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Abstract: In this paper, a fault diagnosis algorithm named improved one-dimensional deep resid-
ual shrinkage network with a wide convolutional layer (1D-WIDRSN) is proposed for quadrotor
propellers with minor damage, which can effectively identify the fault classes of quadrotor under
interference information, and without additional denoising procedures. In a word, that fault diag-
nosis algorithm can locate and diagnose the early minor faults of the quadrotor based on the flight
data, so that the quadrotor can be repaired before serious faults occur, so as to prolong the service life
of quadrotor. First, the sliding window method is used to expand the number of samples. Then, a
novel progressive semi-soft threshold is proposed to replace the soft threshold in the deep residual
shrinkage network (DRSN), so the noise of signal features can be eliminated more effectively. Finally,
based on the deep residual shrinkage network, the wide convolution layer and DroupBlock method
are introduced to further enhance the anti-noise and over-fitting ability of the model, thus the model
can effectively extract fault features and classify faults. Experimental results show that 1D-WIDRSN
applied to the minimal fault diagnosis model of quadrotor propellers can accurately identify the fault
category in the interference information, and the diagnosis accuracy is over 98%.

Keywords: quadrotor; minor fault diagnosis; network design process pattern; 1D-WIDRSN

1. Introduction

UAV is a reusable unmanned aerial vehicle controlled by remote control or its own
procedures through radio technology. After entering the 21st century, UAV has shown
its skill in various fields. In the Marine industry, UAV can be used to complete coastal
zone monitoring and Marine mineral exploration [1]. In agriculture, UAV can be used to
fertilize fields and monitor the growth status of crops [2]. In geology, UAV can be used to
conduct geological disaster investigation and geological mapping [3]. In terms of traffic
management, UAV can be used to monitor road conditions and assist in dealing with traffic
accidents [4].

As a representative of small multi-rotor aircraft, quadrotor UAV has the advantages of
small size, light weight, and easy control, so it is widely favored by people. The quadrotor
has four rotors that generate upward thrust and torque, which control the speed of the rota-
tor to perform various actions [5]. With the popularization of quadrotor UAV, the research
on its fault identification and diagnosis has become more and more important. Under the
long-term operation of the quadrotor, its actuator system, namely the electronic governor,
motor and propellers, bears a heavier load. If the actuator system has a serious failure,
such as serious damage to the propeller or serious failure of the motor, the UAV will not be
able to obtain the required lift, resulting in flight instability or even crashing, which will
eventually cause serious property losses and even casualties.

If there is a minor fault in the actuator of the UAV, the output power of the UAV will be
reduced correspondingly. In this case, the UAV can still fly, but its stability and attitude will
be slightly different from the healthy UAV. Although the quadrotor has good fault-tolerant
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control capabilities, it is also necessary to diagnose the fault when it is in the early state,
because the accumulation of such minor faults may eventually cause serious problems
such as the crash of UAVs. So it is of great significance to find a method to accurately detect
and locate the early minor faults of UAV. However, due to the interference of the external
environment and the fault-tolerant control of the UAV itself, these potential faults such as
minor faults of actuator are difficult to be detected. Therefore, how to accurately diagnose
the early minor faults of the UAV actuator from the numerous interference information is
an urgent problem to be solved.

Especially for UAVs used for disaster surveys, such UAVs need to fly into various
unknown dangerous locations, such as areas suffering from earthquakes, floods, and torna-
does. This kind of UAV is more likely to suffer body damage caused by external collisions,
so the propellers and motors of such UAVs are more prone to failure. Therefore, designing
a fault diagnosis method, which can diagnose minor faults in time when the propeller of
the UAV is damaged in the early stage, is of great significance to the practical application
of UAV.

In recent years, many scholars have used model-based methods to identify the actuator
failures of quad-rotator UAV, such as Zhang et al. [6] used interactive multi-models to detect
and locate single-actuator failures of quad-rotors. Avram et al. [7] used a non-linear adap-
tive estimation method to detect and isolate quad-rotor actuator failures. Bauer et al. [8]
used a multi-model adaptive estimation method for fault detection and reconstruction of
small UAVs. Miao et al. [9] designed and constructed a UAV fault diagnosis algorithm
based on adjustable nonlinear PI observer to realize the effective fault identification of
continuous-time system. Kim et al. [10] used the extended Kalman filter to estimate the
efficiency parameters of each UAV actuator, and the estimated coefficients were used to
perform fault diagnosis. Antonio et al. [11] developed a robust actuator fault diagnosis
algorithm based on Adaptive eXogenous Kalman Filter by combining nonlinear observer
and linearized adaptive Kalman filter, and the algorithm tested for actuator fault diagnosis
of a hexacopter UAV. The model-based diagnosis method has good robustness and can
diagnose unknown faults, but the premise of this method is to establish an accurate model
for the target system, but the structural parameters of the quadrotor UAV are relatively
complicated. Therefore, this method relies too much on the mathematical model of the
object, which is not easy to implement in practical applications and has limited scalability.

Others uesd signal processing-based methods to detect faults. This kind of method
does not need to establish a quantitative or qualitative mathematical model of the system,
but only collects flight data and extracts fault features from the original data through
signal processing to diagnose system faults. For example, Rangel-Magdaleno et al. [12] use
discrete wavelet transform and Fourier transform to process audio data to identify propeller
unbalance faults of unmanned aerial vehicles.Yousefi et al. [13] used logistic regression
and linear discriminant analysis algorithm to detect unmanned aerial vehicle faults after
de-noising the voltage and current data of the four actuators of the UAV. Park et al. [14]
used multivariate statistical analysis techniques such as partial least squares regression
to process data and diagnose propeller failure. Bondyra et al. [15] used wavelet packet
decomposition, fast Fourier transform, and signal power spectrum to extract features of
vibration signals under single-sided damage of the UAV propellers, and then advanced
fault diagnosis through support vector machine classifier. Altinors et al. [16] applied
Decision Tree, Support Vector Machines, and K Nearest Neighbor algorithms to machine
learning, and applies these algorithms to the sound data received by the motor for UAV
fault diagnosis.

With the development of computational intelligence, deep learning has become a
hot spot in the field of fault detection. Fault diagnosis method based on neural network
preprocesses the original data and inputs it into the neural network model to obtain the
fault diagnosis result directly. Chen et al. [17] first used wavelet packets to extract energy
entropy, and then used a genetic algorithm optimized BP neural network to construct a fault
diagnosis model to realize the detection of UAV sensor faults. Guo et al. [18] used short-
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time Fourier changes to transform the signal into a time-frequency graph, and then used a
convolutional neural network to extract fault features to realize the sensor fault diagnosis
of the UAV. Iannace et al. [19] collected the audio on the UAV propellers in flight, and used
the artificial neural network model to analyze it to detect faults. Gao et al. [20] used the
raw data of MEMS inertial sensors as input to establish a multi-scale convolutional neural
network model to diagnose the fault of the UAV temperature sensor. Xiao [21] used wavelet
packet to extract the fault characteristics of UAV sensors, and proposed a observer method
based on BP neural network to detect and process single or multiple sensor faults online.
Liu et al. [22] transformed the audio data of UAV flight into time-frequency spectrogram
for diagnosis, and developed a diagnostic model based on convolutional neural network
and transfer learning techniques, realizing the damage detection of propeller. Jia et al. [23]
proposed a novel deep network constructed by multi-layer extreme learning machine based
auto-encoder to solve the problem of UAV actuator fault diagnosis under imbalanced data,
the deep network has the advantages of strong feature mining ability, high accuracy and
fast speed.

It can be seen that the research on the fault diagnosis of quad-rotor UAVs based
on data-driven has attracted more and more attention. This method is widely used and
computationally efficient, taking into account the uncertainty of the model and the sensor
noise. However, in previous studies, most of the fault diagnosis methods of quadrotor
UAV need to extract fault features through some signal processing methods before fault
diagnosis, and cannot directly realize the fault diagnosis of UAV through the original
signal. Therefore, end-to-end fault diagnosis based on convolutional neural networks still
has a lot of research space. Among them, one-dimensional convolution neural network is
often used in sequence model, which can analyze the time series of sensor data (such as
gyroscope and acceleration meter data), and realize self-extraction of fault features in time
domain [24,25]. It integrates feature extraction, feature dimension reduction and pattern
recognition to achieve end-to-end fault diagnosis.

In previous studies, research on quadrotor fault diagnosis is mostly aimed at obvious
faults. In this case, quadrotor has shown an obvious fault phenomenon, and the relevant
research has been relatively mature. However, there are few studies on the early minor
faults of the quadrotor actuator system, and most of the methods currently have low
diagnostic accuracy. In view of the above problem, this paper mainly focuses on the early
minor faults of the actuator when the quadrotor can still fly, and tries to diagnose and locate
these faults, so as to avoid serious accidents caused by the accumulation of minor faults.

The propeller minor damage fault is one of the common fault types of quadrotor.
In addition, different fault locations have different effects on the quadrotor. To solve
the problem of low accuracy of propeller minor damage fault diagnosis for quadrotor
caused by the multiple interference information and the difficulty in feature extraction of
quadrotor, this paper takes a certain type of quadrotor used for disaster investigation as
the object, proposed a diagnosis algorithm based on 1D deep residual shrinkage network
with a wide convolution layer (1D-WIDRSN). The algorithm integrates feature extraction,
feature dimension reduction and pattern recognition to achieve end-to-end fault diagnosis.
The innovative contributions of this paper are summarized as follows:

(1) An end-to-end fault diagnosis method is presented. The original flight data contain-
ing disturbance information can be directly input into the fault diagnosis model to
obtain the diagnosis result. The fault diagnosis model based on residual shrinkage
network integrates soft threshold and attention mechanism, which can realize the
fault diagnosis of quadrotor under the influence of external environment interference
and UAV fault tolerant control.

(2) In order to retain more fault characteristic information, we improved the traditional
residual shrinkage network: a new shrinkage function named progressive semi-soft
threshold function is proposed to replace the original soft threshold function.The
traditional soft threshold will eliminate the effective data features beyond the in-
terference information, and the new progressive semi-soft threshold can retain the
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continuity of the soft threshold and eliminate the signal distortion caused by the soft
threshold, which further improves the diagnostic accuracy of the model.

(3) In order to enhance the feature learning ability of the model, a suitable wide convo-
lutional layer is introduced as the first layer of the fault diagnosis model. The wide
convolutional layer can effectively extract the short-term features of the original
flight data, and further improve the feature extraction capability of the fault diagno-
sis model.

(4) In order to prevent the model from over-fitting, the DropBlock layer is introduced
when training the model. By randomly discarding part of the feature blocks, the model
can be extracted several times to get the optimal features, which improves the training
speed and anti-over-fitting ability of the fault diagnosis model.

The rest of this paper is organized as follows: Section 2 describes the construction
process, modeling algorithm and optimization strategy of 1D-WIDRSN model. Section 3 ex-
plains the data acquisition, related the model structure determination experiment. Section 4
introduces the evaluation and discussion of model performance. Section 5 presents the
conclusion and future work directions.

2. Proposed Methods
2.1. Overview

To confront the challenge of fault diagnosis caused by minor fault, a fault diagnosis
model based on 1D-WIDRSN is proposed. This section introduces the design principles
and architecture of the 1D-DRSN in detail. The framework of 1D-WIDRSN model is
shown in Figure 1, which consists of a wide convolution layer and multiple residual
shrinkage modules.

Figure 1. Framework of the fault diagnosis model based on 1D-WIDRSN.

2.2. Deep Residual Shrinkage Network (DRSN) Model

In order to solve the degradation problem of multilayer convolutional neural network
model, He et al. [26] proposed a residual network, which is composed of a series of residual
blocks. It is an improved convolutional neural network. By introducing cross layer links,
the residual network can still learn new features based on the input features, thereby
solving the degradation problem caused by the increase of network depth. The residual
block is shown as follows:

al+1 = al + F(al , W l) (1)

where al represents the input of the l-th residual module, F represents the residual function.
Zhao et al. [27] proposed the concept of deep residual contraction network (DRSN) in

2020. DRSN is an improved ResNet by integrating soft threshold function and attention
mechanism into residual network. Its working principle is to automatically find the
interference features of the input samples with the help of the attention mechanism, and set
them to zero through the soft threshold function, so as to realize the ability of extracting
data features from the interference information.
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The feature selection process of deep residual shrinkage network can be understood
as follows: Firstly, through convolution layer and pooling layer, important information
such as fault features are converted to larger absolute values, and irrelevant features
corresponding to interference information such as noise are converted to smaller absolute
values. Then, the boundary between the two is obtained through the attention mechanism,
and the interference information is zeroed by soft thresholding. Finally, only the important
information is output. Deep residual shrinkage module (DRSM) as shown in Figure 2.

Figure 2. Deep residual shrinkage module.

al is the input of the module. After passes through the first convolution layer, al+1

is obtained through ReLU function, and then al+1 is input into the second convolution
layer. The second convolution layer constructs a sub grid to obtain the threshold. Then,
the output a′ of the second convolution layer is quantized by taking the absolute value
and global average pooling (GAP) to obtain a one-dimensional vector β, β represents
the mean parameter, then the characteristics of the channel are mined through two full
connection layers, and finally the attention weight z is obtained through the activation
function Sigmoid, Each attention weight parameter α ∈ (0, 1) acts on the feature vector of
the corresponding feature channel. α and β are multiplied to obtain the threshold τ, so
each characteristic channel has an independent threshold. Finally, the obtained threshold τ
is used for soft threshold processing to obtain as, as is added to the residual term f (al) to
obtain module output al+2. The calculation formula of the specific process is as follows:

al+1 = ReLu(wl+1al + bl+1) (2)

a′ = ReLu(wl+2al+1 + bl+2) (3)

β = average
∣∣a′∣∣ (4)

α =
1

1 + e−z (5)

τ = α · β (6)

as =

{
sgn(a′) · (|a′| − τ) |a′| ≥ τ

0 |a′| < τ
(7)

al+2 = as + f (al) (8)

where, wl+1 and wl+2 is the weight of l + 1 layer and l + 2 layer, bl+1 and bl+2 is the bias of
l + 1 layer and l + 2 layer.

2.3. Progressive Semi-Soft Threshold

The soft threshold in the depth residual shrinkage network realizes the denoising of
the input data by setting the interference information to zero. Soft threshold denoising is
a simple and traditional denoising technology. The data processed by the soft threshold
function has good continuity, but when |a′| > τ, there is always a constant deviation
between as and a′, so the soft threshold may eliminate some effective features, cause a
certain degree of distortion to the data and reduce the accuracy of diagnosis [28].
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In response to the above defects, this paper introduces a progressive semi-soft thresh-
old function. Compared with the soft threshold function, the progressive semi-soft thresh-
old function not only retains the continuity of the soft threshold function, but also elimi-
nates the distortion caused by the soft threshold [29]. The calculation formula for realizing
progressive semi-soft threshold is as follows:

as =

{
sgn(a′) ·

(
|a′| − 0.5τ

e|a′ |−τ−0.5

)
|a′| ≥ τ

0 |a′| < τ
(9)

The progressive semi-soft threshold process is shown in Figure 3. As shown in
Figure 3, the progressive semi-soft threshold function is continuous, and there is little
constant deviation between the processed signal and the real signal, which retains the
effective features in the original data as much as possible.

Figure 3. The function image of the new threshold function.

2.4. Wide Convolution Layer—Enhancement of Feature Learning Ability

In this paper, the wide convolution layer is taken as the first layer of the 1D-WIDRSN,
that is, the first convolution layer of the model is set as the wide convolution kernels,
and the other layers are set as the small convolution kernels. The wide convolution kernels
in the first layer can better suppress the interference information, expand the receptive
field area, extract short-term features, adaptively learn the important features of fault
diagnosis objects and speed up model training. The small convolution kernels of other
layers can reduce the network parameters, deepen the number of network layers and
suppress overfitting [30,31]. Therefore, the configuration of the first layer wide convolution
kernels and the other layers small convolution kernels can better improve the network
performance and training speed.

2.5. DropBlock Module—Enhancement of Anti-Overfitting Ability

Ghiasi et al. [32] proposed the DropBlock regularization module for convolutional
neural network. The traditional Dropout regularization method randomly discards some
independent neurons to reduce the number of intermediate features, but the convolution
layer will still learn interference features through the interaction between features. There-
fore, Ghiasi believes that the effect of applying Dropout method in convolution layer is
plain. However, by setting the block size, the DropBlock module will randomly set a
block area of the feature to zero, so that the model can learn the features of other areas, so
as to realize the regularization of the convolution layer and improve the robustness and
anti-overfitting ability of the model. When the area size is 1, the DropBlock method is the
traditional Dropout method. In this paper, a DropBlock module is added after the wide
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convolution layer, which cannot only improve the anti-over-fitting ability, but also improve
the generalization ability of the model.

2.6. Fault Diagnosis Process

The 1D-WIDRSN model in this paper is introduced for adaptive feature learning,
which can extract key features from interference information and accurately identify fault
location of quadrotor. The fault diagnosis process of 1D-WIDRSN model is shown in
Figure 4, and the specific steps of the fault diagnosis process are as follows:

(1) Collect the data of UAV in normal state and fault state. After preprocessing and data
enhancement, the original data is randomly divided into training sample set and test
sample set, accounting for 70% and 30%, respectively.

(2) Bring the training set into the constructed neural network model, set the training pa-
rameters such as iteration times and learning rate, use the back propagation algorithm
to adjust the network parameters until the requirements of iteration times are met.

(3) Input the test sample set into the model to obtain the fault diagnosis results, and mea-
sure the effectiveness of the model through the fault classification accuracy. If the
expected standard is reached, stop the training, otherwise readjust the parameters.

(4) Save the trained model parameters, collect flight data for fault diagnosis.

Figure 4. Flowchart of the proposed fault diagnosis model.

The training part of the 1D-WIDRSN model will be performed offline due to the
need to label data, but the diagnosis part can be performed online. During the actual
mission of the quadrotor, the accuracy of 1D-WIDRSN diagnosis model will be affected if
environmental factors (such as excessive wind) are enough to change the attitude of the
quadrotor. Therefore, in order to ensure the accuracy of the model and avoid increasing
online computational cost, this fault diagnosis model is suitable for the flight-test inspection
of quadrotor before or after use.
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3. Experiments and Results
3.1. Data Acquisition

In order to verify the fault detection method proposed above, it is necessary to collect
actual UAV flight data for verification experiments. This part is aimed at a certain type of
quadrotor, by destroying the propellers to reduce the output power of the UAV, so as to
obtain the experimental data under different fault conditions. The experimental platform
is mainly composed self-assembled quadrotor, computer and several propellers damaged
in different degrees.

The UAV used in the experiments is an intelligent inspection quadrotor based on
Pixhawk system assembled by our national science key laboratory. As shown in Figure 5,
the power system of the quadrotor consists of T-Motor 2216 motor, 20 A four-in-one
electronic speed controller, propellers and battery. There are four propulsion units on the
quadrotor frame, and two coaxial rotor–motor pairs on each arm. Pixhawk open-source
flight control system is adopted in the flight control system. The hardware structure
of Pixhawk mainly includes gyroscope, accelerometer, geomagnetic module, barometer
and GPS module. The software structure of Pixhawk is mainly divided into 4 layers,
the top layer is the application API, and this layer is used by developers. The second
layer is the application framework, under which basic flight control nodes can be operated.
The third layer is the relevant library layer, which provides functions that interact with
system libraries. The last layer is the operating system (Linux and RTOS), which provides
hardware drivers.

In this paper, by artificially destroying the propeller in a small area, the output power
of the corresponding motor will change, and then the flight attitude of the whole UAV
will also change accordingly, thereby simulating the minor failure of the UAV’s actuator.
The normal propeller and damaged propeller are shown in Figure 6, The length of normal
propeller is about 26 cm, and the length of damaged propeller is about 23 cm and its end
has been cut off by 3 cm irregularly. Experiments have verified that the failure simulation
program has a certain and small impact on the flight stability of the UAV, which belongs to
the category of minor failure of UAV.

Figure 5. Quadrotor used for experimental test.

Figure 6. Propellers used for experimental test.

Five different propeller configurations are set up as shown in Table 1, including one group
of normal condition and four groups of single propeller faults with the i-th (i = 1, 2, 3, 4)
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propeller damaged. In the experiment, after a short preparation time on the ground,
the aircraft is launched and immediately started its flight with a horizontal rectangular
flight pattern. Figure 7 recorded the flight trajectory of the UAV in the healthy state and
fault state in the experiments. It can be seen from Figure 7 that when there is a minor fault,
it will be difficult to identify only through the flight trajectory curve. However, potential
faults like this should not be neglected. Therefore, it is necessary to propose an effective
fault detection method. In each group of experiments, the pitch rate, roll rate, yaw rate,
pitch angle and roll angle of UAV in level flight are collected and saved. The yaw angle is
greatly affected by manual operation, so it is not used as fault information in this paper.
In actual flight, affected by external interference factors such as airspace environment and
noise, the above parameters alone cannot reflect the failure of the UAV, so the output speeds
Out1~Out4 of four motors are introduced. Finally, the values of the above nine parameters
are taken as the characteristic elements to characterize the fault information of real UAV.

-2 -1 0 1 2 3 4 5 6 7

[m]

-2

-1

0

1

2

3

4

5

[m
]

Configuration1

Configuration2

Configuration3

Configuration4

Configuration5

Figure 7. Quadrotor flight trajectory curves under different experimental configurations.

Table 1. Five test configurations.

Tests Propeller Sets Labels

Configuration1 four propellers in good condition 0
Configuration2 The propeller of No.1 motor is damaged 1
Configuration3 The propeller of No.2 motor is damaged 2
Configuration4 The propeller of No.3 motor is damaged 3
Configuration5 The propeller of No.4 motor is damaged 4

In order to ensure the diversity of collected data, this paper conducted 10 flight
experiments for each group based on the above five propellers configuration modes, finally
collected about 500,000 pieces of real flight data and labeled the experimental data.

3.2. Data Preparation and Data Augmentation

After obtaining the original data, remove the first 5 s and the last 5 s of the collected
data according to the nature of the sensor, so as to eliminate the influence of abnormal data
during takeoff and landing. The final intercepted data is used as the input of sample data.

The data of the UAV at a certain time can only represent the instantaneous state of the
UAV, not its health state. Therefore, in order to further obtain the sample data, the data in
this paper is divided into short data segments. According to the previous experience [33],
the length of the divided data segments is set to 80, that is, the step size of each sample
segment is 80, The collected data is expressed as Data = [(x1, y1), · · · , (xi, yi)]

T , Data is
the segmented data set, xi is the single sample data, each sample contains 80 pieces of
sampling data, and yi is the fault category label of the sample data.
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The best way to enhance the generalization ability of deep neural networks is to use
more training samples [34]. When dividing sample data, in order to extract more effective
features from original sequence data and obtain as many sample data as possible, this
paper uses the equally spaced sliding window to overlap sampling data. The calculation
formula for realizing overlapping sampling is as follows:

N =
L1 − L2

S
+ 1 (10)

where, N is the number of samples after overlapping sampling; L1 is the length of original
data; L2 is the length of a single sample, namely the width of the window; S is the moving
step of the sliding window, namely the sampling interval; in this paper, L2 = 80, S = 30.

Finally, in order to unify the data dimension, the data is normalized. Among them,
the positive and negative of the attitude-related data represents the direction of the UAV,
so the attitude-related data is normalized to the interval [−1, 1], and the motor speed data
is normalized to the interval [0, 1].

3.3. Model Determination Experiment of Quadrotor Fault Diagnosis Based on 1D-WIDRSN

In this paper, 1D-WIDRSN quadrotor fault diagnosis algorithm based on progressive
semi-soft threshold is constructed. The input of the algorithm is the nine characteristic
parameters of the UAV, and the fault type of the UAV is output after calculation.

We uses the Pytorch framework to build the designed 1D-WIDRSN fault diagnosis
model in the Python3.8 environment. To verify the effectiveness of the model, a series of
experiments are carried out on the computer.

In the training process, the batch-size is 128, the epochs is 80, the learning rate of
Adam algorithm is 0.001, and the cross entropy loss function was used as the objective
function to conduct model training. The input layer of the model is the data samples
mentioned above, and the input size is (None, 80, 9). None is the number of input samples,
80 is the time step of the samples, and 9 is the nine characteristic variables of UAV.

How to find suitable parameters for the model is very important. In this paper,
a series of experiments are carried out to determine the values of relevant parameters of
the model. Each group of experiments is carried out for 5 times, and the average accuracy
of 5 experiments is taken as the evaluation standard of the model [35]. The parameters
considered in the experiment are: the size of the first wide convolution kernels, the number
of the wide convolution kernels, the number of residual modules, and the block size
discarded by the DropBlock layer.

The wide convolution kernels can better extract short-time fault features for time
series data, thereby enhancing the model’s anti-noise performance. For the quadrotor
sample data in this paper, the convolution kernels used should be n× 9, which n is the
size of the convolution kernels in the time domain, and 9 is the number of feature types.
On the issue of convolution kernels selection, a smaller convolution kernels may not be
able to fully express the characteristics of the input data, while a larger convolution kernels
may increase the complexity of the model, and the number of convolution kernels will also
affect the experiment results.

To determine the size of the wide convolution kernels, set the experiment as follows:
the number of convolution kernels at the first layer is set to 24, the size is set to 8, 12, 24, 32,
48 the number of residual shrinkage modules is set to 1, and the size of the convolution ker-
nels of the residual shrinkage modules is set to 3. The final parameter value is determined
by analyzing the influence of convolution kernels size on model performance in the wide
convolution layer. As show in Table 2, the accuracy increases with the increase of the size
of convolution kernels. When the size of wide convolution kernels reaches 32, the accuracy
tends to stabilize, so the size of wide convolution kernels is set to 32.
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Table 2. Influence of the size of convolution kernels in the wide convolution layer on 1D-
WIDRSN model.

The Size of the Wide Convolution Kernels 8 12 24 32 48

Accuracy (%) 87.46 90.39 92.33 93.81 93.86

After determining the size of the convolution kernels of the wide convolution layer,
further experiments are carried out to select the number of wide convolution kernels.
The size of the wide convolution kernels is set to 32, and the number is set to 16, 24, 32, 48,
and 64. As show in Table 3, the accuracy increases with the number of convolution kernels.
When the number of wide convolution kernels reaches 32, the accuracy tends to stabilize,
so the number of wide convolution kernels is set to 32.

Table 3. Influence of the number of convolution kernels in the wide convolution layer on 1D-
WIDRSN model.

The Number of the Wide Convolution Kernels 16 24 32 48 64

Accuracy (%) 92.73 93.97 94.83 94.62 95.17

Further experiments were carried out on the number of residual shrinkage modules
(RSMs), and the number of RSMs are set to 1, 2, 3, 4, 5. As show in Table 4, when the
number of RBUs is greater than 4, the accuracy becomes stable. However, the increase in
the number of RSMs will reduce the network training speed, so the number of RSMs in
this model is set to 3.

Table 4. Influence of the number of residual shrinkage modules on 1D-WIDRSN model.

The Number of Residual Shrinkage Modules 1 2 3 4 5

Accuracy (%) 94.50 96.13 97.95 98.12 98.53

Adding DropBlock layer after wide convolution layer, we need to set the block size in
DropBlock. As show in Table 5, the model has the highest accuracy when the block size
is 5, so the size of block size in DropBlock is set to 5.

Table 5. Influence of block size in the DropBlock layer on 1D-WIDRSN model.

The Block Size of the DropBlock 1 3 5 7

Accuracy (%) 98.18 98.36 98.24 98.32

In the network model designed in this paper, the input sample will first pass through
a wide convolution layer. The convolution kernels size of the wide convolution layer is
32 × 9, and the number of convolution kernels is 32. After the wide convolution layer,
the DroopBlock technology is adopted to avoid overfitting problem. After the ReLu
processing, it enters three residual shrinkage modules. Each residual shrinkage module has
two convolution layers. In order to increase the receptive field and reduce parameters at
the same time, the convolution kernels size of each convolution layer is 3, and the number
of convolution kernels in each module is twice that of the previous module. After the
average pooling layer processing, the output features are expanded into one-dimensional
vectors and are input into the full connection layer. Finally, the fault diagnosis results are
obtained through the Softmax layer. The five fault types correspond to the five outputs of
the Softmax layer, respectively.

The specific structural parameters of the quadrotor fault diagnosis model are shown
in Table 6.
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Table 6. The network parameters of the 1D-WIDRSN model.

Layer Type Windows Size Kernel Number

Input - -
Conv1D 16 32

RSM1_Conv1 3 64
RSM1_Conv2 3 64
RSM2_Conv1 3 128
RSM2_Conv2 3 128
RSM3_Conv1 3 256
RSM3_Conv2 3 256
AvgPool1D - -

Fully Connected - -
Softmax 5 -

3.4. Experiment Results

After determining the model parameters, input the data samples into the fault diagno-
sis model. The training process is visualized as shown in Figure 8, which records the curve
of loss and accuracy of training set and test set. After about 20 iterations, the accuracy rate
of the model gradually stabilizes and maintains at about 98%.

Figure 8. Loss and accuracy curves of training set and test set.

4. Evaluation and Discussion
4.1. Evaluation of Model Feature Extraction Capability

In order to verify the feature extraction ability of the algorithm, t-distributed stochastic
neighbor embedding (t-SNE) [36] can be used to visually analyze the original flight data and
the data after model calculation. T-SNE is a popular dimensionality reduction algorithm.
This paper uses the t-SNE algorithm to map the data to a two-dimensional scatter graph to
evaluate the effectiveness of features. The visualization results are shown in Figure 9. It can
be seen that most of the failure categories of the unprocessed raw flight data are overlapping
and disorderly. After model feature extraction, the four categories can be almost completely
separated. Therefore, the model has strong ability of fault feature extraction.
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(a) (b)

Figure 9. Visualization of the feature distribution via t-SNE method: (a) Visualization of raw flight
data; and (b) visualization of features extracted by the 1D-WIDRSN model.

4.2. Diagnostic Performance of Different Models

In order to verify the effectiveness of the algorithm, this paper compares 1D-WIDRSN
method with other fault diagnosis methods. In the comparative experiment, DNN, CNN,
Vgg [37], Resnet, 1D-WDRSN are selected, respectively. As show in Table 7, compared with
other fault diagnosis models, 1D-WIDRSN has higher accuracy.

Then, this section uses the Confusion Matrix to measure the accuracy of the fault
diagnosis model. The Confusion Matrix can evaluate the performance of the classification
model by counting the number of correct and wrong classifications. Figure 10 is the
confusion matrix of different fault diagnosis models, in which the abscissa is the diagnosis
result of the diagnosis model and the ordinate is the actual fault category label. As show in
Figure 10, compared with other fault diagnosis models, 1D-WIDRSN can identify various
faults more effectively.

Table 7. Comparison of accuracy results of other models.

The Name of the Model Accuracy (%)

DNN 86.71
CNN 91.80
Vgg 94.92

ResNet 97.07
1D-WDRSN 97.85
1D-WIDRSN 98.44

From the above results, it can be concluded that compared with other comparison
methods, the 1D-WIDRSN proposed in this paper has a better effect. The reason can
be explained as follows: Firstly, the residual shrinkage module of 1D-WIDRSN uses the
induction mechanism to find the interference information of the input sample, and uses
the progressive semi-soft threshold function to set the interference information to zero, so
as to reduce the influence of the interference information on the fault diagnosis accuracy.
Secondly, the wide convolutional layer of the 1D-WIDRSN model can effectively extract
the short-term features of the original data, which helps the model find the key information
of different fault categories. Finally, the DroupBlock algorithm is introduced to avoid the
dependence of the model on specific neurons and prevent the model from overfitting by
randomly discarding some characteristic elements.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Confusion Matrix of different fault diagnosis models: (a) DNN; (b) CNN; (c) Vgg;
(d) ResNet; (e) 1D-WDRSN; and (f) 1D-WIDRSN.

5. Conclusions

In engineering applications, inevitable environmental interference information and
UAV own fault-tolerant control will seriously affect the accuracy of fault diagnosis when
the early fault of quadrotor actuator occurs. We proposed 1D-WIDRSN fault diagnosis
algorithm, which can adaptively extract essential features from the raw flight data, de-
veloped to realize end-to-end fault diagnosis. This diagnostic algorithm is used in the
flight-test inspection of quadrotor before or after use.

1D-WIDRSN replaces soft threshold in DRSN with progressive semi-soft threshold
function, which preserves as many effective features as possible in the original data. As the
shrinking layer of residual shrinkage module, the progressive semi-soft threshold can
reduce the influence of interference information in the original data on fault diagnosis.
In addition, the wide convolution layer can better extract the short-time features of faults
and further reduce the influence of interference information. The DroupBlock layer uses
the method of randomly discarding feature blocks to suppress over-fitting of the model.



Drones 2021, 5, 133 15 of 16

Finally, a certain type of quadrotor is selected for the experiment, and the speed, angular
velocity, and angular acceleration are used as the experimental data to complete the training
and testing of the model, so as to realize the early failure detection and location of the
actuator of the quadrotor. Experimental results show that the fault diagnosis method based
on 1D-WIDRSN can effectively identify the quadrotor propeller faults under interference,
and has good sensitivity in the early stage of minor faults. Compared with other fault
diagnosis methods, this method has better performance. Therefore, the quadrotor fault
diagnosis based on 1D-WIDRSN is a good solution for the field of UAV health detection.

In the future research, we will focus on the compound fault diagnosis of quadrotor air-
craft to improve the practicality of the 1D-WDRSN fault diagnosis algorithm. Some issues
concerning the implementation of the 1D-WDRSN algorithm in the onboard controller of
UAV should also be addressed to improve the effectiveness of the algorithm in real-time
fault detection during flight.
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