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Abstract: In this article, we propose SuSy-EnGaD, a surveillance system enhanced by games of
drones. We propose three different approaches to optimise a swarm of UAVs for improving intruder
detection, two of them featuring a multi-objective optimisation approach, while the third approach
relates to the evolutionary game theory where three different strategies based on games are proposed.
We test our system on four different case studies, analyse the results presented as Pareto fronts in
terms of flying time and area coverage, and compare them with the single-objective optimisation
results from games. Finally, an analysis of the UAVs trajectories is performed to help understand the
results achieved.

Keywords: swarm robotics; unmanned aerial vehicle; evolutionary game theory; evolutionary
algorithm; surveillance system; multi-objective optimisation

1. Introduction

Unmanned aerial vehicles (UAVs) have a wide range of applications [1] such as wild-
fire monitoring [2], smart farming [3], aerial surveillance [4], environmental monitoring [5],
goods transportation [6] and structural damage mapping [7]. Particularly, surveillance
systems [8] require resilience and flexibility to address issues such as drone failures and
adverse communications. They can be achieved using swarm intelligence [9] as a way of
modifying the collective behaviour of the swarm by using individual parameters. The mem-
bers’ interactions usually follow local rules based on pheromones and probabilities [10],
upper confidence trees [11] or finite games [12], among others [13]. These strategies can
be based on competitions [14] or collaborations [15] between members, having each ap-
proach its own advantages and disadvantages [16]. The associated high dimensional search
space makes these problems good candidates to be solved using an intelligent bio-inspired
technique, such as evolutionary algorithms [17].

Game-based approaches are commonly present in UAV swarms as a strategy of cooper-
ation between members. Games have been used for cooperative search and surveillance [18],
energy-efficient communications [19], beyond-visual-range air combat missions [20], Vehic-
ular Ad hoc NETworks (VANET) communications under adverse network conditions [21],
etc. In Evolutionary Game Theory (EGT) [22], group interactions are modelled with the
assumption that the surviving strategy is the one which reports outcomes higher than other
possible strategies.

In this research work, we propose a surveillance system based on a swarm of UAVs
patrolling an area divided into concentric security rings. UAVs in inner rings move slower
than those in outer rings but consume also less energy, which allows them to fly for a
longer period of time. This surveillance scheme features a compromise between maximum
flying time (most of UAVs in the innermost ring) and maximum area coverage (a smart
strategy to fly by different rings according to each UAV’s battery state). Consequently, our
contributions can be summarised as follows:

Drones 2022, 6, 13. https://doi.org/10.3390/drones6010013

https://www.mdpi.com/journal /drones


https://doi.org/10.3390/drones6010013
https://doi.org/10.3390/drones6010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-1138-8130
https://orcid.org/0000-0001-8155-0626
https://orcid.org/0000-0001-9419-4210
https://orcid.org/0000-0001-9338-2834
https://doi.org/10.3390/drones6010013
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6010013?type=check_update&version=2

Drones 2022, 6, 13

20f19

1. Anew Surveillance System Enhanced by Games of Drones (SuSy-EnGaD), based on
cooperative UAVs that explore the area of interest arranged in concentric rings.

2. Three different approaches to obtain the optimal strategy taking into account maxi-
mum flying time and area coverage.

3.  Two bio-inspired evolutionary algorithms adapted to this problem based on the
well-known NSGA-II and a genetic algorithm.

The remainder of this paper is organised as follows. In the next section, we review the
state of the art related to our work. In Section 3, the SuSy-EnGaD architecture is presented.
Our optimisation algorithms are explained in Section 4 and the case studies are described
in Section 5. The experimentation done using simulations is presented in Section 6, as well
as the discussion of results. After that, Section 7 brings conclusions and future work.

2. Related Work

In this section, we review research works related to our proposal. First, we go through
the multi-objective optimisation of UAV related problems. Second, energy optimisation
proposals are analysed. Third, surveillance systems using UAVs are reviewed. And finally,
cooperative and competitive strategies for UAV swarms are commented.

Many problems related to UAVs are often modelled and solved as multi-objective ones.
In [23], a multi-objective path planning framework is proposed to explore a suitable path
for a UAV operating in a dynamic urban environment. The authors use safety index maps
to capture static (offline search) and dynamic (online search) obstacles. This path planning
problem is addressed taking into account two objectives: shorten the travel time and avoid
obstacles. A multi-objective optimisation algorithm to allocate tasks and plan paths for a
team of UAVs is presented in [24]. A genetic algorithm is used to minimise the mission
completion time and can be tuned to prioritise coverage or connectivity. Results obtained
via simulations indicate that by transmitting lower rate notifications in the network, the
mission time can be shortened. In [25] a multi-objective path planning approach based on
the Crowd Distance-based NSGA-II (CDNSGA-II) method is proposed to find an optimal
collision-free path for UAVs, taking into account both distance and safety. Experimental
results show that the proposed algorithm can obtain up to 80% pareto optimal solutions
(see definitions 1 and 2 in Section 3) when compared with NSGA-II under simulated
urban environments.

Battery saving is an important concern when using UAVs. An offline path planning
algorithm is proposed in [26] to ensure that UAVs have permanent connectivity and can
always reach the base station to recharge their batteries. Different approaches for heteroge-
neous UAVs and multi-base stations were analysed to obtain safe paths using simulations.
In [27], an energy-efficient algorithm to optimise fixed-wing UAVs trajectories is proposed.
The authors derive a theoretical model of the propulsion energy consumption of fixed-wing
UAVs to define the efficiency of communications. They conclude that an optimised simple
circular trajectory maximises the energy efficiency and apply their findings to more general
itineraries. In our study, quad-rotor UAVs move inside circular rings using unpredictable
zigzag trajectories and can change the flying ring during their mission. As we are proposing
a surveillance system, area coverage is taken into account in the optimisation process and
our results are obtained using a simulator. In [28], the authors present a novel frame-
work for stochastic UAV-assisted surveillance which considers battery constraints. The
system uses energy-efficient random walks for flying patterns and probabilistic inspections.
A centralised algorithm based on iterative geometric programming approximation was
used to solve the problem and the experimentation was conducted using simulations. We
propose random walks for sampling the problem’s solution landscape to confirm that it is
a multi-objective problem. Our UAVs’ trajectories always depend on surveillance rings,
random bounce angles, and the possible collaborations between drones.

Surveillance systems using UAVs is one of the most discussed applications of these
“eyes in the sky”. Coordination between UAVs using chaotic mobility combined with
pheromone trails is proposed in [29]. In this approach, vehicles explore the surveillance
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area using detection cells arranged into concentric square rings, stochastically avoiding high
concentrations of pheromones. An Evolutionary Algorithm (EA) optimises pheromone
amounts and assigns rings to maximise early intruder detection and protect the base in the
centre of the analysed scenarios. The advantages of using surveillance rings are discussed
in [29], where that approach is also compared with other strategies. In our present study,
we are using actual circular rings and UAVs dynamically change rings during the mission
by collaborating each other using different strategies. Our proposed trajectories are not
using pheromones and they were evaluated using a simulator that includes the full UAV
dynamics. Finally, a multi-objective optimisation and game approach were implemented
for our current study.

Path planning and coordination of multiple UAVs to provide convoy protection
to ground vehicles is proposed in [30]. Different scenarios with stationary and moving
convoys were analysed using UAVs, modelled as Dubins vehicles flying at constant altitude.
The authors proposed a coordination strategy and optimal paths, also calculating the
minimal number of UAVs required. In [31], an optimal navigation algorithm allowing
UAVs to determine their movement locally with a minor use of a central station is presented.
UAVs perform surveillance task for a group of moving targets while avoiding obstacles.
Simulations results using case studies having up to 600 targets are presented to confirm
the system’s performance. Heterogeneous multiswarm approaches comprise the use of
patrolling UAVs and UGVs (Unmanned Ground Vehicles) to serve as mobile refuelling
stations [32]. Emerging UAV-UGYV inter-swarm collaborations are analysed in [15], and
in [33], UAVs, UGVs and UMVs (Unmanned Maritime Vehicles) are combined to improve
detections and area coverage on the land and sea.

Finally, we analyse some research works using Evolutionary Game Theory (EGT) [22]
approaches to model problems as well as to discover evolving strategies for optimisa-
tion [34]. In EGT, players are populations of individuals who follow mixed strategies when
playing bimatrix games. In contrast to classical game theory, the surviving strategy after
a group of interactions achieves higher benefits than the case of players making rational
choices. In [35], packet forwarding strategies are optimised in a mobile wireless ad hoc
network (MANET). A Prisoner’s Dilemma (PD) model (see Section 3.3) and an EA are
proposed to enforce cooperation between nodes. In [16], competition or cooperation are
both analysed as possible strategies for drones mapping a disaster area. The problem
is modelled as allocation tasks to robots in a swarm under limited communications and
partial information, and is solved by a competitive algorithm and a cooperative one. The
latter was reported to allocate more tasks in all the analysed scenarios. A modified binary
log-linear learning (BLLL) algorithm is proposed in [36] to solve the covering problem
using multiple UAVs. The cooperative search problem is modelled as a potential game and
a novel action selection strategy for UAVs is proposed. Experiments simulating different
mission environments were designed to evaluate the effectiveness and feasibility of the
proposed learning algorithm.

Our research work has parts in common with these articles, e.g., cooperation using
EGT, results obtained via simulations and bio-inspired multi-objective optimisation of
UAVs’ trajectories. However, we propose a surveillance area arranged in concentric circular
rings, having each one its own flying constraints, plus three approaches using multi-
objective and single-objective evolutionary algorithms to calculate the configurations of
the UAVs. Some analysed articles involving UAVs focus on visiting predefined targets
frequently. Our surveillance proposal in turn, uses unpredictable trajectories to explore the
whole area, balancing coverage and battery consumption, which is something critical for
every system using UAVs. To the best of our knowledge, no previous work has proposed the
evaluation and use of these five evolving strategies for UAV cooperation in a surveillance
system using concentric circular rings and trajectories that cannot be easily predicted
by trespassers.
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3. Surveillance System Enhanced by Games of Drones (SuSy-EnGaD)

The proposed surveillance architecture is based on M security rings where UAVs
patrol the area of interest protecting a central base as illustrated in Figure 1. The UAVs are
equipped with a video camera directed downwards to scan the area and detect possible
intruders. The altitude of the UAVs is fixed, so that the area scanned is about 10 x 10 m
(assumed to be square instead of a 16:9 rectangle for simplicity). Since we are not analysing
intruder detection rates in our study, we have calculated the area explored using the
current position of each UAYV, instead of using a specific camera model. This simplifies the
simulation model increasing the overall efficiency without losing accuracy. The innermost
ring, Ry, is a no-fly zone from where the UAVs depart and eventually return to recharge
their batteries. Initially, all the UAVs are assigned to Ry and they can move to another ring
R; < Rpp,i > 0 depending on their battery level and a series of autonomous decisions
(strategy). Since each ring has its own speed restrictions (Vz), such as Vg, < Vg, < Vg,,,
UAVs in inner rings consume less battery than the others in outer rings (and explore a
smaller area). When a UAV reaches the external border it bounces back to the surveillance
area with an angle ), randomly calculated such as —% <0, < %. On the contrary, when
a UAV is on the border of a ring, the bouncing angle is ¢,, randomly calculated in the
range —7 < 0, < Z. The use of a smaller range for 6, (compared with 6,) is to prevent
UAVs to patrol the surface out of the surveillance area (secant trajectories) while the use
of random values adds unpredictability to the UAVSs’ trajectories, which is desired in
surveillance missions.

R2

Figure 1. Schema of the Surveillance System Enhanced by Games of Drones (SuSy-EnGaD) where
rings, velocities and angles for UAVs are depicted.

The surveillance system as an optimisation problem presents two metrics to be max-
imised in our study: the area coverage and the vehicles’ flying time. By staying in inner
rings, UAVs save battery and extend their flying time, but the area coverage is small. On the
contrary, if there are too many UAVs in outer rings flying at higher speeds, their batteries
will be drained too soon, reducing the system’s efficiency.

To dynamically control how UAVs spread by the surveillance area, we propose three
approaches for UAVs to decide if they wish to cooperate with their partners by changing
rings, or defects and stay in the current ones (Figure 2). Indeed, we call cooperation when
a UAV moves to a different flying ring after interacting with another UAV, and defection
when it decides to ignore the proposal and stay in its current ring. There exist also a
coordination between UAVs when they are in a collision trajectory which is mandatory
to keep a safe distance between them (see Section 5). Interactions occur when two UAVs
are in their respective communication range (limited to 20 m in our study) where a new
ring, in case of cooperation, is calculated according to the relative battery state and the
UAV position in the map. Consequently, depending on the decision rules, if both UAVs
are in the same ring, the UAV with lower battery charge will move to the next inner ring



Drones 2022, 6, 13

50f19

(if any) and the other will move to the next outer ring (if it cooperates). Otherwise, they
will change rings independently of the battery state, which enforces the use of strategies
to improve the global metrics of the system by making local decisions (mini-games) that
sometimes might be adverse for one or both players (altruism). Despite that, if one UAV (or
both) decides not to cooperate, it (they) will stay in the same ring, regardless their battery
charge. For efficiency reasons, there is a minimum time between games, i.e., 20 s, and a
minimum amount of battery is also required, i.e., 20%. When one UAV has begun a game
with another, any other game proposal is also discarded during the next 20 s.

vav, c|p p|p|c|c|p|c ol clD

" :r uav, | c|c c|pc|p|p|p c |22 o3
L [Puay, o +

RN (Nt T

(a) Probability (b) Strategy (c) Game

Figure 2. The three proposed approaches for UAVs to decide whether to cooperate and change ring
or to defect and stay in the current ring.

The first two approaches to optimising SuSy-EnGaD consist in modelling and solving
a multi-objective optimisation problem (MOP). In the Probability and Strategy approaches,
instead of a single solution, a set of pareto optimal solutions are obtained for the two
metrics to be maximised: flying time and area coverage. Flying time corresponds to the
time at which one of the UAVs in the swarm reaches 10% of battery (giving it enough time
for a safe return to base for recharging). Area coverage was measured as the percentage of
the area scanned by the onboard cameras (an area of 10 x 10 m).

The main goal of solving a MOP is to find a set of feasible solutions that maximises (in
our case, although it can be also defined in terms of minimisation) the objective function
vector f = (f1,..., fp), where D is the number of objectives (two in our study), according
to the notion of Pareto-optimality, defined as follows:

Definition 1. Given the vectors X1 and x>, we define the solution dominance in a maximisation
problem as
T < Bifvie{l,...,D}fi(x1) > fi(x2) )

Definition 2. The set of solutions not dominated by any other in the solution space S is called the
Pareto optimal set (P), defined as

P={X¥ecS|Px1eS:xr <%} )

The third approach, Game, consists in maximising the average score (outcome) achieved
by the UAV swarm as a method for obtaining a solution to the surveillance problem. In
this case, it is clearly a single-objective optimisation problem. In the following sections, we
describe each approach in detail.

3.1. Probability Approach

In the Probability approach each UAV i has a real parameter (p;) in the range
0.0 < p; < 1.0 defining its cooperation probability. The problem representation is the
vector X, composed of N probability values (Equation (3)), where N is the number of UAVs.
Different cooperation probability values modify the way UAVs interact, allowing strategies
that save battery as well as others that cover a bigger area.

fp - {pl; p2/ P3,- . /PN} (3)
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3.2. Strategy Approach

The Strategy approach proposes for each UAV a strategy defined as a list of bits where
“1” means cooperation and “0”, defection. The problem representation is the vector x;
containing the list of B strategy bits (b;) for each one of the N UAVs (Equation (4)). In our
study, we have set B = 6 as a balance between problem complexity (similar to the Probability
approach) and strategy accuracy. This is a cyclic approach, different from Probability, where
after six games the strategy of one UAV starts over.

% ={b1,...,bp,...,biy,..., by} 4)

3.3. Game Approach

We propose a third approach based on two-person games. In this case, when two
UAVs have to decide a possible cooperation, they will do so by trying to maximise their
outcome according to the reward matrices shown in Figure 3, where the Nash equilibria [37]
are marked with asterisks.

cC D cC D cC D
2| 3 * 3] 2 2% 3
c c c
| 2 | 3 |o | 2 |1
o* 1 o|* 1 * 1| o0
D D D
3 |1 2 |1 3 |o
(a) PD (b) AG (c) CG

Figure 3. Three two-person games: prisoner’s dilemma (PD), assurance game (AG), and game
of chicken (CG) as proposed in [38]. I and II are the respective players and, C and D stand for
cooperation and defection, respectively. Nash equilibria are marked with asterisks.

In the prisoners’ dilemma (PD) [38], two prisoners are given the choice of testifying
against each other or keeping silent. The best possible outcome is defecting when the other
player cooperates (DC). Then comes mutual cooperation (CC) and finally mutual defection
(DD) as represented in Figure 3a. The assurance game (AG) (Figure 3b) represents the
situation in which a person would be willing to cooperate as long as he/she is assured that
their partner would cooperate as well. The better outcome is obtained when there is mutual
cooperation (CC), although mutual defection (DD) is also one of the game’s equilibria as
one person will defect if it thinks that the other will also defect [38]. And finally, the game
of chicken (CG), also known as the game of dare, in which two cars are driven one towards
the other. The driver who turns away is “chicken” and loses while the other wins. Of
course, if no one turns, both drivers die and lose (DD) [38]. There are also two equilibria in
CG, unilateral cooperation (CD) and unilateral defection (DC) as shown in Figure 3c.

In the Game approach, the UAVs are engaged in a finite two-person game with limited
interaction [39]. As the number of iterations is given by how frequently the UAVs meet
each other during the simulation, we propose to calculate the best strategy for each player
using a bio-inspired meta-heuristic: a genetic algorithm. The Game approach uses the same
problem representation as in the Probability approach (Equation (3)), although, in this case,
the objective is maximising the average score of UAVs by modifying their cooperation
probability. The evaluation function for this single-objective problem is shown in Equa-
tion (5). There, outcome refers to the average score achieved by a given UAV after a number
of iterations (games) with the other UAVs, obtained from the simulation.

N
F(x) = %Zoutcame(UAVi) (5)
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4. Optimisation Algorithms

Multi-objective optimisation problems are usually solved by using one of the fol-
lowing techniques: (i) converting the multi-objective problem into a single-objective one
by using a weighted-sum function and (ii) getting a set of Pareto optimal solutions and
selecting the most appropriated according to an expert’s criterium. The former, despite its
simplicity, implies a difficult weight selection that restricts the working solutions during
the optimisation process. On the other hand, the latter involves the use of a more complex
algorithm, although it increases the versatility and does not require the normalisation of
the objectives into the same order of magnitude.

We propose two evolutionary bio-inspired techniques to optimise the parameters of
our three approaches. These are efficient methods for solving combinatorial optimisation
problems which simulate processes present in evolution such as natural selection, gene re-
combination after reproduction, gene mutation, and the dominance of the fittest individuals
over the weaker ones. Our proposed optimisation algorithms are the Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) for the Probability and Strategy approaches (multi-objective)
and a generational Genetic Algorithm (GA) for the Game approach (single-objective).

These optimisation algorithms are to be run in a computer cluster to obtain the optimal
solutions for each case study in an initial configuration stage (offline). The solutions
achieved, consisting of the optimal configuration of the UAV swarm for each case study,
are to be used as the parameters for each UAV to rule the possible collaborations during
the surveillance missions (online).

4.1. Non-Dominated Sorting Genetic Algorithm (NSGA-II)

NSGA-II [40] is a multi-objective optimisation algorithm that implements a non-
dominated sorting approach to rank solutions based on their Pareto dominance relation.
Following the pseudocode in Algorithm 1, after initialising the population composed by
N; = 28 individuals, the main loop is executed while the termination condition holds
(3000 evaluations in our case). The operators used were chosen according to our problem
characteristic and representation. The selection operator is Binary Tournament, Single
Point Crossover (P; = 0.9), Integer Polynomial Mutation for the Probability approach and
Bit Flip Mutation for the Strategy approach (for both P,, = 1, where L is the length of the
configuration vector), and finally, the replacement operator uses the Ranking and Crowding
distance selection for maintaining solution diversity [40].

Algorithm 1. Pseudocode of NSGA-II.
procedure NSGA-II(N;, P, Py)

t«0
Q(0) + @ > Q=auxiliary population
P(0) « Initialisation(N;) > P=population

while not Termination_Condition() do
Q(t) « Selection(P(t))
Q(t) < Crossover(Q(t), P;)
Q(t) « Mutation(Q(t), Py)
Evaluation(Q(t))
R <+ Ranking_and_Crowding(Q(t), P(t))
P(t+1) < Select_Best_Individuals(R)
t—t+1

end while

end procedure

4.2. Genetic Algorithm (GA)

The proposed GA [41,42] is a single-objective optimisation algorithm featuring a
population of individuals which evolve to maximise (in our case) their fitness value.
The pseudocode of GA is presented in Algorithm 2. Initially, 28 individuals (i) for the
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population P are generated and while the termination condition holds the main loop is
executed. This is a generational GA where the working population Q has the same number
of individuals as P (A = u). We used Binary Tournament as selection operator, Single
Point Crossover as recombination operator, Integer Polynomial Mutation as mutation
operator, and an elitist replacement. The parameters of GA are the same as in NSGA-IL, i.e.,
3000 evaluations, Pc = 0.9 and Pm = 1

7
Algorithm 2. Pseudocode of GA.
procedure GA(N;, P, Py,)
t«0
Q(0) + @ > Q=auxiliary population
P(0) « Initialisation(N;) > P=population

while not Termination_Condition() do
Q(t) « Selection(P(t))
Q(t) « Crossover(Q(t), P;)
Q(t) < Mutation(Q(t), Py)
Evaluation(Q(t))
P(t+1) < Replacement(Q(t), P(t))
t—t+1

end while

end procedure

4.3. Genetic Operators

In this section, we describe the operators used in both algorithms. We have used
the implementation provided by the jMetalPy package [43] for the operators and both
optimisation algorithms.

4.3.1. Selection

We have used Binary Tournament [44] as selection operator. It is described in Algorithm 3
where two random samples are taken from the population Q. If it is the multi-objective case
(NSGA-II), each sample comprises a pareto from the population while in the case of single-
objective optimisation (GA), each sample is an individual representing one configuration
of the surveillance system. Then, the samples are compared in terms of dominance (pareto
fronts) or fitness (system configurations) and the best of them is included in Q’, which will
become the working population for the current generation. This process is repeated until
the A required individuals are obtained.

4.3.2. Crossover

Single Point Crossover [45] was used as crossover operator in both algorithms. As
shown in Algorithm 4, two individuals ¥ and i are taken from the population Q to be
recombined subject to the crossover probability P, = 0.9. After selecting the crossing point
p, the components of ¥ and i/ are swapped from the position p to the end of each solution
vector. The new resulting vectors X’ and i/’ are now added to the new working population
Q'. By doing so, the optimisation algorithm explores different areas of the solution space in
parallel, searching for new promising configurations for the swarm.
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Algorithm 3. Pseudocode of the Binary Tournament Selection Operator.

function SELECTION(Q)
QO+
fori+ 1,A do > Q' will have A individuals
s1 « random_sample(Q) > randomly takes two individuals from Q
sp « random_sample(Q) > they are pareto fronts in NSGA-II
if better(sq,s;) then > compare in terms of fitness/dominance
Q + QU {si}
else
Q'+ Q' U{s}
end if
end for
return Q'
end function

Algorithm 4. Pseudocode of the Single Point Crossover Operator.

function CROSSOVER(Q, P;)

Q<+
forall {¥,j/} € Qdo > all the individuals in Q, taken in pairs
¥=x
y=y
if rnd() < P then > crossover probability
p < randInt(1,L) > crossing point p, L is the length of the solution vector
fori < p,L) do > swaps vector’s components from p to L
#[i) = 711
7i] = i
end for
end if
Q «+ Qu{x,iy} > adds the new vectors to the result
end for
return Q'

end function

4.3.3. Mutation

Two mutation operators were used. Bit Flip Mutation for the binary representation
(Strategy approach) and Integer Polynomial Mutation for the Probability and Game ap-
proaches. They are meant to make small variations to the configuration vectors and explore
the neighbourhood of the good solutions already found. The selected value for P,, = %
stochastically selects one position of each solution vector (individual of the working pop-
ulation) to be changed. The Bit Flip Mutation [46] consists in randomly selecting bits in
the solution vector to be flipped as shown in Algorithm 5. After all the individuals were
considered for a possible mutation the resulting population Q’ is returned.

The Integer Polynomial Mutation [47] was selected to work with the numeric values
in the vector of probabilities. To simplify the search process we have worked with integer
values between 0 and 100 to represent probabilities between 0.0 and 1.0 with an accuracy
of two decimal places. The Algorithm 6 shows the pseudocode of this operator. It can be
seen that for each position in the solution vector subject to be mutated, four values are
calculated depending on the current position’s value, the maximum allowed value (100),
and a new random value (p) as well. A A, value is calculated depending on p, to modify
the original value, subject to the right range of values.
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Algorithm 5. Pseudocode of the Bit Flip Mutation Operator.

function BITFLIPMUTATION(Q, Py,)

QO+
forall {X} € Qdo > all the individuals in Q
¥ %
fori+ 1,L do > i goes from 1 to L (the length of the solution vector)
if rnd() < Py, then > mutation probability
X'[i] < not(X[i]) > bit flip
end if
end for
Q « QU{x}
end for
return Q'

end function

Algorithm 6. Pseudocode of the Integer Polynomial Mutation Operator.

function INTEGERPOLYNOMIALMUTATION(Q, P,)

Q<+
forall {¥} € Qdo > all the individuals in Q
XX
fori<«+1,L do > 1 goes from 1 to L (the length of the solution vector)
if rnd() < Py, then > mutation probability
515%;52e%3,m; = 110« rnd() >0 = 0.2 by default
if p < 0.5 then > equiprobable
Ag=(2xp+(1=2xp)x (1—=5)7 1
else
Ag=1—(2x(1=p)+ (2% (p—05) x (1—5)" )7
end if
y < Bounds(X'[i] 4 Deltag x 100)0,100 > keeps it in range [0, 100]
X'[i] < round(y) > nearest integer value
end if
end for
Q'+ QU{x}
end for
return Q'

end function

5. Case Studies

To evaluate SuSy-EnGaD using the three approaches previously discussed, four case
studies are proposed featuring different numbers of UAVs and map dimensions. The
characteristics of the case studies are detailed in Table 1, as well as the nomenclature used,
i.e.,, UAVS.MAPSIZE. The innermost ring corresponds to the area from where the UAVs
depart, and after this initial stage, it becomes a no-fly zone. The evaluation of the UAVs
configuration, according to each approach, was performed using the ARGoS simulator [48].
ARGOS is a multi-physics robot simulator that can simulate large-scale swarms of robots of
any kind, efficiently. In our study, we simulate UAVs using the eye-bot drones [49] provided
by ARGoS, including their communication and battery consumption models. This allows
us to efficiently test multiple configurations keeping in mind reliability and safety since
a wrong configuration does not end in a catastrophic collision while many scenarios can
be evaluated in parallel. Depending on the number of robots, the departing point and
the initial heading angle was predefined to avoid excessive use of the collision avoidance
algorithm at the beginning of the simulation. Figure 4 shows the initial configuration for 4,
8, and 12 UAVs, all departing from the innermost ring (in red).
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Table 1. Characteristics of the Four Case Studies.

Case Study UAVs Map Size (m) Rings Radii
4.100 4 100 x 100 3 5/28/50
8.100 8 100 x 100 3 5/28/50
8.200 8 200 x 200 3 5/53/100
12.200 12 200 x 200 3 5/53/100

A v 4 ~
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A® 08)4 :80 0804 A%) 0804
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(a) 4 UAVs (b) 8 UAVs (c) 12 UAVs

Figure 4. Departure points and initial directions for case studies comprising 4, 8 and 12 UAVs.

The designed collision avoidance algorithm relies on repelling forces between UAVs
as described in Algorithm 7. Given u € UAVs, the distances between u and the rest of
vehicles in UAV's are calculated. Those UAVs closer than a minimum distance J,,,;,, (a fixed
parameter, e.g., 9 m) modify the vector 7, which will contain the resultant repelling force.
As a result of this coordination, 7 is to be used to modify the original trajectory of uav.

Algorithm 7. Collision Avoidance Algorithm.

function COLLISIONAVOIDANCE(uav, UAV's)
7+ (0,0)
forall u, € UAVs do > all the UAVs
if u # uav then

5+ \/(uavx — uy)? + (uavy — uy)?

if § < 6,,;, then > Omin =9
77— (uy, uy)
end if
end if
end for
return 7

end function

6. Simulation Results

First, we analyse the proposed metrics, flying time and area coverage, to confirm that
the use of a multi-objective optimisation is appropriated. Second, we have optimised the
four case studies using NSGA-II for the Probability and Strategy approaches. Third, we have
used the proposed GA to maximise the average score obtained by the UAVs in the four
case studies using the Game approach (three two-person games). Finally, an analysis of the
UAVs’ trajectories is given.

We have used the jMetalPy package [43] to implement both optimisation algorithms.
Our experiments were performed doing parallel runs in the HPC facilities of the University
of Luxembourg [50]. Since the use of the ARGoS simulator implies long evaluation times
to preserve the realism (10 simulation ticks per second), we have evaluated each algorithm’
generation (28 individuals) in parallel on computing nodes equipped with Intel Xeon Gold
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6132 2.6 GHz and 128 GB of RAM. The total optimisation time (600 runs in total) was
equivalent to 1750.8 h (about 73 days).

6.1. Metric Analysis

In this experiment, we analyse the existence of correlations between the metrics used
in our study. We have performed 30 random walks of 20 steps each, for 4, 8 and 12
UAVs, (we have considered that 1800 steps in total are enough for getting a significant
sample of the problem’s solutions) and calculated the Pearson correlation coefficients [51]
shown in Table 2. Note that the random walks are performed on the system configuration,
i.e., a vector of probabilities as defined in Equation (3), to sample the solution landscape
of the problem. The UAVs are always following the SuSy-EnGaD trajectories based on
surveillance rings.

It can be seen that 4 UAVs present some negative correlation between flying time
and area coverage, so that one increases when the other decreases and vice versa. On the
contrary, the metrics of 8 and 12 UAVs are not correlated (Pearson coefficient approximately
equal to 0). Consequently, we can confirm that the use of a multi-objective optimisation
algorithm (NSGA-II) is appropriate to obtain not one but many non-dominated solutions
to our surveillance problem. After that, an expert can decide which solution suits better its
needs and whether higher coverage levels could be prioritised against flying times or the
other way round.

Table 2. Correlation Matrix for 4, 8 and 12 UAVs.

Metric 4 UAVs 8 UAVs 12 UAVs
F. Time Coverage F. Time Coverage E. Time Coverage
F. Time 1.000 —0.599 1.000 —0.051 1.000 —0.006
Coverage —0.599 1.000 —0.051 1.000 —0.006 1.000

6.2. Multi-Objective Optimisation

The next experiment consisted of the optimisation of the four case studies using
a multi-objective algorithm (NSGA-II). We have performed 30 runs for the Probability
and Strategy approaches on each case study (240 runs of NSGA-II in total) to get the
results shown in Figure 5. We have plotted the empirical attainment functions (EAF) [52]
describing the probabilistic distribution of the outcomes obtained by NSGA-IL. Additionally,
the hypervolume of the union of all sets using the reference point 0,0 is reported to compare
the results of both approaches on each case study.

We can see that both strategies obtained similar results and that differences between
hypervolumes are always under 4%. One optimisation run for 8.100 using the Probability
approach seems to have suffered from stagnation, which can be clearly seen through the
worst-case depicted in Figure 5b. That is one of the reasons why we performed 30 runs of
stochastic algorithms. Now, one result from the set of results in each Pareto front could be
selected and the associated configuration (whether it is composed by a set of probabilities
or a list of bits) is to be used to set up the surveillance system prioritising coverage, flying
times or a compromise solution. A different approach based on games is used in the next
set of experiments described in the following section.
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Figure 5. Plots of the empirical attainment functions obtained after optimising our case studies using
NSGA-II (Probability and Strategy approaches). Additionally, the best values from Game (PD, AG and
CG) obtained by GA are drawn. The respective hypervolume values are also reported.

6.3. Game Results

A different optimisation approach consists in using games to model each UAV in-
teraction. As the objective is the maximisation of the average score of the swarm, we
have used a single-objective GA. Table 3 shows the result of this optimisation process
where 360 runs of GA were performed (30 per game and case study) to perform a reliable
statistical analysis since we are working with a stochastic optimisation algorithm. It can
be seen that UAVs playing the assurance game (AG) have maximised the average score
of the swarm (fitness value). The game of chicken (CG) achieved the best maximum and
minimum results for 4.100 although the median is still the same as in AG. All the results are
statistically significant as shown by the reported Friedman ranks and Wilcoxon p-values.

Table 3. Results of the optimisation of the case studies using GA in the Game approach. Statistical
tests are also included. Best values are in bold.

C Stud Gam Fitness Friedman Wilcoxon
ase Study ame Min. Median Max. Rank p-Value
PD 23.0 23.0 24.0 1.00 21x1077
4.100 AG 25.3 26.7 26.7 240 35x%x 1077
CG 26.7 26.7 30.7 2.60 —
PD 22.1 24.0 25.3 1.00 1.8 x 10
8.100 AG 28.6 34.0 34.0 3.00 —
CG 24.6 24.7 28.0 2.00 1.7 x 10
PD 12.1 13.9 16.1 1.18 2.0x10°°
8.200 AG 16.0 18.3 18.3 2.90 —
CG 13.1 154 16.6 1.92 23 %106
PD 12.8 14.2 164 1.10 1.8 x 107
12.200 AG 16.0 19.3 20.2 2.93 —
CG 13.8 15.8 18.5 1.97 3.0x 1076

We have plotted the corresponding metric points (flying time vs. area coverage) over
the Pareto fronts graphics in Figure 5. It is interesting to see that AG favours high area
coverage values in all case studies, while PD’s results are obtaining better flying times in
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three of the case studies. UAVs playing CG are usually in a middle point between the other
two games. Some games present different metric values for the same maximum scores
(different trajectories, same game results) as depicted in Figure 5.

As a piece of complementary information about the optimisation process performed
by the GA, we show in Figure 6 the boxplots with the distribution of the results achieved
for each game and case study. We can see that the scores for AG are higher in most of the
cases, except by 4.100 where CG presents some outliers revealing a higher average score
(fitness) for the swarm. Looking at the scores in Figure 3, we see that the highest values
obtained from cooperation (CC) are provided by AG. Consequently, we can assume that
this was the strategy followed in the majority of cases by the UAVs.

Average Score (Finess)

werage Score (Finess)
Average S

&3 =3 o 3 3 > A o o &3
Case Study Case Sty Case Study Case Study

(a) 4.100 (b) 8.100 (c) 8.200 (d) 12.200

Figure 6. Boxplots showing the distribution of the results from the 30 independent runs of GA for
each case study and game.

The extreme solutions for all the approaches are shown in Table 4. Note that we have
used the default consumption model provided by ARGoS for all our experiments. Hence,
maximum flying times ought to be longer than 480 s if other models of drones are used.
In the next section, an analysis of the UAVs’ trajectories is presented to better understand
their behaviour under different configurations.

Table 4. Maximum values obtained after the optimisation of the three approaches. Probability and
Strategy values are taken from the Pareto front (NSGA-II) whereas Game values (PD, AG and CG)
are the best result obtained by GA. Best values are in bold.

Approach
Case Study Metric . Game
Probability Strategy PD AG cG
4100 F. Time (s) 415.6 415.6 384.4 276.1 384.4
’ Coverage (%) 100.0 100.0 68.1 96.9 68.1
8.100 F. Time (s) 480.1 479.1 328.7 333.4 347.2
’ Coverage (%) 100.0 100.0 99.9 100.0 98.5
8.200 F. Time (s) 373.9 376.4 301.9 251.9 263.4
’ Coverage (%) 97.8 98.5 68.9 89.6 86.3
12.200 F. Time (s) 399.3 397.6 276.7 242.2 272.3
’ Coverage (%) 99.6 99.9 77.8 92.9 87.5

6.4. Analysis of Games’ Trajectories

The objective of this last study is to better understand the implications of each con-
figuration and approach and how a cooperation/defection decision modifies the swarm
behaviour. We have already presented the numerical results but now in Figures 7 and 8 the
UAVs trajectories for the extreme solutions are depicted.
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(b) 4.100-Flying Time  (c) 8.100-Area Coverage (d) 8.100-Flying Time

(e) 8.200-Area Coverage  (f) 8.200-Flying Time (g) 12.200-Area Coverage (h) 12.200-Flying Time

Figure 7. UAVs trajectories for maximum area coverage and maximum flying time using the Probabil-
ity approach.
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Figure 8. UAVs trajectories for maximum area coverage and maximum flying time using the
Strategy approach.

We can see that there exist many similarities in the trajectories when using Probability
and Strategy. In the configurations maximising area coverage, the UAVs depart from the
innermost ring and visit the other two rings regularly, where the surveillance mission takes
place. On the contrary, when the objective of the swarm is maximising the flying time,
most of the UAVs stay in the middle ring after departing from the centre. It is interesting
to remark that the maximum flying time was sometimes achieved when some UAVs have
a short excursion to the outer ring. That was unexpected as we believed that flying at a
lower speed all the time would have been better for saving energy. As we can see, the less
congested cases (Figures 7f and 8f) are indeed according to our preliminary assumptions,
since the rings’ areas are bigger. We believe that multiple iterations in a limited space, plus
the effects of the collision avoidance algorithm, have made NSGA-II to find better solutions
(in terms of battery consumption) by temporarily sending some UAVs to the outer ring.
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7. Conclusions

In this research work, we have presented a new Surveillance System Enhanced by
Games of Drones (SuSy-EnGaD), based on cooperative UAVs that explore the surveillance
area modelled as concentric rings. We have proposed three different approaches to obtain
optimal strategies focusing on maximum flying time and area coverage. The first two
approaches, Probability and Strategy are addressed as multi-objective optimisation problems
using the well-known NSGA-II. The third approach is related to the evolutionary game
theory where prisoner’s dilemma, assurance game and game of chicken are proposed to
rule possible cooperation between UAVs. This approach was optimised using a genetic
algorithm maximising the average score of the swarm and the results were compared with
the multi-objective approaches. We have tested SuSy-EnGaD on four different case studies
featuring two map sizes and swarms of four, eight and twelve UAVs. Finally, the UAVs
trajectories were analysed to better understand the best configurations in terms of flying
time and area coverage.

Our results show that flying times up to 480 s can be achieved with a low area coverage,
while on the other hand, a full area coverage is possible when the flying time is roughly
under 250 s (depending on the case study). Vehicles’ trajectories have indicated a high
concentration of UAVs in the inner surveillance ring to save battery (they fly at a reduced
speed there), and a more balanced distribution of UAVs throughout the surveillance area
to achieve high coverage rates. The single-objective Game approach obtained optimal
solutions by maximising the swarm’s average score. Although the extreme values were
obtained by using the multi-objective approaches, the Game approach turned out to be a
different strategy to obtain particular solutions depending on the game selected.

In our simulations performed using a multi-physics robot simulator (ARGoS), we have
observed UAVs’ trajectories visiting the entire surveillance scenario when area coverage
was prioritised. On the contrary, almost all UAVs stayed in the inner ring when the objective
was to keep a maximum flying time. Under this condition, we have observed some UAVs
momentarily leaving the inner ring, which we believe is due to the collision avoidance
algorithm as several UAVs were flying in a reduced area. These trajectories confirm the
expected UAV behaviour and are in accordance with the numeric results obtained.

As a matter of future work we plan to test our proposal using a different number
of security rings and UAVs. Previously, we have experimented with square rings and
pheromones, in this current article we have improved the surveillance scenario using actual
circular rings, and we wish to take advantage of this new architecture in future research
works. We would like to try other different games to study the various solutions that can
be achieved and also defining our own payoff matrices to obtain different single solution
points from the pareto front. Despite the accuracy provided by ARGoS, we are working on
increasing the realism of our approach testing the trajectories using actual drones where
weather conditions, vision algorithms, and communication restrictions are to be considered.
Another interesting future work would consist in using a communication layer featuring
different packet loss rates to analyse how it would affect the swarm behaviour, especially
the collision avoidance algorithm.
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