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Abstract: The article discusses the UAV lateral motion stabilization system, as a MIMO multiloop
multirate continuous-discrete system, specified in the form of an input–output model in the domain
of discrete Laplace transform or in the form of a structural diagram. Approaches to the construction of
equivalent T and NT single-rate models for MIMO multiloop multirate continuous-discrete systems
are considered. Here, T is the largest common divisor of the sampling periods of the system, N is a
natural number that is the smallest common multiple of the numbers characterizing the sampling
periods of the system. The resulting impulse representations of the outputs of equivalent models
are in the form of rational functions. The basis for the construction of these models is a matrix of
sampling densities—a structural invariant of sampling chains. An example of the construction of the
indicated matrix and an equivalent single-rate model are given. Obtaining equivalent single-rate
models for MIMO multiloop multirate systems allows us to extend the methods of research and
synthesis of MIMO continuous and continuous-discrete systems to a common theoretical base—the
theory of polynomials and rational functions, which are typical elements of the description of these
classes of systems.

Keywords: UAV stabilization system; multirate; continuous-discrete systems; equivalent single-
rate model

1. Introduction

The MIMO multiloop multirate continuous-discrete system is a mathematical model
that describes the stabilization system of a drone with a multiprocessor onboard computer.
Such systems are considered due to the need to optimize the performances of systems with
different dynamic modes and efficiently use available hardware resources [1,2]. Usually,
MIMO stabilization systems are considered, which have vector characters of control, dis-
turbances, parameters of the control system, and outputs [3–7]. There are two approaches
to the description of the multirate continuous-discrete system: models in the time domain
and models obtained using the discrete Laplace transform or z-transform. The advantages
of describing the considered class of systems in the time domain are detailed in [1]. A
large number of publications have solved the problem of describing multiloop multirate
continuous-discrete systems in the time domain [1,8–12].

The description of the considered system in the domain of discrete Laplace transform
or z-transform does not lose its relevance.

The drone stabilization system is considered for the first time [13] as a multiloop
multirate control system (Figure 1). Similar systems are considered in [14–16].

We consider the stabilization system of the lateral movement of the aircraft-type drone
when solving the problem of a UAV landing on a non-aircraft-carrying ship [17]. The
stabilization system of the lateral movement for the autonomous drone, with an onboard
computer in the control loop, is considered in [18], in the form of a structural diagram
(Figure 2). The system in Figure 2 is a multiloop multirate continuous-discrete system.
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In this figure, ψ—yaw angle, γ—roll angle, δN , and δE—angles of deflection of the
rudders and ailerons, respectively; εN and εE—stabilization errors. The corresponding

transfer functions are: ΦST(s) =
WPT(s)

1+WPT(s)
—steering track, WKL(s) = a41

− b16s2

µ2
+

b16b33s
µ2

+1

s( b36s
µ2

+1)
—

kinematic link, We(s)—extrapolator, WGT(s) = s
(T2

GTs2+2ζGT TGTs+1)(τGTs+1)
—gyrotachometer,
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bij—aerodynamic coefficients, WPT(s) = kPTWPM(s)Wµy(s), WPM(s) = e−τPMs

s(TPMs+1) , Wµy(s)

= 1
Tµys+1 , T and τ with the corresponding indices–time constants. The transfer functions of

the control object WδN ψ(s) =
ψ(s)

δN(s) , WδN γ(s) =
γ(s)

δN(s) , WδEγ(s) =
γ(s)
δE(s)

, WδEψ(s) =
ψ(s)
δE(s)

can
be determined by transforming, using the Laplace transform for a system of differential
equations, describing the rotational motion of the aircraft around the center of mass in
the horizontal plane [18]. The transfer function Wy

ψδH
(s), which characterizes the effect

on the dynamics of stabilization of elastic vibrations of a moving UAV, is not taken into
account in further consideration. The model of the Wy

ψδH
(s) is given in [18]. T1, T2, T3 are

the sampling periods of digital feedback circuits of control signals.
To solve the problem of analysis or synthesis of the system shown in Figure 2, we

need to obtain an adequate mathematical model.
The mathematical models obtained using the discrete Laplace transform or z-transform

are considered with sufficient simplification. The studies were limited to SISO systems and
generally resulted in very cumbersome formulas [1].

Although the problems of analyzing and synthesizing multirate systems appeared
a long time ago, there is no explicit and complete methodology for constructing their
equivalent mathematical model [1].

Development in the issue of constructing mathematical models of multi-loop control
systems with different sampling periods specified using transfer functions was achieved,
thanks to the works in references [19–22]. In these works, it was proposed to replace the
pulse elements (keys), which sample signals with different sampling periods, with an
equivalent system containing one key and some delay elements. Such an equivalent system
operates with a uniform time sampling period. Further description of the considered
system is carried out using modified z-transformations, which makes it possible to intro-
duce the time delays of the equivalent system into the description [21]. A description of
multiloop multirate systems, in the form of transfer functions and two different algorithms
for calculating the characteristic polynomial, was proposed in [19,21]. These two methods,
for constructing the characteristic polynomial of a multiloop multirate control system, are
equivalent [13].

The main disadvantage of the approach proposed in [19] is the complexity of the
implementation associated with the inconvenience of numerical calculations of topological
operations [13].

As in most other works, attention in [13] was paid to the construction of characteristic
equations of multiloop discrete control systems, containing impulse elements with different
sampling periods, and not to the construction of the entire mathematical model of the
system suitable for analysis and synthesis.

Thus, existing approaches to the construction of the models of multiloop multirate
continuous-discrete systems, in the form of transfer functions, allow one to obtain equations
suitable only for studying stability. The existing approaches do not allow a wide range of
analysis and synthesis of the specified class of control systems and reduce the efficiency of
their research.

Note that the problem of synthesis and analysis of linear continuous-discrete multiloop
UAV stabilization systems contains two essential aspects of complexity: the system’s
multidimensionality and the multirate of sampling chains. In the case of commensurate
periods (their multiplicity to a certain “effective” period), the second aspect is equivalent
to the first, significantly strengthening it at large numbers of the multiplicity of sampling
periods to the “effective” sampling period. In this case (rationally commensurate sampling
periods), it is possible to transform the mathematical model of a multirate system to an
equivalent mathematical model of a single-rate system of increased dimension. In the
theory of impulse systems, such transformations are usually performed based on the
“parallelization” of impulse circuits [1].

In this article, we propose a complete description of a general approach to the con-
struction of an equivalent single-rate model, which makes it possible to transform the
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vector–matrix model of the original MIMO multiloop multirate system into a vector–matrix
model of a single-rate system, in the form typical for vector–matrix models of continuous
systems. The construction includes complete descriptions of the equivalent T-single-rate
and NT-single-rate, where T is the largest common divisor of the sampling periods of
the system, and N is a natural number that is the least common multiple of the numbers
characterizing the sampling periods of the system. Detailed descriptions of these charac-
teristics are given below, describing the central element of the construction—a structural
invariant of sampling chains—a matrix, which, in the general case, describes a complex
situation of the mutual influence of sampling processes in digital circuits of a closed-loop
MIMO multirate stabilization system with different sampling periods. The dimension and
complexity of this matrix are due to the mutual numerical characteristics of digital circuits.

2. The Mathematical Model of the Stabilization System

To build an equivalent mathematical model of the multirate system, we write the
fundamental equation in the input–output form of the Laplace transform. The complete
construction of the basic mathematical model in the input–output form of the Laplace
transform for the MIMO multiloop multirate continuous-discrete system is given in [18,23].

The continuous object equation and analog circuit stabilization system equation from
the object to the sampling keys are

y(s) = W0(s)u(s),

x(s) = E(s)y(s) + B(s)u(s),
(1)

where W0(s), E(s), B(s) are the matrices of transfer functions. Usually, B(s) = 0, and in
the future, we will take this into account.

x(s) = [x1(s), x2(s), . . . , xr(s)]
T is a vector of the sampling variables with periods

T1 = n1T, T2 = n2T, . . . , Tr = nrT, respectively (among which there may be equal ones),
where n1, n2, . . . , nr are natural numbers. The control vector is a vector u(s). y(s)—the
vector of outputs.

For the system shown in Figure 2, x(s) = [x1(s), x2(s), x3(s), x4(s), x5(s), x6(s)]
T . For

the variables of the vector x(s), the sequence of sampling periods is T1, T3, T1, T3, T3, T2.

The vector of outputs y(s) =

[
ψ
γ

]
. The “k-th” component of the vector of control,

uk(s) = −
r
∑

i=1
dki(s)x∗iTi

(s) + uZk(s), where dki(s)—the transfer function of parallel digital

circuits, x∗1T1
(s), x∗2T2

(s), . . . , x∗rTr
(s)—discrete Laplace transforms sampled concerning

the sampling periods T1, T2, . . . , Tr of the variables x1(t), x2(t), . . . , xr(t), respectively.
As considered in Figure 2, schemes uZ1(s) = ψZ, uZ2(s) = γZ, and the trans-

fer matrixes, E(s) =

[
0 0 WGT 1 s(WkZ + b73) WkL(KZ(1 + KZs)

WGT 1 0 0 0 0

]T

, W0 =[
ΦSTWδN ψ ΦSTWδEψ

ΦSTWδN γ ΦSTWδEγ

]
.

Thus
x(s) = U(s)u(s) = E(s)W0(s)u(s). (2)

Writing the equations for the control in a vector–matrix form:

u(s) = −We(s)W∗(s)x∗(s) + We(s)v∗(s),

where W∗(s) is a matrix with elements W∗kiTi
(s) and vectors x∗(s), v∗(s) with elements

x∗iTi
(s) and u∗kzT(s). The symbol “*” at the bottom marks the property of periodicity of the

matrix W∗(s) and the vector x∗(s) for the corresponding periods. All elements of W∗(s)
and x∗(s) satisfy the relation x(s + 2π j/T) = x(s). For W∗(s) and x∗(s) is fulfilled [24,25]

(cb∗)
∗
T = c∗Tb∗,

(
or (b∗c)

∗
Tb∗c∗T

)
. (3)
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Finally, we obtain a mathematical model of the MIMO multiloop multirate continuous-
discrete drone stabilization system, which takes into account both the influence of all
sampling periods of the system and its multiloop, including the cross-connections of
control channels

u(s) = −G(s)W∗(s)x∗(s) + G(s)v∗(s), (4)

x(s) = −C(s)W∗(s)x∗(s) + C(s)v∗(s), (5)

y(s) = −L(s)W∗(s)x∗(s) + L(s)v∗(s), (6)

where G(s) = We(s)I, C(s) = U(s)G(s), L(s) = W0(s)G(s).
Due to the presence in the description of factors that take into account the different

sampling periods, the presented mathematical model is not suitable for solving problems
of analysis and synthesis. It is a basic model for constructing an equivalent mathemat-
ical model, which, in turn, can be used to extend analysis and synthesis methods for
multidimensional single-rate systems to the class of multirate systems.

3. Results

As noted earlier, for a fundamental possible transfer of the synthesis and analysis
methods of MIMO continuous and discrete systems, to the class of continuous-discrete
multirate drone stabilization systems, it is necessary to construct equivalent mathematical
models of a single-rate system in a form characteristic for vector–matrix models of continu-
ous systems. Approaches to the construction of equivalent mathematical models are briefly
presented in [23]. Now, we give their full description.

3.1. The Equivalent T-Single-Rate Model of the Stabilization System

The given model of a multirate drone stabilization system can be transformed into
a model of a single-rate system with a sampling period T, which is the greatest common
divisor of the sampling periods T1, T2, . . . Tr.

We will proceed from Equation (11)

y∗nT(s) =
1
n

n

∑
k=1

y∗T(s +
2π j
nT

(k− 1)), (xy∗nT)
∗
T = x∗Ty∗nT . (7)

Further, until the final results, the symbol T in the designation of the corresponding
impulse transformation will be omitted, i.e., for any function z(s), instead of z∗T(s) we will
write z∗(s).

Consider Equation (4). By property (3), we have

x∗(s) = −C∗(s)W∗(s)x∗(s) + C∗(s)v∗(s). (8)

Replacing s in this relation by s + 2π j
NT (ν− 1), where N, ν are natural numbers, we

have
x∗ν(s) = −C∗ν(s)Wν

∗ (s)xν
∗(s) + C∗ν(s)v∗ν(s), (9)

where for any function ϕ(s), we further take ϕν(s) = ϕ(s + 2π j
NT (ν− 1)).

Setting in Equation (9), ν = 1, . . . , N, we write

x̂∗(s) = −Ĉ∗(s)Ŵ∗(s)x̂∗(s) + Ĉ∗(s)v̂∗(s), (10)

where

x̂(s) = [x1(s) x2(s) . . . xN(s)]T ,x̂∗(s) = [x1
∗(s) x2

∗(s) . . . xN
∗ (s)]

T ,

v̂(s) = [v1(s) v2(s) . . . vN(s)]T , Ĉ(s) = diag[C1(s), C2(s), . . . , CN(s)],

Ŵ(s) = diag[W1(s), W2(s), . . . , WN(s)].

(11)
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Consider the components of the vector xν
∗(s)

x∗νiTi
(s) =

1
ni

ni

∑
k=1

x∗i (s +
2π j
NT

(ν− 1) +
2π j
niT

(k− 1)). (12)

N—the least common multiple of numbers n1, n2, . . . , nr such that N = ν1n1, N =
ν2n2, . . . , N = νrnr, where ν1, ν2, . . . , νr are natural numbers. Then Equation (12) can be
written in the form

x∗νiTi
(s) =

1
ni

ni

∑
k=1

x∗i (s +
2π j
NT

[ν + νi(k− 1)− 1]), i = 1, . . . , r. (13)

Note that, for any p > N we have, setting p = N + ν,

x∗i (s +
2π j
NT

p) = x∗i (s +
2π j
NT

ν) (14)

due to the periodicity of the function x∗i (s) in s with a period 2π j/T.
Due to (14), the right-hand side of (13) contains only values x∗νi (s), ν ∈ 1, N, which

means that there is a linear transformation of the vector x̂∗(s) to x̂∗(s). We can write

x̂∗(s) = Πx̂∗(s) (15)

where Π− rN × rN a numerical matrix, the rules for finding, which we indicate below.
Substituting Equation (15) into (10), we find

x̂∗(s) = (IrN + Ĉ∗(s)Ŵ∗(s)∏)
−1Ĉ∗(s)v̂∗(s). (16)

Writing the equation

ŷ(s) = −L̂(s)Ŵ∗(s)x̂∗(s) + L̂(s)v̂∗(s),

where ŷ(s) = [y1(s) y2(s) . . . yN(s)]T , L̂(s) = diag[L1(s), L2(s), . . . , LN(s)] , and using (15),
(16) we find

ŷ(s) = L̂(s)
{
−Ŵ∗(s)∏ (IrN + Ĉ∗(s)Ŵ∗(s)∏)

−1Ĉ∗(s) + ImN

}
v̂∗(s). (17)

Applying the identity [26–28] I −A(I + BA)−1B = (I + AB)−1, we also find

ŷ(s) = L̂(s)(ImN + Ŵ∗(s)∏ Ĉ∗(s))−1v̂∗(s),

ŷ∗(s) = L̂∗(s)(ImN + Ŵ∗(s)∏ Ĉ∗(s))−1v̂∗(s).
(18)

The defining matrix Π =
{

Πνp
}

, ν, p ∈ 1, N as block type, where Πνp − r× r matrix,
and introducing the notation

W∗(s) = Ŵ∗(s)∏ Ĉ∗(s) (19)

we define the elements of the block representation of this matrix

W∗(s) =
{

W∗νp(s)
}

, ν, p ∈ 1, N, W∗νp(s) = Wν
∗ (s)∏

νp
C∗p(s), ν, p ∈ 1, N. (20)

where ∏νp = diag[π1
νp, π2

νp, . . . , πr
νp].
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From (20). we obtain the equation for the elements of the matrix W∗νp(s)

W∗σµ
νp (s) =

r

∑
i=1

πi
νpW∗σi(s + (ν− 1)

2π j
NT

)C∗iµ(s + (p− 1)
2π j
NT

). (21)

The construction of the matrix (20) of an equivalent T-single-rate system allows one to
find the outputs of the closed original system, sampled at the moments kT, k = 0, 1, . . ..

Defining, for this purpose, the block type matrix

H∗(s) = (I mN+W∗(s))−1, H∗= {H ∗νp}, ν, p ∈ 1, N,

we find

y∗(s) =
N

∑
p=1

L∗(s)H∗1p(s)u
∗p(s), (22)

where y∗(s) = y∗1(s), L∗(s) = L∗1(s).

3.2. The Equivalent T-Single-Rate Model of the Stabilization System: The Analog Control

In order to not change the notation of the matrices, we assume that v(s) is a vector
with elements 1

We(s)
ukz(s), k = 1, . . . , r.

Instead of (4)–(6), we now consider the equations

u(s) = −G(s)W∗(s)x∗(s) + G(s)v(s),

x(s) = −C(s)W∗(s)x∗(s) + C(s)v(s),

y(s) = −L(s)W∗(s)x∗(s) + L(s)v(s).

Determining, as above, the extended vectors and matrices (14), we find

x̂∗(s) = −Ĉ∗(s)Ŵ∗(s)x̂∗(s) + [Ĉ(s)v̂(s)]∗,

x̂∗(s) = (IrN + Ĉ∗(s)Ŵ∗(s)Π)
−1

[Ĉ(s)v̂(s)]∗,

ŷ∗(s) = −L̂∗(s)Ŵ∗(s)Π(IrN + Ĉ∗(s)Ŵ∗(s)Π)
−1

[Ĉ(s)v̂(s)]∗ + [L̂(s)v̂(s)]∗, (23)

Hence, what follows is the corresponding representation for the impulse transforma-
tion of the vector of outputs, similar to Equation (22).

3.3. The Equivalent NT-Single-Rate Model of the Stabilization System

The construction of the sequence y(kT), k = 0, 1, . . . allows, of course, to isolate the
sequence y(kNT), k = 0, 1, . . .. At the same time, if the last sequence is determined from
the discrete Laplace transformation y∗NT(s), then this one can see some additional possi-
bilities of analyzing the dynamics of the initial multirate stabilization system. Therefore,
it is of interest to consider NT—a single-rate equivalent model—an impulse stabilization
system with a sampling period NT, where, as before, N is the least common multiple of
numbers n1, . . . , nr(N = ν1n1, N = ν2n2, . . . , N = νrnr).

The starting point for building an NT—single-rate equivalent model is the [29]

y∗T(s) =
n

∑
k=1

e−(k−1)Ts[y(s)e(k−1)Ts]
∗
nT . (24)

Taking into account Ti = NT/νi, i = 1, . . . , r,

x∗iTi
(s) =

νi

∑
ν=1

e−(ν−1)Tis[xi(s)e(ν−1)Tis]
∗
NT =

νi

∑
ν=1

e−νi [xi(s)e+νi ]
∗
NT , (25)
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where the numbers e±νi = e±(ν−1)Tis, ν = 1, . . . , νi; i = 1, . . . , r.
Equation (25) can be written as

x∗iTi
(s) =

Ni

∑
ν=1

e−νix
∗
νiNT(s) = E−i (s)x̂∗iNT(s), (26)

where E−i (s) = [e−1i , e−2i , . . . , e−νi i
], x̂i(s) = [x1i(s) x2i(s) . . . xνi i(s)]

T , i = 1, . . . , r, xνi(s) =
e+νixi(s).

Using Equation (25) and the block matrix E(s) = diag[E−1 (s) E−2 (s) . . . E−r (s)] with
dimension r× (ν1 + ν2 + · · ·+ νr) for a vector x∗(s) = [x∗1T1

(s) x∗2T2
(s) . . . x∗rTr

(s)]T , we
can write x∗(s) = E−(s)x̂∗NT(s) and

x(s) = −C(s)W∗(s)E−(s)x̂∗NT(s) + C(s)v∗(s), (27)

We now introduce the matrix E+
i (s) = [e+1i(s) e+2i(s) . . . e+νi i

(s)]T and block matrix
E(s) = diag[E+

1 (s), E+
2 (s), . . . , E+

r (s) ] with a dimension (ν1 + ν2 + · · · + νr) × r that
allows writing E+(s)x(s) = x̂(s).

Therefore, multiplying (27) on the left by the matrix E+(s), we obtain

x̂(s) = −E+(s)C(s)W∗(s)E−(s)x̂∗NT(s) + E+(s)C(s)v∗(s). (28)

Introducing, for convenience, C+(s) = E+(s)C(s), W−∗ (s) = W∗(s)E−(s) and W∗NT(s)
= [C+(s)W−∗ (s)]

∗
NT , by Equation (28), we find

x̂∗NT(s) = [Iσ + W∗NT(s)]
−1[C+(s)v∗(s)]∗NT , (29)

where σ = ν1 + ν2 + · · ·+ νr.
We also find

y∗NT(s) = −[L(s)W−∗ (s)]
∗
NT [Iσ + W∗NT(s)]

−1[C+(s)v∗(s)]∗NT + [L(s)v∗(s)]∗NT . (30)

The relations (29) and (30) define the equivalent single-rate model of the closed-loop
drone stabilization system with a sampling period NT.

An alternative approach to constructing an equivalent single-rate model of the closed-
loop drone stabilization system with a sampling period NT is given in [28].

3.4. The Structural Invariant of Sampling Chains of the Stabilization System
3.4.1. The Construction Method of the Structural Invariant of Sampling Chains of the
Stabilization System

When, in stabilization system (4)–(6), the same sampling period is T, then n1 = n2 =
. . . = nr = 1 and N = 1. The block vectors and matrices introduced above degenerate
(consist of one block element). Equation (18) takes the form

y∗(s) = L∗(s)(Im + W∗(s)C∗(s))−1v∗(s). (31)

Here, the matrix Π = Ir degenerates into one block with diagonal elements equal
to one.

In the general case of modeling multidimensional multiloop multirate stabilization
systems, there is a complex situation of the mutual influence of sampling processes in
digital circuits of a closed system with different sampling periods. A characteristic element
of the description of this complex situation is the matrix Π, i.e., transformation (15).

The dimension and complexity of this matrix determine the dimension and complexity
of the processes in the stabilization system, and is due to the mutual numerical characteris-
tics of the digital circuits—the numbers n1, . . . , nr that determine the relationship between
the sampling periods and N—is the least common multiple of the indicated numbers.
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As can be seen from Equations (13) and (15), only numbers 1
ni

, i = 1, . . . , r are nonzero
entries of this matrix. Since these numbers have the meaning of relative sampling period
densities (ratios of the number of “rare” samples to the number of “frequent” ones), the
matrix Π will be called the matrix of tilt densities. Since the structure of the system, in
particular, the arrangement of digital chains and sampling keys, does not affect the matrix
Π in any way, it is a structural invariant of the sampling chains.

To complete the formation of an equivalent single-rate model of the stabilization
system, we now indicate a method for calculating the elements of the matrix Π. We will
look for them in the form of the matrix ∏νp = diag[π1

νp, π2
νp, . . . , πr

νp]. To do this, consider
the equation

N

∑
p=1

πi
νpx∗p

i =
1
ni

ni

∑
k=1

x∗ν+(k−1)νi
i , (32)

which takes place by Equations (13) and (15) with the notation

x∗p
i (s) = x∗i (s + (p− 1)

2π j
NT

), i = 1, . . . , r.

Considering Equation (32), one should take into account the periodicity relation

x∗N+p
i = x∗p

i , p = 1, 2, . . . ,

as property (14) of functions x∗i (s), i = 1, . . . , r.
For this purpose, consider the right-hand side of relation (32) and the set of numbers

p(k) = ν + (k− 1)νi, k = 1, . . . , ni, (33)

with fixed indices ν, i.
The numbers of this set have the property

p(k′′ ) > p(k′), k′′ > k′.

pmax be the largest of the numbers p(k, ν, i) = ν + (k − 1)νi, k ∈ 1, ni; ν ∈ 1, N;
i ∈ 1, r. This number has the form

pmax = max
i∈1,r

(N + (ni − 1)νi) = N + N − ν = N + γ.

where ν is the smallest of the numbers νi, i ∈ 1, r.
Due to the N = niνi, at least one of the numbers νi, i ∈ 1, r is less then N (at least one

of the numbers ni, i ∈ 1, r is greater than (1), which means γ < N.
As a result, all numbers of form (33) exceeding N are numbers of the form N + γ,

0 ≤ γ ≤ N − 1. Now, let, for arbitrarily taken k′′ , k′, k, such that k′′ > k′ > k, we have

p(k) = ν + (k− 1)νi = γ ≤ N,

p(k′) = ν + (k′ − 1)νi = N + γ′

p(k′′ ) = ν + (k′′ − 1)νi = N + γ′′

Subtracting, we find that

γ′′ − γ′ = (k′′ − k′)νi,

γ− γ′ = (k− k′′ )νi + N = (ni + k− k′′ )νi.

Hence,
γ′ < γ′′ < γ.
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Because of the above, from (35), we obtain the following rule for calculating the
elements πi

νl , l = 1, . . . , N of the matrix Π of quantization densities for fixed indices ν, i

πi
νl =


1/ni, l = l(k) = p(k), p(k) ≤ N
1/ni, l = l(k) = p(k)− N, p(k) > N
0 l 6= l(k),

where the values p(k), k = 1, . . . , ni are calculated by (33).

3.4.2. The Algorithm of Construction the Structural Invariant of Sampling Chains of the
Stabilization System

In this part, we present the corresponding algorithm. We build the table to construct
the matrix Π (Table 1).

Table 1. The table to construct the matrix Π.

p 1 2 * * N

δ( p) . . . 0 1 0 . . . 0 1 0 . . .

The top line of the table is a series of natural numbers from 1 to N, some of them are
marked with an asterisk —*. The second line contains values δ( p) equal to 1 under the
marked upper numbers and 0 otherwise.

The rule for marking the numbers on the top line is as follows. The values are
calculated

p(k) = ν + (k− 1)νi, k = 1, . . . , ni.

If p(k) ≤ N, then the marked number p∗ = p(k), if

p(k) = N + γ(k),

then p∗ = γk.
In this way, the bottom line defines the values δ(p), l = 1, . . . , N, and

πi
νp =

1
ni

δ(p), p = 1, . . . , N.

Thus, this method determines the entire row of the matrix Π, i.e., diagonal elements
with fixed indices ν, i of all block matrices equal to either 1

ni
or 0.

Adopting ν = 1 and applying the algorithm n times for i = 1, . . . , r, we finally find
the first row of the block representation of the density matrix Π

Π11, Π12, . . . , Π1N−1, Π1N .

This row defines the entire matrix Π using a sequential circular permutation. For
example, the second line will be

Π1N , Π11, . . . , Π1N−2, Π1N−1, etc.

For example, for N = 3, the entire matrix has the form
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Note the possibility of forming the given blocks of the matrix Π. For example, we
are talking about a block Πνp. Diagonal elements πi

νp, i = 1, . . . , r should be defined with,
given ν, p. Then:

1. If k ∈ 1, ni exists, satisfying one of the equations

ν + (k− 1)νi = p, ν + (k− 1)νi − N = p, (34)

then πi
νp = 1

ni
, and

2. If k ∈ 1, ni does not exist, then πi
νp = 0.

Thus, the construction algorithm is fully formulated.

3.4.3. Example

Consider a part of the lateral motion stabilization system—a modified roll stabilization
contour (Figure 3).
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For the system shown in Figure 3, according to the notation introduced in Section 2, we
have: W0(s) = ΦST(s) ·WδEγ(s), x(s) =

[
x1(s) x2(s)

]T, y(s) = γ, E(s) = [W1(s) W2(s)]
T ,

B(s) = 0, W∗(s) =
[

W∗1T1
(s) W∗2T3

(s)
]
, G(s) = We(s), L(s) =

We(s)W0(s), C(s) =
[

We(s)W3(s)W0(s)
We(s)W0(s)

]
.

From the above diagram, it is clear that the methods based on the analysis of the
location of the poles are not available with such a representation of the system.

Using Equations (1)–(6), we obtain an expression for the output of the system

y(s) = −We(s)W0(s)[W1∗(s)W2∗(s)]
[

x1∗(s)
x2∗(s)

]
+ We(s)W0(s)u∗(s), (35)

To construct an equivalent model, the usual matrix operations are used. A separate
issue is the construction of a matrix of sampling densities.

For the considered in a Figure 3 system r = 2, n1 = 1, n2 = 3 (defined above). Using
the above equations, we obtain N = 3, ν1 = 3, ν2 = 1.

For block Π11, we have the equations

i = 1 1 + (k− 1)3 = 1, 1 + (k− 1)3− 3 = 1, k ∈ 1;
i = 2 1 + (k− 1)1 = 1, 1 + (k− 1)1− 3 = 1, k ∈ 1, 3.

Therefore, π1
11 = 1, π2

11 = 1
3 .
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For block Π12:

i = 1 1 + (k− 1)3 = 2, 1 + (k− 1)3− 3 = 2, k ∈ 1;
i = 2 1 + (k− 1)1 = 2, 1 + (k− 1)1− 3 = 2, k ∈ 1, 3.

Therefore, π1
12 = 0, π2

12 = 1
3 .

For block Π13

i = 1 1 + (k− 1)3 = 3, 1 + (k− 1)3− 3 = 3, k ∈ 1;
i = 2 1 + (k− 1)1 = 3, 1 + (k− 1)1− 3 = 3, k ∈ 1, 3.

Therefore, π1
13 = 0, π2

12 = 1
3 .

The entire density matrix has the form
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The difference in the sampling densities is reflected in the matrix Π by the inhomo-
geneous filling of its blocks. When the sampling density in all circuits is the same, i.e.,
n1 = n2 = · · · = nr = n, N = n and ν1 = ν2 = · · · = νr = 1, then the matrix Π turns out
to be maximally filled—all of its block elements Πνp, ν, p = 1, . . . , n turn out to be equal

Πνp =
1
n

Ir.

where Ir—identity r x r matrix. Hence, πi
νp = 1

ni
, i ∈ 1, r.

For the system under consideration, to construct a T—single-rate equivalent model,
we will have the following vectors and matrices used to construct the model:

x̂∗(s) =

 x1
∗(s)

x2
∗(s)

x3
∗(s)

 with dimension 3 × 1; v̂(s) =

 v1(s)
v2(s)
v3(s)

 with dimension 3 × 1;

Ĉ(s) =

 C1(s) 0
C2(s)

0 C3(s)

 with dimension 6 × 3,

where the dimension of the matrix block Ci(s)—2 × 1;

Ŵ(s) =

 W1(s) 0
W2(s)

0 W3(s)

 with dimension 3 × 6;

where the dimension of the matrix block Wi(s)—1 × 2;

L̂(s) =

 L1(s) 0
L2(s)

0 L3(s)

 with dimension 3 × 1;
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ŷ(s) =

 y1(s)
y2(s)
y3(s)

 with dimension 3 × 1.

Knowing the indicated matrices, we get

ŷ∗(s) = L̂∗(s)(ImN + Ŵ∗(s)∏ Ĉ∗(s))−1v̂∗(s),

or
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A Simulink calculation scheme is shown in Figure 4. 

By separating y∗1(s), we get an equivalent single-rate model as a result. The rest of
the equivalent models given in the article are obtained in the same way.

A comparative analysis of the step response of stabilization systems for the different
types of models was carried out in [18]: a complete continuous-discrete system, taking
into account the presence of different sampling periods, a model of a system in which all
quantization periods are considered small, and are excluded from the model, and the model
in which the periods of quantization are taken the same. In this case, the transfer functions
were not transformed and their parameters remained the same. It was shown in [18] that a
simple change of sampling periods without performing equivalent transformations leads
to various transient processes of systems.

Now we simulate the continuous-discrete system considered in Figure 3 with different
sampling periods T1 and T3. In the system T1 = 0.1, T3 = 0.3, W0(s) =
−48.6s3−144s2−228s−216

s5+4.28s4−25.3s3−57.7s2+6.3s , W1(s) = −0.708, W2(s) = −0.13, W3(s) = s.
The expression for the obtained equivalent single-rate representation of the system in

the z domain with a sample period T, which is the greatest common divisor of the sampling
periods, has the form

y(z) =

−0.09645z10 + 0.01635z9 + 0.52773z8 + 0.1572z7 − 0.78658z6 + 0.09531z5+
+0/901137z4 − 0.016177z3 − 0.43913z2 + 0.005319z + 0.087335
−0.23952z10 + 1.107978z8 − 2.284746z6 + 2.20171z4 − 1.0785z2 + 0.210444

,

A Simulink calculation scheme is shown in Figure 4.
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As equivalent models, we will take a continuous system with the same transfer
functions, but with continuous circuits in the feedback, a discrete single-rate system with
equal sampling periods in feedback loops, and an equivalent system with a sampling
period T, which is the greatest common divisor of the sampling periods.

The simulation results are shown in Figures 5–8.
Analyzing the results, we conclude that a simple replacement of a multirate system

with a continuous and single-rate system leads to unsatisfactory results. In the case of a
single-rate system, the system becomes unstable at certain values of the sampling period.
The transient process of the constructed equivalent system practically coincides with the
transient process of the original model.
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4. Discussion

If the system contains several digital information-processing circuits with different
periods, then its study is greatly complicated. In the general case of incommensurate
quantization periods, the mathematical apparatus of the study is practically not developed.
In the case of rationally commensurate quantization periods (the periods are integer
multiples of a certain “effective” period), it is possible to transform a multirate system to
an equivalent single-rate of the increased dimension. In the theory of impulse systems,
such transformations are usually performed based on parallelizing impulse circuits.

As a result, vector–matrix equivalent single-rate models are obtained using the dis-
crete Laplace transform of MIMO multirate multiloop stabilization systems given by
relations (4)–(6), or by structural diagrams, an example of which is shown in Figure 2.

Because of the construction of equivalent mathematical models, it becomes fundamen-
tally possible to transfer the synthesis and analysis methods of continuous MIMO systems
to the class of continuous-discrete MIMO multiloop multirate systems.

On the one hand, we obtained an effective tool for constructing an equivalent single-
rate form for describing MIMO multiloop multirate stabilization systems, to which the
methods of synthesis and analysis of continuous MIMO systems can be extended. On
the other hand, implementing the proposed technique leads to cumbersome calculations
and work with large transfer function matrices. The dimension of the equivalent sys-
tem is influenced by the mutual numerical characteristics of digital circuits. Thus, the
general construction of the system model complication is indicated due to the increase
in the dimension of the equivalent model at significant values of the clock multiplic-
ity numbers and the number of quantization chains. This is illustrated by an exam-
ple, including constructing a matrix of quantization densities—a structural invariant of
quantization chains.

Linear MIMO control systems—systems with multiple inputs and multiple outputs
—are part of the linear system class. Therefore, their theory is based on the same foun-
dation as the theory of SISO systems [30–32]. If we talk about models of linear systems
of a complex domain (domains of Laplace transformations, z-transformations), then this
dynamics is determined by the input–output relations in the form of the corresponding
rational functions-scalar for a one-dimensional matrix for multidimensional systems. At
the same time, the class of multidimensional systems (more complex by the property of
multidimensionality) in comparison with the class of one-dimensional systems requires
further development of the theory of linear systems, in connection with special mathe-
matical problems of research, which are absent in the class of one-dimensional systems
or appear in a much simpler form. Thus, for example, the solution of several problems
requires the use of equivalent transformations of polynomial matrices that determine the
transfer matrix of the system to a relatively simple form.

Implementing the corresponding computational procedures is a difficult task, the
solution of which becomes more complex with an increase in the dimension of the system.
Thus, for example, the solution of several problems requires using equivalent transforma-
tions of polynomial matrices that determine the transfer matrix of the system to a relatively
simple form. Methods for constructing the most significant common divisors of polynomial
matrices also play an essential role in implementing these transformations.

5. Conclusions

The input–output model of the system in the domain of discrete Laplace transform
is adopted as the initial description in the article. The construction of the matrix of trans-
fer functions of a MIMO system is a difficult task, the solution of which is based on the
mathematical apparatus of the theory of polynomial matrices. Considerable attention has
been paid to this problem, primarily within the framework of the theory of continuous
systems [31,32]. In principle, the methods of this theory can be easily transferred to multi-
dimensional impulse (continuous-discrete) single-rate systems. Therefore, in consideration
of multirate continuous-discrete, significant attention is paid to the problem of constructing
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an equivalent impulse single-rate system, the complete solution of which, as shown, is
possible in the case of rationally commensurate quantization periods in the digital circuits
of the system.

In all cases, the impulse representations of the outputs of the equivalent T- and NT-
models have the form of rational functions of the indicated variables

y∗T(s) = f (ψ(esT), ψ1(esT1), . . . , ψr(esTr )),
y∗NT(s) = F(Ψ(esT), Ψ1(esT1), . . . , Ψr(esTr )).

The solution to this problem fundamentally allows developing methods for analyz-
ing and synthesizing MIMO continuous and discrete systems on a common theoretical
basis—the theory of polynomials and rational functions, which are typical elements of the
descriptions of these classes of systems.
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