisti-
cal constraints, financing and detectability. Hence, leveraging drones technology for species moni-
toring is required to overcome the caveats of conventional surveys. We investigated prospective 
methods for wildlife monitoring using drones in four ecosystems. We surveyed waterbird popula-
tions in Pulau Rambut, a community of ungulates in Baluran and endemic non-human primates in 
Gunung Halimun-Salak, Indonesia in 2021 using a DJI Matrice 300 RTK and DJI Mavic 2 Enterprise 
Dual with additional thermal sensors. We then, consecutively, implemented two survey methods at 
three sites to compare the efficacy of drones against traditional ground survey methods for each 
species. The results show that drone surveys provide advantages over ground surveys, including 
precise size estimation, less disturbance and broader area coverage. Moreover, heat signatures 
helped to detect species which were not easily spotted in the radiometric imagery, while the detailed 
radiometric imagery allowed for species identification. Our research also demonstrates that ma-
chine learning approaches show a relatively high performance in species detection. Our approaches 
prove promising for wildlife surveys using drones in different ecosystems in tropical forests. 

Keywords: animal behavior; disturbance; forest ecosystem; machine learning; primates; savanna; 
UAV; waterbird; wildlife conservation 
 

1. Introduction 
The tropical rainforest is one of the most complex ecosystems. It is also a vital eco-

system, which acts as a biodiversity fortress and provides crucial ecosystem services such 
as raw materials (e.g., timber and non-timber forest products), soil protection, carbon se-
questration and watershed protection [1–3]. Despite representing the largest reservoir of 
biodiversity with a rich diversity of flora (>200 plant species/hectare) [4,5] and fauna 
(>50% of the world’s animal species) [6] and its various functionalities, most tropical rain-
forests, including those situated in Indonesia, are lost or degraded through human inter-
vention over time. Biological diversity in Indonesia is the second greatest globally, and 
Indonesia has the third-largest area of tropical rainforest [7], with a span of 94.1 million 
ha of forest in 2019 [8]. Nineteen types of natural ecosystems occur here, from lowland 
rainforest to alpine, and from marine coastal to deep-sea ecosystems [9]. Although Indo-
nesia comprises only 1.3% of the Earth’s surface, it houses about 15% of its species richness 
[7,10]. 

Two key information challenges inhibit progress on achieving Aichi Targets 11 (Pro-
tected Areas) and 12 (Preventing Extinctions). Both challenges involve significant dispar-
ities in availability and quality of tropical biodiversity data [11]. Reliable data on wildlife 
populations are critical for making informed management decisions and, in particular, 
there is a lack of primary in situ data on populations in tropical protected areas [12], thus 
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preventing the rigorous evaluation of population responses to threats and drawing con-
clusions that are counterproductive to targeted conservation efforts [13,14]. Conclusions 
based on combined secondary data and expert opinion are often wrong, hence more ob-
jective evaluation of primary data and strong indicators of change in biodiversity over 
time [15] is required. Population monitoring programs for tropical wildlife species are 
routinely and periodically needed to address incomplete knowledge [16,17]. To ade-
quately conserve wildlife species, managers need to set boundaries of acceptable change 
for species and their habitats, including setting priority areas to preserve the species 
through analysis of robust data from regular monitoring activities [18]. 

Wildlife monitoring in tropical rainforest areas presents additional challenges. Some 
species are primarily elusive, of drab coloration, secretive by habitat, present in small 
numbers, and generally difficult to observe in the wild due to densely vegetated, rugged 
and remote habitat conditions. Monitoring strategies based on indirect encounters have 
been developed by practitioners. These have proven effective in overcoming problems in 
monitoring some wildlife species [19], though can also be challenging [20–22]. Direct mon-
itoring of wildlife populations using ground-based transect surveys is still widely used 
[23], however requires intensive fieldwork and is highly dependent on surveyor compe-
tence in estimating animal-observer distances and identifying species, which can be diffi-
cult in tropical forests with dense vegetation and low light [24]. Clearing and following a 
planned path can make surveying problematic over rough terrain, can be hard work, time-
consuming, and subsequently detrimental to data collection [24]. Moreover, low encoun-
ter rates and small sample sizes, typical in endangered species monitoring with transects 
sampling leads to problems in data analysis [18,25]. Monitoring methods are an essential 
part of wildlife ecology research for assessing and forecasting changes and species man-
agement practices reveal the potential for co-application of proven traditional techniques 
and modern technologies for better environmental control and management processes. 

In recent decades, the use of unmanned aerial vehicles (UAVs, a.k.a drones) has dou-
bled over time; the lack of detection using some traditional techniques can often be over-
come through these new techniques, especially for cryptic species living in remote areas 
[26]. Imagery from aerial surveys has been useful for a variety of wildlife surveys for ex-
ample, minimizing human disturbance in monitoring endangered raptors [27], detection, 
behavioral responses assessment, and estimating kangaroo density [28–30], ungulate enu-
meration with thermal surveys [31,32], Nile crocodile population surveys [33], and so 
forth. Meanwhile, in tropical areas with thick canopy, monitoring wildlife using drones is 
still rare because visual detection with standard aerial imagery often does not work in this 
typical habitat. The use of visible spectrum (RGB) cameras on drones has been shown to 
work suboptimally in detecting subjects with weak contrast against the background [34], 
and active in the lower and middle canopies. Recently, the use of thermal-infrared (TIR) 
cameras that rely on subject detection based on endothermic heat signatures is increas-
ingly being investigated for surveying wildlife species that are difficult to detect using 
visible spectrum drone imagery for example, [29,35,36]. However, some of the challenges 
of applying thermal infrared imagery in wildlife monitoring are the low-resolution image 
of TIR cameras that make it difficult to identify species, regulations limiting drone opera-
tions, and high dependence on weather conditions [31]. 

Potential biases in data collection and the completeness of the research outcomes will 
be primarily determined by the selection of wildlife monitoring methods used; this is an 
essential aspect of successful project planning [18]. Furthermore, the selection of the most 
appropriate method will be determined according to the advantages and disadvantages 
of each method with regard to constraints on a particular survey, and it is crucial to ensure 
the most beneficial technique is used to monitor wildlife populations [17]. Here, we report 
on using a dual visible-thermal camera approach to conduct drone surveys of wildlife 
species within three protected areas in Indonesia with diverse ecosystem types. We paired 
drone surveys with traditional ground surveys to assess drone efficacy as a wildlife sur-
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vey tool within various ecosystems. The focus of the study on focal animals in each loca-
tion is shown to overcome the difficulties in monitoring activities for various objectives. 
We paired drone surveys with traditional ground surveys to compare: (1) nest counts de-
rived from each method, and additionally observed nesting material and breeding of wa-
terbirds to strengthen conservation efforts this species in coastal and mangrove forest in 
Pulau Rambut Wildlife Sanctuary (PRWS); (2) assessment of species diversity and detec-
tion techniques from thermal imagery of two large-sized mammals that inhabit the sa-
vanna of Baluran National Park (BNP); and (3) the behavioral response of three primate 
species in Gunung Halimun Salak National Park (GHSNP) to the drone at various alti-
tudes. We demonstrate the potential of the dual-camera approach while making recom-
mendations to improve such a system for future monitoring of wildlife and conservation 
improvement in tropical areas and globally.  

2. Materials and Methods 
2.1. Study Areas 

Our primary motivation was to evaluate the effectiveness of using drones for focal 
species inhabiting various ecosystem types in tropical forest areas (see in Appendix A). 
Surveys were conducted in three ecosystems representing the diversity of ecosystems in 
tropical rain forests in Indonesia, as follows (Figure 1). 

 
Figure 1. Three protected areas in Indonesia where drone surveys with a dual visible-thermal cam-
era system and associated ground surveys were conducted for multi-species research inhabiting: 
(A) coastal and mangrove forest in PRWS, (B) savanna in BNP, and (C) montane forest in GHSNP. 
The figure below depicts an inset map of the three ecosystems of our study areas. 
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2.1.1. Pulau Rambut Wildlife Sanctuary (PRWS) 
We surveyed PRWS from 24 July to 22 August 2021. PRWS is located in the Jakarta 

Bay area (106.5°41′30″ E–5.5°58′30″ S) and comprises 45 ha of three types of forest ecosys-
tems in PRWS, including a diversity of wetland habitats ranging from the coastal forest, 
lowland forest, and mangrove forest. The area is classified as climate type C based on the 
Schmidt dan Ferguson Classification (Köppen 1936). It has a marked wet season (gener-
ally from November to April) and a single dry season (generally from May to October). 
PRWS is one of seven Ramsar Sites in Indonesia that have an important role in protecting 
the wetlands ecosystem. Moreover, PRWS is a breeding habitat for about 20,000 individ-
uals from 22 waterbird species and is the breeding site for the milky stork Mycteria cinerea 
in Java Island. Waterbird species found in Pulau Rambut are oriental darter Anhinga mel-
anogaster, grey heron Ardea cinerea, purple heron A. purpurea, great egret Egretta alba, little 
egret E. garzetta, plumed egret E. intermedia, reef egret E. sacra, cattle egret Bubulcus ibis, 
black-crowned night heron Nyticorax nyticorax, milky stork Mycteria cinerea, pygmy cor-
morant Phalacrocorax pygmaeus, little black cormorant P. sulcirostris, pied cormorant P. 
melanoleucus, glossy ibis plegadis falcinellus, and black-headed ibis Threskiornis melanoceph-
alus [37–39]. All of these species can be grouped into settled and nonresident waterbirds. 
In addition to bird species, other species of fauna are also found such as Pteropus vampyrus, 
Varanus salvator, Boiga dendrophila, and Python sp [37]. 

2.1.2. Baluran National Park (BNP) 
We surveyed BNP from 28 May to 14 July 2021. BNP is located in the East Java Prov-

ince, Indonesia (74°9′52.3″ S, 114°23′15.4″ E) and covers an area of 25,000 ha of a mixture 
of tropical deciduous forest with a savanna ecosystem. The park is surrounded by villages, 
the sea, and teak plantations. The area is classified as climate type AW based on the Kö-
ppen Climate Classification [40]. Here the rainy season is very short and normally occurs 
from December to February, therefore, the lack of water is the most important limiting 
factor for vegetation in the area. The largest portion of the foot and slopes of Gunung 
Baluran is covered by semi-open deciduous forest. The forest continuously extends into 
the lowland area, which is dominated by savanna interspersed with small forests along 
the galleries, on top of hills, and in humid areas. Initially, almost half of the park was 
covered by grassland, though this has been altered by an invasive species, Acacia nilotica. 
Species that occur in the study area include Bos javanicus, Bos bubalis, Rusa timorensis, Mun-
tiacus muntjak, Sus scrofa, Panthera pardus melas, Cuon alpinus, Trachypitecus auratus, Macaca 
fascicularis, Hystrix javanica, Prionailurus bengalensis, Prionailurus hermaphroditus, and Pavo 
cristatus [41].  

2.1.3. Gunung Halimun Salak National Park (GHSNP) 
We surveyed GHSNP from 14 January to 17 March 2021. GHSNP is located in West 

Java Province, Indonesia (06°44′21″ S 106°31′53′′ E and 06°44′47″ S 106°32′1″ E) and com-
prises 113,357 ha of lowland to montane vegetation. All surveys were conducted in the 
Cikaniki Resort Research Facility (CRRF) in GHSNP, which is located in the center of the 
Mount Halimun area at the foot of Mount Kendeng. The area is characterized by a land-
scape mosaic, dominated by the colline to montane forest ecosystem and classified as ‘Col-
line Primary Forest Zone’, interspersed with several settlement areas (enclaves). The veg-
etation community is dominated by Homalantus populneus, Nauclea lanceolata, and Maca-
ranga sp. Four dominant trees were recorded along the Cikaniki-Citalahab loop trail dur-
ing the fieldwork; Lithocarpus javensis, Altingia excelsa, Litsea sp., and Elaeocarpus sp. The 
climate in CRRF is categorized as type A. The mean temperature ranges between 21–25 
°C with relative humidity between 72%–89%. Mean annual rainfall and annual tempera-
ture range between 3200–6000 mm and 16–30 °C, respectively. The topography at Cikani 
Resort varies, with altitudes ranging from 500 to 1700 m above sea level with a slope of 
>15°. CRRF is one of the important areas in Indonesia for primate conservation, and there 
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are four endemic primates in Java that inhabit this area, Hylobathes moloch, Trachypithecus 
auratus, Presbytis comata, and Nycticebus javanicus [42].  

2.2. Mission Planning Considerations 
We collected all described drone data using a DJI Matrice 300 RTK with Thermal 

Camera DJI H20T (Table A1 Appendix B) and a DJI Mavic 2 Enterprise Dual (Table A2 
Appendix B) operated from an Apple 7.9″ iPad (128 GB, Wi-Fi+4G LTE) using a DJI Pilot 
app. Both drones have a maximum flight time of 30 min, a maximum speed >70 km h−1, a 
pilot-controlled range of >5 km, and are equipped with a 20 MP camera with high defini-
tion 4 K/60 fps video capacity. We programmed all flight plans using Mission Planner (DJI 
Pilot version 1.9.0 by DJI Innovations Technology Co. LTD, Shenzhen, China) (Figure A1 
Appendix C). All images were assembled and ortho-rectified using Agisoft Photoscan Pro 
ver. 1.2.5.2594, which is now Agisoft Metashape (https://www.agisoft.com/ accessed on 
18 September 2021), prior to importing them into QGIS ver. 2.8.6 (QGis Development 
Team, Beaverton, USA) for analysis.  

Before implementing our drone-based multi-species surveys, we tested drones for 
the effects of disturbance (e.g., escape, attacking, or other evasive maneuvers) that might 
affect survey results for different species across different types of ecosystems. We con-
ducted a series of fifteen test flights in each study. The DJI Matrice 300 RTK was used to 
survey coastal and mangrove forests and savanna ecosystems and the DJI Mavic 2 Enter-
prise Dual in the montane forest to assess the impacts of the drone on disturbance for each 
species inhabiting each location. We set the minimum flying height without disturbance 
for each group of species as the height of the last flight before the heights when they fled. 
Drones were flown for 25 min at each location, starting at 120 m and lowered 10 m every 
2 min to assess the level of disturbance (Table A3 Appendix C). We limited the drone’s 
flying height to 120 m following the restrictions on the flying height of unmanned aircraft 
as regulated in the Regulation of the Minister of Transportation of the Republic of Indo-
nesia No. 37/2020 concerning the Operation of Unmanned Aircraft in Airspace Served by 
the State of Indonesia.  

Furthermore, to optimize detectability in the resulting images, we tested photo-
graphic parameters and ambient lighting on various flights performed. Increasing the fly-
ing altitude means expanding the coverage area of the survey, reducing the required flight 
duration, but causing an increase in battery power consumption. However, an increase in 
flight altitude causes a decrease in the resolution of the resulting photo; meanwhile, the 
number of photos to be processed is also reduced. We flew three test flight sessions at 
each location to establish flight and photographic parameters that optimize detection. 
These three sessions were conducted on the same day and consecutively with 25 min in-
tervals for each session. Fifteen flights in each session were carried out at different alti-
tudes, that is, 10, 20, 30, 40 m and up to 120 m. The resulting maps of the study site were 
imported into the GIS, and three experienced independent observers carefully detected 
the presence of each wildlife species on the maps. We limited observers to 10 min per map, 
and they were blind to the corresponding flight parameters. A fourth observer performed 
a posteriori recount on all maps without a time limit to estimate the frequency of false 
detections to verify observer reliability. All analyses considered the time of day of the 
flight, flight altitude and observer identity as factors influencing the detection of each 
wildlife species. 

2.3. Survey Comparison Study 
Generally, we compared the effectiveness of drone surveys to traditional wildlife sur-

vey protocols, namely, ground-based transect surveys (henceforth referred to as ground 
surveys), for considerable research with a focus on focal species in each study site. We 
implemented each of the two survey types successively, following the protocols below, 
on the same day, starting with a drone survey. We conducted ground surveys in the same 
area as covered by the corresponding drone flight.  
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2.3.1. Drone Surveys 
Following the results of our optimal flight evaluations in each study site (Table A3 

Appendix C), we flew drone surveys at an optimum altitude to detect each focal species 
and at a speed of 5 m s−1 with 90° camera orientation, autonomously following a pre-pro-
grammed flight plan from take-off to landing. For each site, we repeated the same flight 
plan three times in the same day (if the logistics allowed), namely, one between 06.00 h 
and 09.00 h, one between 11.00 h and 14.00 h, and one between 16.00 h and 19.00 h. We 
programmed the drone to take photos at regular intervals that ensured a minimum 60% 
overlap between two consecutive images to optimize photo collation and avoid shadows 
on maps [43]. We made maps from the field survey as described above and visually 
searched maps to identify species (using head or body shape visible in photographs), 
quantify the number of nests and observed nesting material and breeding of waterbirds 
in PRWS, detection of species diversity and identification techniques from thermal pho-
tographs of two large-sized mammals that inhabit the savanna of BNP. For the primate 
community in GHSNP, we specifically assessed the behavioral responses of three primate 
species to drones at various altitudes.  

2.3.2. Ground Surveys 
We counted waterbird nests in the PWRS, recorded the diversity of wildlife species 

in the savanna of BNP after drone flights, and searched for all target objects using binoc-
ulars. We crossed the entire drone track on foot. Due to logistical issues, we could not 
always replicate the diurnal survey protocol three times (once per drone count). For each 
detected nest/animal object, we identified the species and recorded a GPS point of its lo-
cation. Three observers at the same location walked the transect and used binoculars to 
monitor the behavior of the various wildlife found at each location. 

We explored the montane forest for in GHSNP and searched for individuals/groups 
of our three focal endemic primate species. Data recording for ground-based surveys and 
drones was carried out at the beginning of the encounter until the primate individ-
ual/group was no longer detected. Data were collected in three time periods with 9 h of 
observations per day. The three monitoring periods were period I (06:00–09:00), period II 
(11:00–14:00), and period III (16:00–19:00). All observers monitored 14, 12, and 14 transect 
surveys in the three sampling periods for Javan gibbon, Javan langur, and Javan surili 
populations. Three observers were included in each survey to reduce the possibility of 
observer bias.  

2.4. Data Analysis 
2.4.1. Nest Counts and Observed Nesting Material and Breeding of Waterbirds in PRWS 

We created a shapefile containing a grid using ArcGIS to overlay the image to help 
with nest calculations. Grid cells were 10 m × 10 m, with a total of 4500 grid cells that 
divide the study area. One independent observer who was not involved in the field sur-
veys analyzed all images to avoid bias and performed a manual and visual identification 
of the nests ‘by eye’ in the orthomosaic. When calculating nests in an image, we examined 
the radiometric (RGB) imagery for the grid cells created. Then we tagged each species-
specific shapefile by making a dot at each presumed nest in the RGB imagery. We also 
utilized TIR imagery to confirm suspected nests in the RGB imagery and to detect and 
confirm the nest’s location, which was not directly visible in the RGB imagery. Next, we 
categorize the dot at each presumed nest in the RGB imagery and divide it into empty 
nests, filled nests, and non-nests. Due to the difficulty of distinguishing empty and filled 
nests through ground surveys, we only recorded nest findings as depicted by a green dot 
in Figure 2. In the post-processing phase on RGB imagery, everything is seen in the nest 
(nesting materials, eggs, chicks and birds) were assigned a number and counted by an 
observer using the recorded videos on a personal computer using the free software GIMP 
for image processing (release 2.10; https://www.gimp.org accessed on 27 September 2021).  
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Figure 2. (A) Orthomosaic image of high-resolution of the nests by drone and categorized into filled 
nests (blue box), empty nests (yellow box), and non-nests (red box), and (B) presence of nests from 
the ground survey (green dot). 

2.4.2. Rapid Assessment of Species Diversity, Species Detection and Model Evaluation in 
BNP  

We visually identified each species from ground surveys and recorded all the species 
derived from RGB imagery. We chose four general indexes to measure the composition of 
wildlife species found in the savanna ecosystem and assess the feasibility of using drones 
for this purpose. Three measures of species diversity were used in this calculation, includ-
ing: (1) the species richness index, which is the most straightforward index and is used to 
show species diversity in a location [44]; (2) the Shannon and Simpson index to measure 
community diversity; and (3) J Pielou index, which is an index commonly used to measure 
the evenness of species abundance [44,45]. These various measures of diversity were then 
calculated using Equations (1)–(4) in each sampling transect. Equation (1) is used to cal-
culate the species richness index [46].  

N = number of species appeared in unit area, (1)

where N is the total number of species per transect sampling. 
The Shannon (H) and Simpson (D) diversity indices were calculated using Equations 

(2) and (3), respectively [45,47,48]. 𝐻 ൌ ෍ 𝑝௜ ln 𝑝௜ (2)𝐷 ൌ 1 െ ∑ 𝑝௜ଶ, (3)

where pi is proportion of species in each transect sampling. 
Pielou’s J index was calculated using Equation (4) [44]. 

𝑃 ൌ ு௟௡ ே. (4)

Evaluation of the performance of the two methods was analyzed by calculating the 
coefficient of determination (R2) and its p-value. All analysis was carried out using the 
VEGAN package in R-4.1.0. 

Next, from thermal camera data, we developed species detection within the study 
area based on supervised learning approaches: Random Forest, Support Vector Machine, 
and Boosted Regression Trees [49–51]. For this purpose, we specifically used DJI Matrices 
200 series with 640 × 512 pixels’ radiometric thermal camera (H20T—Quadsensor solu-
tion) and visible bands to detect species (i.e., Javan deer and water buffalo) within the 



Drones 2022, 6, 6 8 of 32 
 

study area. We rescaled the images into 8-bit radiometric data (0–255) to create more effi-
cient processes. We evaluated supervised learning using Random Forest and Support Vec-
tor Machine [49,52]. We used Random Forest algorithm with 1000 trees (N = 1000), then 
the number of variables per split has been defined as root square of the number of fea-
tures. Moreover, Support Vector Machine (SVM) algorithm has been used to identify spe-
cies as well as the other algorithms. We trained the data using One-class SVM with RBF 
kernel (i.e., radial basis function) [53]. Furthermore, we also created ensemble model from 
all algorithms based on principal component analysis (PCA; that is, performs a PCA with 
algorithms suitability and return the eigenvalues of the first component) [54]. 

We collected the training data of the species occurrences by visual interpretation 
from true color composite of drone imageries (Figure 3). To evaluate the models, we per-
formed confusion matrix-based evaluation using several discrimination metrics—i.e., area 
under the curve (AUC; [55]); Kappa coefficient [56]; true skill statistic (TSS; [55]); Jaccard 
[57]; and Sorensen [57]. 

 
Figure 3. Methodological framework for species detection using multispectral and thermal of drone 
imageries. 

2.4.3. Drone Flight and Behavioral Response of Primate in GHSNP 
Two modelling frameworks were used to examine the differences between (1) detec-

tion and behavioral scores for each primate species based on ground and drone surveys, 
and (2) repeated behavior scores for each primate species based on a specific flight alti-
tude. For that purpose, the behavior of each primate species was grouped and scored on 
a five-point scale (Table 1). We used the highest number score for each animal in each 
survey method (ground vs. drones) for statistical analysis during each observation period. 
The chi-square test was used to compare the resulting detection times with each method 
used. Furthermore, the Kruskal–Wallis and Dunn multiple comparison test was used to 
examine differences in behavioral responses of the three primate species in each survey 
method (ground vs. drones) [58]. The p-value used to account for several statistical tests 
was obtained through Benjamini–Hochberg analysis [59]. The generalized ordinal logistic 
mixed-effects model (a.k.a, proportional odds model) is used because behavioral scores at 
given altitudes are not normally distributed and are categorical (ordinal). In this model, 
the behavioral response as the dependent variable is applied and implemented with the 
ordinal package in R [60]. Behavioral scores between surveys are independent and no spe-
cific environmental covariates are used to compare ground-drone surveys. 
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Table 1. Ethograms used by observers to describe behavioral response scores (0 to 4) shown by 
target animals during monitoring activities. 

Score Category Description 

0 Resting Behaviors include inactive (not moving), sleeping (e.g., closing eyes), and other behaviors such 
as grooming, playing, and breeding. 

1 Vigilant Noting around and alert with regular lateral movement of the head and eyes open. 

2 Looking 
Specifically spotting, tracking objects, and visually following sources of disturbance (an 

observer on the ground or drone flying in the vicinity) with the head possibly turned up or 
down or sideways left and right. 

3 Agonistic Aggressive behavior is shown to observers on the ground or drone flying in the vicinity, 
including alarm calls. 

4 Escape Move away from the source of the disturbance (an observer on the ground or drone flying in 
the vicinity), including hiding so that they are not detected again. 

3. Results 
3.1. Nest Counts and Observed Nesting Material and Breeding of Waterbirds in PRWS 
3.1.1. Interpretation of the Imagery 

During ground and drone-based nest surveys, we identified a total of seven water-
bird species from five families (Ardeidae, Phalacrocoracidae, Anhingidae, Threskiorni-
tidae, and Ciconiidae). From the ground surveys, species included grey heron (Ardea ci-
nerea), purple heron (Ardea purpurea), little black cormorant (Phalacrocorax sulcirostris), ori-
ental darter (Anhinga melanogaster), little egret (Egretta garzetta), and black-crowned night 
heron (Nycticorax nycticorax). Nest monitoring using Matrice 300 RTK, identified 6 species; 
grey heron, purple heron, little black cormorant, milky stork, little egret, and black-
crowned night heron. Nests can be seen and distinguished from the background in the 
RGB imagery and heat signature through the TIR imagery. Nests of various species of 
waterbirds were distinguished based on their dimensions (nest dimensions are commonly 
positively correlated with body size of waterbirds), nest locations in each colony of wa-
terbird species (e.g., Phalacrocorax sulcirostris which is found with large individual num-
bers in the same location, or Ardea cinerea nests which are commonly located around and 
surrounded by Nycticorax nycticorax nests), and confirmed nest locations by heat markings 
at drone flight altitudes above 65 m consistently (e.g., Ardea cinerea, Nycticorax nycticorax, 
and Ardea purpurea; Figure 4). RGB imagery performance was better than heat signatures 
in the TIR imagery at the highest allowable flight altitude (90–120 m) in detecting nest 
presence but was limited to distinguishing nests of various recorded waterbird species 
(Figure 5). Finally, with RGB imagery, almost the entire nest can be seen even without 
adult birds or eggs/chicks in the nest, except for Mycteria cinerea, we failed to find their 
nests in the study area but recorded their activity on the ground in mangrove forest (Fig-
ure 6). 
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Figure 4. Nest on RGB imagery and heat signature through TIR imagery, (A) nest of Ardea cinerea 
(blue box) and nest of Nycticorax nycticorax (green box), and (B) nest of Ardea purpurea (black box). 
Nests with large dimensions show a higher temperature contrast between the object and its back-
ground. 

 
Figure 5. Nest on RGB imagery confirmed via TIR imagery on drone flights at an altitude of 100–
120 m. 

 
Figure 6. Waterbird species with the largest body size on the Pulau Rambut Wildlife Sanctuary with 
conservation status Endangered in the IUCN Red List. 
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3.1.2. Nest Number, Nesting Material and Waterbird Breeding Monitoring 
A higher density of nests was detected from drone imagery compared to those ob-

served during ground surveys (Table 2). Waterbird nests with small dimensions were dif-
ficult to distinguish from their background when using TIR imagery. Calculating water-
bird nests through ground surveys is challenging since most nests are located at the top 
of the tree and covered by branches, twigs, or leaves underneath. Visual observations of 
683 nests detected by drones found that 15.52% of waterbird nests were built using mate-
rials derived from marine litter including plastic (plastic rope; 84%), Styrofoam (8%), bam-
boo pieces (2%), and so forth (Figure 7). Four species (Ardea cinerea, Ardea purpurea, 
Phalacrocorax sulcirotris, and Nycticorax nycticorax) of the seven found during the sur-
vey were in breeding season, indicated by the presence of eggs and chicks. Of the 590 
filled nests recorded, 74 nests contained eggs and 54 contained chicks (Figure 8).  

Table 2. Nest number from ground and drone survey in Pulau Rambut Wildlife Sanctuary. 

Nest Category Ground Drone 
Nest filled 

124 
590 

Empty nest 93 

 
Figure 7. Marine litter used as nesting material: (A) plastic rope, (B) Styrofoam, and (C) straws in 
Ardea cinerea nests, and (D) plastic rope in Phalacrocorax sulcirotris nest. 
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Figure 8. Eggs in waterbird species (A) Ardea purpurea, (B) Phalacrocorax sulcirotris, (C) Nycticorax 
nycticorax, and chicks in the species of (D) Ardea cinerea, (E) Ardea purpurea, (F) Nycticorax nycticorax. 

3.2. Rapid Assessment of Species Diversity, Species Detection and Model Evaluation in BNP  
3.2.1. Relationship between Indices Estimated by the Ground and Drone Surveys 

An earlier study employing camera traps (2019–2020), detected at least 20 species in 
the Savanna Bekol (Baluran National Park and Copenhagen Zoo, unpublished data). The 
mean percentage of species detected during our surveys was significantly larger for drone 
surveys than ground surveys (p < 0.01; Figure 9). Three species were not detected (Pan-
thera pardus melas, Apodemus sylvaticus and Acridotheres tricolor), and one species 
(Acridotheres javanicus) was not recognized during our drone surveys. There was a sig-
nificant linear relationship between the various indices expressing measures of species 
diversity (species richness, Shannon index, Simpson index and J Pielou index) estimated 
by ground surveys and drone surveys (p < 0.01, Figure 10). Drone surveys estimated the 
range of variation (VR), smaller than the ground survey method. Range of variation for 
species richness, Shannon index, Simpson index and Pielou’s J index estimated by ground 
surveys was 4.45–15.45, 1.68–2.88, 0.78–0.94 and 0.70–0.88, respectively. Meanwhile, drone 
survey results were 13–17, 2.74–3.03, 0.90–0.95 and 0.87–0.90. 
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Figure 9. Percentage of total species from ground and drone surveys in sampling units in Savanna 
Bekol. 

 
Figure 10. Estimation of the relationship between species richness (A), Shannon index (B), Simpson 
index (C) and J Pielou index (D) using ground survey and drone survey data. 
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3.2.2. Species Detection and Model Evaluation  
We evaluated both Javan deer and water buffalo based on drone imagery (i.e., blue, 

green, red, and infrared thermal bands) using three different algorithms and an ensemble 
model. This study found that the ensemble model outperformed other algorithms for both 
species based on AUC, Kappa, TSS, Jaccard, and Sorensen. For Javan deer, the results 
show the overall means of 0.906 for AUC, 0.827 for Kappa, 0.827 for TSS, 0.852 for Jaccard, 
and 0.920 for Sorensen (Table 3, Figure 11). For water buffalo, the results show the overall 
means of 0.974 for AUC, 0.951 for Kappa, 0.951 for TSS, 0.951 for Jaccard, and 0.978 for 
Sorensen (Table 3, Figure 12).  

Table 3. Model evaluation using different discrimination metrics for Javan deer and water buffalo 
detections. 

Species Algorithm AUC Kappa TSS Jaccard Sorensen 

Javan deer 

BRT 0.901 0.827 0.827 0.852 0.920 
SVM 0.895 0.827 0.827 0.852 0.920 

Random Forest 0.893 0.827 0.827 0.852 0.920 
Ensemble 0.936 0.827 0.827 0.852 0.920 

Water buffalo 

BRT 0.979 0.944 0.944 0.956 0.975 
SVM 0.958 0.944 0.944 0.956 0.975 

Random Forest 0.965 0.944 0.944 0.956 0.975 
Ensemble 0.993 0.972 0.972 0.978 0.988 

Our results show that the ensemble model can detect the object of both species with 
relatively good performance. We found eight Javan deer individuals and 33 individuals 
of water buffalo. We found that the ensemble model also can reduce speckle noise of the 
model output that creates a spatial bias for the model. However, we also found patches of 
errors from Javan deer images due to burn scars in the non-vegetated areas. 

 
Figure 11. Javan deer detections based on drone imagery using machine learning approaches: (A) 
Support Vector Machine, (B) Random Forest, (C) Boosted Regression Trees, and (D) Ensemble 
model. 
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Figure 12. Water buffalo detections based on drone imagery using machine learning approaches. 
(A) Support Vector Machine, (B) Random Forest, (C) Boosted Regression Trees, and (D) Ensemble 
model. 

This study found that thermal imagery from drones had relatively significant perfor-
mance to detect species (i.e., Javan deer or water buffalo) (Wilcoxon test: Water buffalo, 
W = 2364985, p-value < 0.005; Javan deer, W = 7455116, p-value < 0.005). Javan deer tem-
perature ranging from 26.3 °C to 43.7 °C (xത = 33.53 °C; s.d. = 3.92 °C) and water buffalo 
temperature ranging from 25.1 °C to 39.0 °C (xത = 31.09 °C; s.d. = 2.99 °C) (Figure 13). Our 
used thermal sensors had relatively low bias (±1 °C) and acceptable to capture tempera-
ture body for mammal species. 

 
Figure 13. Temperature responses from species body for Javan deer and water buffalo in the Baluran 
National Park. 
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3.3. Behavioral Scores of Three Primates in GHSNP  
3.3.1. Survey Comparison Study 

We flew 36 drone flight missions (including 42 target group approaches) and con-
ducted 15 ground surveys focused on three groups of Javan gibbon, eight groups of Javan 
langur, and three groups of Javan surili. Average group sizes were 4.5 (s.d. 1.2) for Javan 
gibbon, 5.4 (s.d. 3.7) for Javan langur, and 3.4 (s.d. 1.8) for Javan surili. The total sample 
sizes and number of behavioral scores assigned are listed in Table 4. For all three species 
behavioral response scores differ significantly between drone surveys (30 m altitude) and 
ground survey, for Javan langur and Javan surili (Table 5 and Figure 14). 

 
Figure 14. Average behavioral responses (plotted with error bars representing the standard errors): 
(A) of Javan gibbon (n = 138 scores), (B) Javan langur (n = 432 scores) and (C) Javan surili (n = 198 
scores) to drones overflights at 30 m versus ground surveys. 

Table 4. Numbers of flights, ground surveys, and individual animals scored by independent ob-
servers for behavioral reaction to drones approach listed by species and study. 

Species Comparison 
Study 

Number of 
Individuals 

Number 
Drone 

Approaches 

Number 
Ground 
Survey 

Number of 
Behavioural 
Scores per 
Observer 

Total 
Number of 

Behavioural 
Scores 

Javan 
gibbon 

Survey 7 6 6 46 138 
Altitude 12 8 - 102 306 

Javan 
langur 

Survey 10 16 18 144 432 
Altitude 25 38 - 268 804 

Javan 
surili 

Survey 7 6 6 66 198 
Altitude 23 10 - 236 708 

Table 5. Comparison of the behavioral responses of three primates grouped by type of survey using 
the Kruskal-Wallis test. 

Species n Treatment df χ2 p 

Javan gibbon 
46 All surveys 2 4.58 <0.050 
34 Ground-drone   <0.050 

Javan langur 
144 All surveys 2 38.50 <<0.001 
100 Ground-drone   <<0.001 

Javan surili 
66 All surveys 2 24.78 <<0.001 
40 Ground-drone   <<0.001 
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3.3.2. Altitude Comparison Study  
The increase in the behavioral response of Javan gibbon and Javan surili occurred at 

an altitude of <20 m, while for Javan langur occurred at an altitude of <30 m. Behavioral 
responses gradually decreased and were indistinguishable at flying altitudes > 20 m for 
the Javan gibbon and Javan surili populations, while Javan langur > 30 m (Figure 15). An 
increase in behavioral responses such as escape (4) is common during low flight and de-
creases to alert (1) and rest (0) with an increase in altitude above 20 m. The ordinal logistic 
model fit the data well, and the altitude effect provided an informative model for the three 
primate species (Hess condition score < 103, Table 6). The value for <20 m is positive, indi-
cating an increase in the behavioral score when the UAV flies lower. Meanwhile, behav-
ioral reactions at heights > 20 m did not inform any model (Table 6). Behavioral reaction 
scores increased after incorporating the effect of sex and altitude when Javan langurs were 
resting and guarding their cub (χ2 (1) = 27.50, p << 0.0001). The most informative model 
for Javan gibbon (χ2 = 1.50, p << 0.0001) and Javan surili (χ2 = 14.90, p < 0.0001) included 
effects for altitude, and human exposure level. Males and animals with low previous ex-
posure to humans were more likely to have higher scores than females and high exposure 
animals, respectively. Observer as a random effect was significantly informative to every 
model framework in which it was tested (paired likelihood ratio test p < 0.05, Table 6).  

 
Figure 15. Average behavioral responses (plotted with error bars representing the standard errors): 
(A) of Javan gibbon (n = 46 scores), (B) Javan langur (n = 144 scores) and (C) Javan surili (n = 66 
scores) to drones overflights at 30 m versus ground-based surveys. 

Table 6. Generalized ordinal logistic mixed-effects model results from the behavioral response 
scores of three primates species during the observation period from January to March 2021. Altitude 
(levels = 30 m, 20 m, 10 m), Social Group (levels = Harem, Non-harem), Sex (levels = Male, Female), 
and Exposure (High, Low) were fixed effects, and Observer (levels = Obs1, Obs2, Obs3) was a ran-
dom effect. Likelihood ratio test p-values reflect comparison with the model in the row above. ΔAIC 
values indicate the difference from the best-performing model = bold text. The intercepts were sig-
nificant in all models (Javan gibbon β0 range: −0.368 to 4.788, p << 0.001; Javan langur β0 range: −0.208 
to 5.290, p << 0.001; Javan surili β0 range: −0.054 to 5.864, p << 0.001). β model coefficients back-
transformed from log space. 

Model  
Significant 
Coefficients AIC Δ AIC 

Likelihood Ratio Test 

β Pr(>|z|) (Df) χ2 p 
Javan gibbon 

Response~1 + (1|Observer) - - - 964.20 88.80 - - 
Response~Altitude + 

(1|Observer) 
10 m 1.690 <<0.001 910.70 44.40 (1) 35.44 <<0.0001 
20 m 0.978 <<0.001     

Response~Altitude + Sex + 
Exposure + (1|Observer) 

10 m 1.554 <<0.001 840.50 - (2) 1.50 <<0.0001 
20 m 1.158 <<0.001     
Up 1.088 <0.001     
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Male 0.645 0.001     
Low 0.630 <0.001     

Javan langur 
Response~1 + (1|Observer) - - - 5268.20 - - - 

Response~Altitude + 
(1|Observer) 

10 m 2.764 <<0.001 3445.10 924.50 (4) 158.22 <<0.0001 
20 m 1.890 <<0.001     

Response~Altitude + Social 
Group + (1|Observer) 

10 m 2.893 <<0.001 2914.80 278.90 (2) 102.40 <<0.0001 
20 m 1.797 <<0.001     

Harem 0.814 <0.001     

Response~Altitude ∗ Social 
Group + Sex + (1|Observer) 

10 m 0.690 <<0.001 2544.70 - (1) 27.50 <<0.0001 
20 m 0.758 <<0.001     

10 m: Harem 2.427 <0.001     
20 m: Harem 1.564 <0.001     

Male 0.261 <0.001     
Javan surili 

Response~1 + (1|Observer) - - - 7540.80 - - - 
Response~Altitude + 

(1|Observer) 
10 m 1.664 <0.001 7288.10 1556.40 (4) 358.10 <<0.0001 
20 m 0.981 <0.001     

Response~Altitude + Social 
Group + Sex + Exposure + 

(1|Observer) 

10 m 1.603 <<0.001 5580.60 - (1) 14.90 <<0.0001 
20 m 0.965 <<0.001     

Harem 0.885 <0.001     
Up 0.253 0.001     

Male 0.500 <<0.001     
Low 1.610 <0.001     

4. Discussion 
4.1. Nest Counts and Observed Nesting Material and Breeding of Waterbirds in PRWS 

Drone surveys produced high-resolution images of colonies of several species of wa-
terbird at PRWS, both resident and non-resident species during the survey. The number 
of species and nests found in our survey was not as high as in previous surveys (see: 
[37,39]). There was a high variation of species and numbers throughout the year in PRWS, 
with the greatest abundance usually occurring during June-July and the lowest abun-
dance in November-December, coinciding with the worst West Monsoon season [37]. Sea-
sonal resident species came to the island to breed, and soon after, their young were able 
to fly and leave the island, for example, Mycteria cinerea, Plegadis falcinellus, Threskiornis 
melanocephalus, and Bubulcus ibis; [37]. From orthomosaic, we determined the nest formed, 
its spatial location, population growth, and threats to the conservation of the waterbird 
population in this location. The spatial resolution achieved by flight allows us to perform 
well-breeding population estimates, since nest structures and individual waterbirds can 
be identified in orthomosaic. Manual calculations on each grid with full of caution using 
visual imagery and confirmed by thermal imagery consistently successfully detect nests 
and waterbirds in the image. Our drone surveys produce a higher number of nests in 
comparison to traditional ground surveys. Furthermore, the advantage of using drones is 
that they allow a better perspective from a wider and higher vantage point, especially 
when several nests are above vegetation or among dense vegetation, which is likely to 
contribute to low detection and higher miscalculation in ground surveys. In line with 
other comparisons between survey methods, including counts of nesting shorebirds col-
ony [61] and seabird nesting [62], drone surveys result in more accurate counts than 
ground surveys. 

In a relatively short study period, the results of our research through initial monitor-
ing and orthomosaic provide various information related to the distribution of waterbird 
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nests in PRWS, being: (a) there are five waterbird colony locations on PRWS; (b) the south-
eastern part of the island is intensively used all year round; and (c) some areas that are 
never used for nesting by waterbirds, namely coastal forests on the south and west sides 
of the island. This is in line with previous research that was conducted intensively through 
ground surveys [37]. Furthermore, we found positive and negative associations between 
species pairs based on their nesting sites. There is a highly positive and significant rela-
tionship, for example, between Ardea cinerea and Nycticorax nycticorax. In contrast, nega-
tive associations were found between congeneric species (i.e., Ardea alba-Egretta garzetta). 

The waterbird breeding census at PRWS using ground surveys is challenging. Nests 
are built on macrophytic vegetation over two meters high, with colonies housing many 
individuals of each species. To detect the presence and count the number of eggs and 
chicks in the nest by climbing each nest tree requires time, effort, and poses safety risks. 
The results obtained from this study demonstrate the capability and benefits of drone sur-
veys for detailed monitoring of all water birds that inhabit the island during the monitor-
ing period, and its applicability can be used to provide an overview of long-term water-
bird population trends. Drones can collect high-resolution spatial data over large and in-
accessible areas at an affordable cost depending on the surface to be covered [63,64]. An-
other benefit is that in its application, drone flights at low altitudes do not provide signif-
icant disturbance to waterbirds even when they are breeding. In situations where the wa-
terbird population is increasing, monitoring using traditional methods is not feasible. The 
resolution achieved in our monitoring activities allows for a manual approach to nest 
counting, but in the future, there will be a need for automated estimates that simplify, 
shorten data processing time and increase the precision of calculation results. As drone 
capabilities will improve over time, particularly concerning flight endurance and sensor 
resolution, large amounts of high-resolution data will be collected, and automated pro-
cessing will become a major requirement in the future [65]. Adapting automated proce-
dures is critical for incorporating drone data into long-term monitoring programs, as this 
will reduce bias due to visual interpretation and provide comparable data over time. 

The impact of marine litter on the waterbird habitat can be seen from the overlap 
between marine litter and trees that become waterbird nests. Some of the impacts include: 
(1) marine litter that accumulates to cover 50% of mangrove roots can cause depressed 
mangroves, which is marked by leaf loss, while marine debris that covers 100% of man-
grove roots will cause the death of mangrove stands that are used as nest trees [66]; (2) the 
use of synthetic materials such as rope can harm birds; this can be seen in the case of a 
Phalacrocorax sulcirostris, which died entangled in rope in its nest; (3) as many as 51 trillion 
metric tons of microplastics were found in the sea [67] and have entered the food chain 
[68]; it is not impossible that microplastics and macro-sized plastics found in nests are 
swallowed by water birds and can cause death [69]. 

4.2. Species Diversity and Detection Techniques from Thermal Photographs of Two Large-Sized 
Mammals in Baluran National Park (BNP)  

This study is the first to be conducted in a savanna ecosystem in tropical areas, using 
drones to monitor the diversity of resident wildlife. The results provide basic information 
that can be used for future wildlife monitoring across a wide and open area. Drone tech-
nology appears to be a suitable method for rapidly collecting data on the diversity of wild-
life species in this habitat due to its ability to take high-resolution images which can be 
accurately identified in the laboratory and compared over time and reduce the uncertainty 
of estimates in traditional observer calculations [70]. 

In applying the survey method, it is crucial to evaluate the survey results and the 
level of disturbance to the animals being surveyed. In our research, the detection rate of 
wildlife species diversity is not much different from the use of camera traps that are 
proven reliable and rigorous in detecting terrestrial wildlife. Although carried out in a 
relatively short period, drones have captured the presence of more than 80% of animals 
commonly found in this savanna area. The drone results also indicate a stark difference 
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with the ground survey method, which gives poor results. The high level of disturbance 
to animals during ground surveys affects the results provided through this survey activ-
ity. Drones show unique advantages in animal diversity studies, this platform can directly 
monitor data and animal distribution accurate and in real-time, primarily surveys on the 
population numbers of large animals and animal conservation. Our study observed no 
behavioral changes that could be interpreted as a nuisance in wildlife observed using 
drones. Although it is believed that periods of non-breeding and animals in large groups 
are shown to trigger behavioral reactions [71], we did not find this in our study. Various 
types of animals are not seen moving in successive photos. This indicates that flying at 
altitudes above 50 m seems appropriate and provides adequate resolution for animal 
identification. However, it is essential to note that disturbances are not always expressed 
in behavioral responses but can also occur in the form of physiological responses, such as 
changes in heart rate [72]. In our study, we did not specifically monitor the physiological 
responses of the animals being observed. 

Previous studies have shown that machine learning provides good species detection 
performance [73–75], and our study concurred that using machine learning approaches, 
notably thermal and RGB imageries, detected both Javan deer and water buffalo popula-
tions as experimental species. We found that water buffalo detectability performed better 
than for Javan deer. The resting activity of Javan deer created thermal bias between body 
temperature and surface or environmental temperature. Therefore, resting Javan deer 
provided a lower detectability than water buffalo. Our study highlights the need to un-
derstand activity time budgets of the focal species prior to assessing the population 
through drone surveys.  

Our study also showed that thermal information through object temperature pro-
vides good species and non-species detection results, particularly for warm-blooded spe-
cies. We found that thermal drones can significantly differentiate the species from its en-
vironment or habitat. Javan deer have a higher body temperature than water buffalo. A 
previous study also showed the successful use of thermal imageries for wildlife species 
detection [76,77]. 

This study has revealed that using thermal drones in species detection for wildlife 
conservation based on machine learning approaches is promising due to its usefulness in 
generating high-quality data for the species population. Many conventional approaches 
for ecological surveys are challenging—that is, high costs and efforts, considerable time, 
high-level observer skills required and inaccessibility to rugged areas [78]. Thermal im-
agery along with visual RGB bands provides high-quality predictors in detecting species 
in their habitats. However, wider coverage areas of drones should be performed to obtain 
more various species and habitats representativeness. 

4.3. Behavioral Response of the Three Primate Species in Gunung Halimun Salak National Park 
(GHSNP) to the Flight of UAVs  

Although there are substantial differences in the life history, body size, group num-
ber, social behavior and ecology of each of the focal primate species in this study, the 
assessment of the behavioral responses to the presence of small drones flying at certain 
altitudes provides a similar pattern. Behavioral response to drone flights at higher alti-
tudes is limited but increases as the drone’s flying height decreases below 30 m. For Javan 
gibbons, eight groups inhabit the CRRF area in GHSNP of which three groups were ha-
bituated to human presence. Habituated and unhabituated groups of Javan gibbons af-
fected the behavioral response of this species when observed using drones. The difference 
in behavioral responses is highly significant, with no response from habituated Javan gib-
bon when the drone approached up to 8 m. When the drone approached to a distance of 
7 m, the Javan gibbon began to move slowly; however, habituation to regular human ex-
posure appears to decrease sensitivity to drone use. In unhabituated Javan gibbons, which 
were the main target of this study, we observed that individuals did not respond when 
the drone was flying at 30 m and started moving away when the drone was lowered to 27 
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m. The Javan gibbon is a cryptic animal and tends to avoid the presence of humans [79], 
the behavioral response of the unhabituated Javan gibbon demonstrates the natural be-
havior of this species when it feels disturbed and threatened. For identification, the results 
from the RGB imagery were used since the thermal imagery was not possible even when 
flown at a lower altitude. 

Javan langurs were more sensitive to 30 m overflights than Javan gibbon, and males 
were more likely to react than females. Behavioral responses also intensified over the 
course of the infant birth period. The Javan langur has a polygynous social structure 
where a single male controls territory and actively retains females within that space. As a 
result, female reactions to external stimuli frequently initiate a chain reaction where the 
male rushes through the harem to curtail female movement, impacting and disturbing 
other animals along the way. Vigilance is one of the functions of living in groups [80,81] 
because each group has the same role in detecting disturbances around them. If the dis-
turbance is detected by one of the individuals in the group, the information will be passed 
on to other group members. Hence, disturbances are often amplified. Finally, the detec-
tion of drone noise is a primary source of animal disturbance across animal taxa [71,82]. 
We found Javan surili were significantly more likely to react when approached from up-
wind likely because drone noise is more strongly propagated to target animals during 
upwind approaches. Therefore, we suggest that behavioral reactions would be lower if 
groups are approached from down-wind. 

The detection and monitoring of Javan surili using drones have challenges related to 
vertical space use in trees. Javan surili is most often found in trees at heights of 5–10 m, 
and some are also found at 4–18 m. Compared with the Javan gibbon, which uses trees at 
heights between 11–25 m, and Javan langurs (15–20 m). It is difficult to detect and observe 
Javan surili using RGB imagery when they use space in the lower altitude in trees. The 
thermal camera is effective in detecting the movement of the Javan surili under a tree 
canopy. The thermal camera will record any sign of the Javan surili body temperature that 
contrasts with the background. When drones fly over them, Javan surili has a limited be-
havioral response compared to Javan gibbons and Javan langurs. The closest altitude the 
drone can reach is at 23 m, and behavioral response is limited at this altitude. We believe 
this is related to the pattern of space use in the trees selected by the Javan surili. By being 
under the canopy, interference caused by drones can be minimized. Furthermore, being 
under the canopy can protect against aerial predators. 

It should be noted that behavioral response studies are determined mainly by sub-
jective assessments of the responses showed by animals. Behavioral studies almost exclu-
sively still rely on a single observer, leading to unknown biases in their measurements. 
Although there are possible similarities in inter-observer scoring in behavioral response 
studies, information on inter-observer variability is measured and tested in appropriate 
mathematical models. Using two or three independent observers allows an assessment of 
the observer effect, and the results can reduce the possibility of bias due to observer sub-
jectivity. The use of drones capable of digitally recording the target animal in images or 
videos allows multiple observers to view permanent records to ensure reproducibility. 

5. Conclusions 
Drones are increasingly being used to survey forest vertebrates, although commonly, 

most surveys are conducted to monitor primates, birds, and other species living and/or 
nesting in the canopy [83–85]. Due to the high and wide point of view, in our study, drones 
overcame some of the complex habitat-related visibility problems of surveying focal ani-
mals inhabiting tropical forests. Low visibility in the field due to the presence of vegeta-
tion and habitat complexity is a major source of bias in species monitoring activities in 
tropical forests. Our study detected more focal species in each survey area using drones 
than traditional ground surveys despite vegetation covering varied in coastal ecosystems, 
mangroves, savannas, and montane forests. We saw that drones effectively allow observ-
ers to see a wider range of spaces that would normally be difficult to observe, in this case, 
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beyond the first layer of vegetation to the tree canopy, and more generally able to reach 
inaccessible or distant and remote areas [86]. 

Drones are an approach to monitoring animals in a rigorous and non-invasive way 
to characterize the observed animals while also leaving a permanent record of their survey 
activities. Moreover, recorded images, videos or maps from drones can be used to verify 
species and their positions, numbers and sizes, including the occupied habitats of all de-
tected species. Reducing disturbance to animals compared to ground surveys is also likely 
to result in more accurate data and avoid double-counting individuals as they escape and 
reappear elsewhere in response to disturbance. In our study, a lower behavioral response 
to external disturbances allows more intensive observation of animal behavior to be car-
ried out. The use of drones has long been recognized as an advantage in aerial surveys of 
various animals [87,88]. The latter is a major problem for ecosystems in tropical forests 
where some animals will always be under tree cover and, therefore, undetected from 
above. In Indonesia’s tropical forests, this means that drone surveys may not be a suitable 
method for monitoring various species of terrestrial animals that prefer forested habitats 
and daily activities under closed canopy forest cover, unless as technology advances in 
the future, commercial drones are available with robust sensors capable of penetrating the 
high-density vegetation commonly found in tropical forests. In our study, for example, 
we might miss some waterbird nests under the tree canopy. Although the numbers are 
small, of course, this is a bias factor for the accuracy of estimating the number of waterbird 
nests in PRWS. Our drone survey also failed to detect one of the endemic primate species 
present in the GHSNP, namely Nycticebus javanicus. This is likely to have contributed to 
its rarity as well as detection problems with ground surveys, as our nocturnal surveys also 
failed to detect them.  

Despite all the advantages, drone monitoring still has some limitations. For example, 
the load carried by drones is low, and it is difficult to integrate multiple sensors in the 
same platform for observation, which is currently still based on optical cameras. Due to 
limited battery capacity, drones can only stay in the air for a short time and thus cannot 
carry out long-term wildlife monitoring. The limited battery life of the drone may limit 
the size of the study area surveyed, including constraints on remote study sites where 
access to electricity to recharge batteries is difficult and may limit the choice of study sites. 
We also found that strict national laws in each country and regulations in protected areas 
could prevent some further exploration of the use of drones to find the most effective and 
efficient approach to wildlife monitoring activities in tropical forests. In addition, the 
monitored area is smaller than other remote sensing platforms. In contrast to areas with 
unobstructed views, such as grasslands or savanna, it is difficult to get species information 
directly in the forest [62]. While there are other drawbacks to animal detection or signs 
from wildlife under the canopy, drone surveys tend to bring several advantages in multi-
species research that inhabits diverse ecosystems in tropical forest areas. First, due to the 
high-resolution images of each survey activity in the three ecosystems (PRWS: 2.24 cm per 
pixel at 65 m; BNP: 1.72 cm per pixel at 50 m; GHSNP: 1.38 cm per pixel at 45 m), drones 
better detect animals and their signs in open areas or above tree canopies. While this is 
possible through close individual approaches during ground surveys, even expert observ-
ers have proven error-prone, and close approaches may be stressful for animals. Images 
or videos produced from drone surveys can also identify the various species present at 
the study site. Finally, we believe that drones are a reliable tool and will continue to in-
crease their use for multi-species surveys in tropical forests. We observe that drones are 
becoming less expensive over time and are easier to use in their application. These tools 
can often facilitate field logistics and reduce costs compared to traditional ground survey 
methods, requiring multiple observers with strong field experience. 
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Appendix A 
Project Overview 

This study aimed to evaluate drone-based aerial surveys for censusing critical eco-
logical aspects of wildlife communities in several ecosystem types that dominate tropical 
rainforest landscapes in Indonesia. Drones are reported to be potentially less physically 
laborious, less intrusive, and adequately accurate in wildlife monitoring than traditional 
ground-based surveys where surveyors walk across animals along specific transects. In 
this study, three conservation areas were selected based on the urgency of conservation 
and the unique ecosystem characteristics of each location, namely Pulau Rambut Wildlife 
Sanctuary (PRWS) with ecosystem type of coastal forest and mangrove forest, Baluran 
National Park (BNP) with ecosystem type of savanna, and Gunung Halimun Salak Na-
tional Park (GHSNP) with montane forest ecosystem. Pulau Rambut Wildlife Sanctuary 
is a small island and breeding habitat for various types of birds. Pulau Rambut Wildlife 
Sanctuary is one of six areas designated as a Ramsar Site due to the large number of mi-
gratory bird species that live on this island. As many as 14 of the 48 bird species in PRWS 
are highly dependent on the ecosystem on this island. Furthermore, the site supports three 
internationally threatened bird species, especially the vulnerable Milky Stork (Mycteria 
cinerea), with one of the biggest breeding colonies of this species in Indonesia. Pulau Ram-
but Wildlife Sanctuary is located in the Thousand Islands (officially Kepulauan Seribu) in 
the Bay of Jakarta, where 13 rivers flow into this island. As a result, litter disposed of in 
Jakarta or the surrounding area is carried along Jakarta Bay to the Thousand Islands. This 
raises the problem of marine litter in these waters, especially in PRWS. During our study, 
in the northern part of the mangrove ecosystem on this island, various types of litter were 
found, such as wood, bamboo, plastic, and styrofoam. Marine litter accumulation was also 
found in the southeastern mangrove ecosystem. The accumulated litter can cause disturb-
ance to the habitat and the conservation of waterbirds in PRWS. Waterbird monitoring in 
PRWS has previously been carried out using traditional ground-based surveys, but in 
practice, there are many obstacles and challenges, such as substrates that are affected by 
tides and high vegetation density which makes it difficult for direct observations to be 
carried out on land. 
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Baluran National Park (BNP) is one of the unique ecosystems in the tropical maritime 
continent of Indonesia. This landscape is also known as ‘Africa van Java’ due to its sa-
vanna ecosystem as a major natural resource that harbour various biodiversities such as 
banteng (Bos javanicus), Javan deer (Rusa timorensis), water buffalo (Bubalus bubalis), red 
muntjac (Muntiacus muntjak), Javan leopard (Panthera pardus melas), dhole (Cuon alpinus), 
and Javan green peafowl (Pavo muticus muticus). However, BNP faced multifaceted prob-
lems from socio-economics and environmental aspects—i.e., social conflicts in land man-
agement; invasive species; and wildfires. Some good conservation practices should be 
made to prevent the population decline of endemic and endangered species in BNP under 
various pressures. Identifying endangered species populations within BNP is requisite to 
understand further conservation management for the specific species. Therefore, finding 
out the best practices in detecting species is required for effective wildlife management 
and conservation. The ground-based survey approaches sometimes require extensive ef-
fort, time-consuming, and relatively challenging to encounter the species. Regular and 
reliable monitoring of wildlife species estimates is essential for the conservation work of 
any species. Besides, the use of drones for species surveys has improved the detectability 
of the species. Estimates of population size can be quite challenging for mammal’s species, 
particularly in relatively wide areas. In our study, we present the experimental methods 
to assess species diversity in the savanna ecosystem based on RGB imagery and thermal 
imagery and machine learning approaches using thermal drone imageries for detecting 
species. 

Gunung Halimun Salak National Park (GHSNP), especially Cikaniki Resort Research 
Facility (CRRF), is one of the essential areas in Indonesia in primate conservation. There 
are three endemic diurnal primates in Java that inhabit this area, such as the Javan gibbon 
(Hylobathes moloch), Javan langur (Trachypithecus auratus), Javan leaf monkey (Presbytis co-
mata), and one nocturnal endemic primate (Javan slow loris Nycticebus javanicus). These 
four primates live arboreal in dense tree canopies, so the ground-based survey is often 
challenging to conduct. The low rate of encounters through ground surveys with endemic 
primates at CRRF causes very limited ecological data for the four primate species. 
Through this study, we evaluate the use of drones to monitor endemic primates in CRRF. 
This study is the first in Indonesia’s tropical forests and was conducted to assess the be-
havioral response to the presence of drones in their habitat. As a reliable platform for 
wildlife monitoring, it is crucial to assess the behavioral responses shown by the focus 
animals before studies on other ecological aspects are carried out in the future. 

Appendix B 
Appendix B.1. Drone Matrice 300 RTK Specification 

Table A1. Drone Matrice 300 RTK applied at Pulau Rambut Wildlife Sanctuary and Baluran National 
Park. 

Hardware Part of Drone Detailed Information  

Aircraft 

Weight with one gimbal on the bottom 
Approximately 3.6 kg (without battery) 

Approximately 6.3 kg (with 2 batteries TB60) 

Dimension 
430 × 420 × 430 mm (folded) 
810 × 670 × 430 mm (takeoff) 

Diagonal length 895 mm 
Maximum load 2.7 kg 

Maximum takeoff weight 9 kg 

Operating frequency 
24,000–24,835 GHz 

5725–5850 GHz 
RTK positioning accuracy (when on and 

installed) 
1.5 cm + 1 ppm (vertical) 

1 cm + 1 ppm (horizontal) 
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Maximum speed up S mode: 6 m/s 
P mode: 5 m/s 

Maximum speed down (vertical) S mode: 5 m/s 
P mode: 4 m/s 

Maximum speed down (tilt) S mode: 7 m/s 

Maximum speed 
S mode: 23 m/s 
P mode: 17 m/s 

Maximum wind obstacle 15 m/s 
Maximum flight duration 55 min 

Navigation system GPS + GLONASS + BeiDou + Galileo 
Operating temperature −20 °C to +50 °C  

Thermal 
Camera 

Sensor Uncooled VOx Microbolometer 

Lens 

DFOV: 40.6° 

Focal length: 13.5 mm (equivalent 58 mm) 
Aperture: f/1.0 
Focus: 5 m to ∞ 

Sensor resolution 640 × 512 
Pixel pitch 12 µm 

Spectral band 8–14 µm 

Image size 
640 × 480 (4:3) 

640 × 360 (16:9) 

Scene range 
High gain: −40° to +150 °C 
Low gain: −40° to +550 °C 

Image format R-JPEG 
Video format MP4 

Visual 
Camera 
(Zoom 

Camera) 

Sensor Zoom camera: 1/1.7” CMOS Sensor, 20 MP 
Wide camera: 1/2.3” CMOS Sensor 

Lens 

Zoom camera 
DFOV: approximately 66.6°–4° 

Focal length: 6.83–119.94 mm 
Aperture: f/2.8–f/11 (normal); f/1.6–f/11 (mode malam) 

Focus: 1 m to ∞ (wide); 8 m to ∞ (telephoto) 

ISO range Video: 100–25,600 (auto) 
Gambar: 100–25,600 (auto) 

Visual 
Camera 
(Wide 

Camera) 

Sensor Wide camera: 1/2.3” CMOS Sensor, 12 MP 

Lens 

DFOV: approximately 82.9o 

Focal length: 4.5 mm 
Aperture: f/2.8 
Focus: 1 m to ∞ 

ISO range Video: 100–25,600 (auto) 
Image: 100–25,600 (auto) 

Appendix B.2. Drone Mavic 2 Enterprise Dual Specification 

Table A2. Drone Mavic 2 Enterprise Dual applied at Pulau Rambut Wildlife Sanctuary and Baluran 
National Park. 

Hardware Part of Drone Detailed Information  

Aircraft 
Weight without accessories 899 g 

Maximum weight with accessories 1100 g 
Dimension 214 × 91 × 84 mm (folded) 
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322 × 242 × 84 mm (takeoff) 
Diagonal length 354 mm 

Maximum speed up 4–5 m/s 
Maximum speed down 3 m/s 

Maximum speed without wind disturbance 72 km/hour 
Maximum flight duration 31 min (constant speed 25 km/hour) 

Navigation system GPS + GLONASS 

Operating frequency 
2400–2835 GHz 
5725–5850 GHz 

Internal storage 24 GB 

Thermal 
Camera 

Sensor Uncooled VOx Microbolometer 

Lens 
HFOV: 57° 

Aperture: f/1.1 
Sensor resolution 160 × 120 

Pixel pitch 12 µm 
Spectral band 8–14 µm 

Image size 
640 × 480 (4:3) 

640 × 360 (16:9) 

Accuracy 
High gain: Max ±5% (typical) 
Low gain: Max ±10% (typical) 

Scene range 
High gain: −10° to +140 °C 
Low gain: −10° to +400 °C 

Image format JPEG 
Video format MP4, MOV MPEG-4 AVC/H.264) 

Visual 
Camera 

Sensor 
1/2.3” CMOS; Effective pixels: 12 M 

FOV: approximately 85° 

35 mm format equivalent: 24 mm 

Lens 
Aperture: f/2.8 

Focus: 0.5 m to ∞ 

ISO range 
Video: 100–12,800 (auto) 
Image: 100–1600 (auto) 

Appendix C 
Appendix C.1. Drone Flight Plan 
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Figure A1. Example of flight missions using DJI Pilot version 1.9.0 in (A) coastal and mangrove 
forest in PRWS, (B) savanna in BNP, and (C) montane forest in GHSNP. 
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Appendix C.2. Drone System and Operation Details 

Table A3. Flight mission data in Pulau Rambut Wildlife Sanctuary, Baluran National Park, and 
Gunung Halimun Salak National Park. See Figure A1 for visualization of flight plans. 

Location Sensor Time Altitude (m) GSD (cm/pixel) Side Overlap 
Frontal Overlap 

(%) 

Pulau Rambut 
Wildlife Sanctuary 

Zenmuse H20T 
Wide 

4 h 34 m 12 s 120 4.14 70 80 
4 h 47 m 18 s 110 3.79 70 80 
5 h 15 m 16 s 100 3.45 70 80 
5 h 57 m 54 s 90 3.10 70 80 
6 h 30 m 13 s 80 2.76 70 80 
7 h 24 m 33 s 70 2.41 70 80 
8 h 45 m 51 s 60 2.07 70 80 
10 h 13 m 37 s 50 1.72 70 80 
12 h 56 m 29 s 40 1.38 70 80 
16 h 58 m 9 s 30 1.03 70 80 
25 h 12 m 17 s 20 0.69 70 80 
33 h 34 m 22 s 10 0.52 70 80 

Optimum detection 7 h 55 m 13 s 65 2.24 70 80 

Baluran National 
Park 

Zenmuse H20 T 
Wide 

1 h 22 m 49 s 120 4.14 70 80 
1 h 29 m 51 s 110 3.79 70 80 
1 h 38 m 34 s 100 3.45 70 80 
1 h 49 m 1 s 90 3.10 70 80 
2 h 1 m 45 s 80 2.76 70 80 
2 h 24 m 0 s 70 2.41 70 80 

3 h 13 m 24 s 60 2.07 70 80 
4 h 35 m 43 s 50 1.72 70 80 
7 h 8 m 29 s 40 1.38 70 80 

12 h 42 m 25 s 30 1.03 70 80 
28 h 59 m 1 s 20 0.69 70 80 
49 h 59 m 8 s 10 0.52 70 80 

Optimum detection 4 h 35 m 43 s 50 1.72 70 80 

Gunung Halimun 
Salak National 

Park 

Mavic 2 Enter-
prise Dual 

19 h 55 m 45 s 120 3.67 10 80 
21 h 32 m 46 s 110 3.36 10 80 
23 h 32 m 30 s 100 3.06 10 80 
25 h 55 m 30 s 90 2.75 10 80 
28 h 56 m 12 s 80 2.45 10 80 
32 h 53 m 28 s 70 2.14 10 80 
38 h 6 m 23 s 60 1.84 10 80 
45 h 20 m 10 s 50 1.53 10 80 
56 h 15 m 15 s 40 1.22 10 80 
74 h 23 m 49 s 30 0.92 10 80 

110 h 38 m 39 s 20 0.61 10 80 
146 h 53 m 50 s 10 0.46 10 80 

Optimum detection 49 h 16 m 47 s 45 1.38 70 80 
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