
drones

Article

Computationally-Efficient Distributed Algorithms of Navigation
of Teams of Autonomous UAVs for 3D Coverage and Flocking

Taha Elmokadem and Andrey V. Savkin *

����������
�������

Citation: Elmokadem, T.; Savkin, A.

V. Computationally-Efficient

Distributed Algorithms of Navigation

of Teams of Autonomous UAVs for

3D Coverage and Flocking. Drones

2021, 5, 124. https://doi.org/

10.3390/drones5040124

Academic Editor: Abdessattar

Abdelkefi

Received: 22 September 2021

Accepted: 21 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electrical Engineering and Telecommunications, The University of New South Wales,
Sydney 2052, Australia; t.elmokadem@unsw.edu.au
* Correspondence: a.savkin@unsw.edu.au

Abstract: This paper proposes novel distributed control methods to address coverage and flocking
problems in three-dimensional (3D) environments using multiple unmanned aerial vehicles (UAVs).
Two classes of coverage problems are considered in this work, namely barrier and sweep problems.
Additionally, the approach is also applied to general 3D flocking problems for advanced swarm
behavior. The proposed control strategies adopt a region-based control approach based on Voronoi
partitions to ensure collision-free self-deployment and coordinated movement of all vehicles within
a 3D region. It provides robustness for the multi-vehicle system against vehicles’ failure. It is
also computationally-efficient to ensure scalability, and it handles obstacle avoidance on a higher
level to avoid conflicts in control with the inter-vehicle collision avoidance objective. The problem
formulation is rather general considering mobile robots navigating in 3D spaces, which makes
the proposed approach applicable to different UAV types and autonomous underwater vehicles
(AUVs). However, implementation details have also been shown considering quadrotor-type UAVs
for an example application in precision agriculture. Validation of the proposed methods have been
performed using several simulations considering different simulation platforms such as MATLAB
and Gazebo. Software-in-the-loop simulations were carried out to asses the real-time computational
performance of the methods showing the actual implementation with quadrotors using C++ and the
Robot Operating System (ROS) framework. Good results were obtained validating the performance
of the suggested methods for coverage and flocking scenarios in 3D using systems with different
sizes up to 100 vehicles. Some scenarios considering obstacle avoidance and robustness against
vehicles’ failure were also used.

Keywords: cooperative control; coverage control; flocking control; Multi-Agent Systems; Navigation
of Aerial Drones; UAVs; UAV Control Systems; UAV Swarm

1. Introduction

In recent years, there has been an increasing interest in mobile wireless sensor net-
works (MWSNs), where a number of networked autonomous vehicles can be deployed
in different environments to achieve sensing tasks. Advances in communication made
MWSNs more appealing where vehicles (sensors) can share information to perform coop-
erative monitoring, sensing, detection and exploration.

The problem of controlling multi-vehicle systems to achieve a global objective is
referred to as cooperative control. There exist different subset problems related to this
area depending on the common goal to be achieved by the vehicles. Coverage control
deals with problems where a certain region of interest needs to be surveyed whether
using a single vehicle or multiple (i.e., using MWSNs). Tackling these problems with
multi-vehicle systems has given rise to new challenges to traditional cooperative control
in the field of coverage control [1–8]. Unmanned aerial vehicles (UAVs) have become a
popular choice in this area to form MWSNs especially in places inaccessible by ground
vehicles. In general, multi-UAV systems have been emerging in various applications such
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as precision agriculture [9–13], aerial manipulation and transportation [14–18], search
and rescue [14,19,20], firefighting [21], surveillance and monitoring [22,23], mapping and
exploration [24–26], etc.

Coverage control problems can be classified as either static or dynamic. Another
classification is based on [27] where coverage problems are categorized into Blanket coverage,
Barrier coverage and Sweeping coverage, which are defined as follows:

• Blanket coverage is forming a static arrangement to maximize the detection rate of
events through an area of interest.

• Barrier coverage is a static formation over some region (i.e., a barrier) to minimize
intrusions or maximizing detection of objects going through it.

• Sweeping coverage is the formation of dynamic arrangements moving across a region
of interest for maximal detection/exploration along the whole region.

Clearly, blanket and barrier coverage problems belong to the static class while sweep-
ing is a dynamic coverage problem.

Static coverage can be applied in different applications such as surveillance, real-time
monitoring of crops, live stock and pollution, intruders detection in the security domain, etc.
In these scenarios, the combined sensing field of view of all sensors is sufficient to monitor
the regions of interest with a static configuration that the MWSN converges to. On the other
hand, dynamic coverage is based on applications where the sensors need to remain mobile
in order to survey the regions of interest. Examples of these applications include [28],
but not limited to, autonomous search & rescue, monitoring of dynamically-changing
environments, real-time monitoring of large areas with limited number of vehicles, visual
inspection using multiple vehicles with limited combined field-of-view (FOV), firefighting
in forests using a group of vehicles with limited spray area, autonomous irrigation with
limited spray area, etc.

Flocking is another class of problems where cooperative control is applied, which is a
subset of formation control, to deal with movement of large number of vehicles (swarms).
In general, controlling a large number of vehicles to a achieve a common motion objective
is motivated by collective behavior of animals such as bird flocks and fish schools. In
this case, vehicles can make motion decisions by following a set of rules contributing
towards the collective behavior (i.e., flocking). These rules are: flock centering (cohesion),
collision avoidance (separation) and velocity matching (alignment) according to Reynold’s
model [29,30].

The main contribution of this work is to develop novel distributed control strategies
addressing cooperative control problems to achieve 3D coverage and flocking behavior.
Specifically, the proposed methods address the 3D barrier and sweep coverage problems
motivated by some of the ideas in [1,6,31]. In a 3D environment, a barrier can be defined
as a static arrangement of sensors with overlapping sensing zones [32] forming a surface
or a 3D region. The suggested control strategies rely on estimated centroidal Voronoi
configurations over virtual regions generated by the sensors locations in a distributed
manner depending only on shared information from neighbor vehicles. Furthermore, the
suggested methods are also extended to address flocking problems in 3D spaces where
the movement of the 3D virtual region is decided collectively by the group to achieve the
common motion objective.

The designed control laws require relative distances with neighbor vehicles to be
shared over communication channels which makes the overall problem related to Net-
worked Control Systems (NCSs) [33–39]. The current work assumes that such information
is available to the control system. However, several challenges related to communication
channels imperfections needs to be considered when evaluating the performance of the
overall networked control system. Thus, it is important to design a reliable communication
system to allow for advanced swarming behaviors of robotic systems [40].

Overall, the vehicles’ collective motion becomes constrained within a specific dynamic
region under the application of the suggested control methods similar to region-based
shape control methods [41]. The dynamic region can be selected as a collection of non-
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overlapping polygons in 3D. Furthermore, one can control the dynamics of the dynamic
region to generate 3D sweeping behavior which is the key idea used in the developed
3D sweeping coverage strategy. This is also considered to handle obstacle avoidance
where vehicles can collaboratively control the dynamics of the virtual barrier and even
apply deformations to its shape in real-time, which is then communicated through the
networked multi-vehicle system. Furthermore, bounded control laws are proposed, which
is important in practice to satisfy limits on the vehicles’ velocities and accelerations. The
main advantages of the suggested approaches can be highlighted as follows:

• collision avoidance among vehicles and connectivity is ensured by the adopted
Voronoi-based approach

• the approach is highly scalable and robust against vehicles’ failure
• obstacle avoidance can be managed in a decomposed and distributed manner

A general 3D kinematic model is adopted in the design which is applicable to differ-
ent UAV types and autonomous underwater vehicles (AUVs). A 6 degrees-of-freedom
(DOF) dynamical model for quadrotors is further considered to show a possible way of
implementation with low-level control design. Several simulations were carried out to vali-
date the performance of the suggested methods in addition to showing its scalability and
robustness. Moreover, software-in-the-loop (SITL) simulations were also performed using
the Gazebo robotic simulator based on the quadrotor full dynamical model to evaluate
the computational complexity of the implemented algorithms with particular interest in
applications related to precision agriculture.

The organization of this paper is as follows. A summary of related works is given
in Section 2 highlighting some of the drawbacks that motivated the proposed design.
Section 3 introduces some essential concepts related to graph theory, locational optimiza-
tion and Voronoi Partitions which are used in our control strategy, and the tackled 3D
coverage problems are defined in Section 4. After that, distributed barrier and sweeping
coverage control strategies are proposed in Section 5 considering a general 3D kinematic
model. These approaches are validated through several simulation cases in Section 6.
Furthermore, a generalization of the suggested methods is presented in Section 7 to address
3D flocking problems along with validation. Further implementation details consider-
ing quadrotors dynamics with low-level control design are presented in Section 8, which
is evaluated using software-in-the-loop simulations. Finally, this work is concluded in
Section 9 with a suggestion for a potential direction of future work.

2. Related Work

Coverage problems and optimal sensors deployment for both fixed and mobile
wireless sensor networks have gained great interest over the years. According to [42],
some of the common techniques used to address static coverage problems are resource-
aware [43–45], search space-based [46,47], potential-based [48,49], Voronoi
partition-based [1,5,31,50–55] and angle view [56–58].

An example algorithm of static deployment of cameras (i.e., non-mobile sensors) to
achieve coverage with optimal resource allocation was proposed in [44]. In [43], modified
Lloyd-like algorithms were developed to address the 2D static deployment of mobile sen-
sors while considering optimizing the overall power consumption. The tradeoff between
coverage performance and energy consumption of mobile heteregoneous wireless sensor
networks was also investigated in [45].

Optimal placement of fixed and mobile networked sensors have been tackled in some
works using optimization-based techniques. For example, the work in [46] adopted a
particle swarm optimization-based approach to address the static deployment of cameras
over 2D and 3D monitoring spaces for optimal visual monitoring. On the other hand,
2D static deployment of mobile wireless sensors was addressed in [47] using the Multi-
objective Immune Algorithm (MIA). The problem formulation targeted the maximization
of the coverage area while minimizing energy consumption due to movement. The authors
have also considered the connectivity perseverance through limited movement within
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specified communication ranges. However, collision avoidance between mobile sensors
and obstacles avoidance were not considered.

Another class of approaches addressing coverage problems of MWSNs is based
on artifical potential field, which makes it easier to include collision avoidance rules as
potential functions. In this case, control laws are designed based on gradient descent
algorithms. For example, a decentralized approach was developed in [48] addressing the
problem of deploying mobile sensors with limited sensing capeabilities to achieve the best
possible coverage over an n-dimensional Euclideon space. The mobility of sensors was
modeled as single integrator. The devleoped control law relies on forcing the inter-agent
distances to reach a desired distance while avoiding collisions with other vehicles. Obstacle
avoidance was not considered in this work. On the other hand, another method was
presented in [49] using artificial potential fields considering both forces between the mobile
sensors and obstacles in the environment to achieve both static deployment and collision
avoidance. The method was validated considering only 2D environments.

A similar class of methods existing in the literature is based on Voronoi diagrams.
The formulation of of such methods relies also on gradient descent algorithms adopting
potential functions that can encode optimal coverage in a distributed manner, which was
well developed in [1,31,59] with rigorous mathematical proofs. In these works, Lloyd’s
algorithm was adopted to develop distributed control methods for motion coordination
of MWSNs to achieve optimal coverage. Only 2D coverage problems were considered,
and obstacle avoidance was not considered. The approaches were distributed in nature
where each vehicle can compute its own Voronoi cell based on information shared from
its Voronoi neighbours. Similarly, an adaptive 2D approach was proposed in [5] based on
Voronoi diagrams. However, the authors of this work suggested a decentralized control
law design, where each vehicle can approximate the centroid of its Voronoi cell based only
on its sensory measurements rather than relying on information received from its Voronoi
neighbors. This can be more practical in cases where Voronoi neighbors are at distances
larger than the vehicle’s communication range. This approach was also considered in [50];
however, a different weighting function, which defines the sensing performance over a
planar region, was considered.

Many of the above approaches consider planar circular sensing models. Some works
have considered different sensing models such as [51,52]. In these works, non-uniform
unequally scaled 2D sensing footprints were considered. Additionally, Voronoi partitioning
was performed only with respect to the sensed space, rather than the whole region of
interest as in the previous methods.

Some research works have also considered additional requirements in the coverage
problem formulation such as graph connectivity perseverance and information routing.
For example, the 2D static coverage problem tackled in [53] considered that the mobile
sensors are required to send the collected sensory information to a set of destinations over
the network while performing the coverage task. Their solution was based on a constrained
optimization problem considering Voronoi partitioning as part of the solution.

The above methods are mainly developed to address static coverage problems of
MWSNs, where the sensors need to converge to a static arrangement with optimal coverage.
There also exist methods addressing dynamic coverage problems such as [28,60–66]. In [28],
a multi-agent system was considered with a 2D nonholonomic agent model. The approach
relied on a leader-follower paradigm, where the vehicles try to maintain desired distances
from a position targeted by the leader. This can be more challenging in 3D and for systems
with large number of vehicles. Another approaches considering 2D nonhonolomic agents
were developed in [61,62] proposing control laws based on a special form of Lyapunov-like
functions to achieve satisfactory coverage level and collision avoidance.

Motivated by the Voronoi-based static coverage methods, the work in [63] suggested a
planar approach based on modified Voronoi partitions with time-varying density functions,
which describe the coverage performance, to address the planar dynamic coverage problem.
However, obstacle avoidance was not considered in this work. A similar approach was also
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proposed in [63] where the authors suggested a Bayesian prediction method to estimate
the unknown time-varying density function.

Overall, many of the existing static and dynamic coverage control approaches consider
only two-dimensional sensing fields, and the literature lacks a proper analysis of sensor
networks deployed in three-dimensional (3D) sensing fields [67]. Even those methods
proposed for multi-UAV and multi-AUV systems assume that the vehicles are moving at a
fixed altitude/depth with a planar sensing footprint without utilizing the full capabilities
of such vehicles. It is hence more motivating to work towards addressing 3D coverage
problems exploiting the rich geometric properties of 3D MWSNs [67]. Some efforts have
been made in that area such as [32,67–73]. Thus, one of the main motivations of this work is
to contribute towards the state-of-the-art 3D static and coverage problems using MWSNs.

On the other hand, the flocking problem has also attracted great interest. Many
researchers have tackled the flocking control problem where the global group objective is to
move the whole group towards some goal region or to follow a certain motion pattern (for
example, see [29,74–83]). Most of state-of-the-art flocking control methods rely completely
on artificial potential field to handle local interactions between vehicles, which have some
disadvantages such as being prone to getting stuck at a local minimum especially due to
conflicts between forces required to achieve moving towards goal, collision avoidance and
obstacle avoidance control objectives. To address these limitations, the suggested control
strategy separates the control components for these objectives on different layers as will be
shown later.

3. Preliminaries

The proposed methods in paper relies on concepts from graph theory, locational
optimization and Voronoi partitions. A summary of these concepts is provided in this
section based on [1,29,31,59]. Note that when considering a multi-UAV system as a mobile
wireless sensor network, UAVs may interchangeably referred to throughout the paper as
sensors, nodes, agents or vehicles.

3.1. Graph Theory

A multi-UAV sensor network consisting of n UAVs can generally be characterized
using a set of nodes/vertices U = {1, 2, · · · , n} and a set of edges (paired vertices) E ⊆
{(i, j) : i, j ∈ U , j 6= i}. Note that i and j will be used in the rest of the paper to refer
to the index of a node/vertex within a set (i.e., index of a UAV within the group). Each
vertex corresponds to a single UAV/sensor, and edges represent interaction between UAVs
which are within communication or detection range from each others. The overall network
topology is then described using a graph G = (U , E) which can be directed or undirected.
In an undirected graph, an edge exists from vertex i to vertex j if and only if an edge exists
from j to i (i.e., (i, j) ∈ E ↔ (j, i) ∈ E ). Otherwise, the graph is called directed. Generally,
homogeneous multi-UAV systems can be described using undirected graphs since all
UAVs have same communication and sensing capabilities. Moreover, a path between two
vertices i0 and ik is defined as a sequence of vertices {i0, i1, · · · , ik} ⊂ U where an edge
exists between each subsequent vertices in the sequence such that (il , il+1) ∈ E , ∀l ∈
{0, 1, · · · , k− 1}. If every pair of vertices in U is connected by a path, the graph G(U , E) is
then called connected. Clearly, a crucial part for MWSNs is to maintain network connectivity
all the time.

Furthermore, define a neighborhood Ni around a vertex i as the set of all vertices which
have edges with vertex i such that:

Ni = {j ∈ U\{i} : (i, j) ∈ E}. (1)

For a homogeneous system, let r > 0 denote the communication range for all UAVs.
Hence, all UAVs within a spherical region of radius r around UAV i belong to its neighbor-
hood such that

Ni = {j ∈ U\{i} : ||pi − pj|| ≤ r}, (2)
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where pi ∈ IR3 is the position of UAV i, and || · || is the Euclidean norm in IR3. Similarly, all
norms in the rest of the paper are Euclidean norms in IR3.

3.2. Locational Optimization

Deployment of mobile sensors in an environment to achieve optimal sensor coverage
is regarded as a multicenter problem from locational optimization (i.e., spatial resource-
allocation problem). A brief description about some of the facts related to this class of
problems is summarized next based on [1,59].

Consider a bounded region of interest Q, including its interior, defined in a space IRd

with dimension d. A partition of Q consists of a group of n non-overlapping polytopes
W = {W1, · · · , Wn} such that W1 ∪ · · · ∪Wn = Q. Furthermore, let φ : Q → IR+, (IR+ =
{a ∈ IR : a > 0}) be defined as a distribution density function representing a measure of
information or the likelihood of an event to take place over Q. The sensing performance of a
sensor located at some position pi as seen from any point q ∈ Q depends mostly on the
distance ||q− pi||. Clearly, as this distance increases, the sensing performance degrades.
Hence, one can describe the sensing performance at location q of the sensor pi using a
non-increasing piecewise continuously differentiable function f (||q − pi||) : IR+ → IR.
Thus, the larger the value of f , the better the sensing performance at q is.

Using the above definitions, one can define a multicenter cost function characterizing
the average coverage provided by a set of n sensors at p1, · · · , pn over an point in Q as
follows:

H(p1, · · · , pn) =
∫
Q

max
i∈{1,··· ,n}

f (||q− pi||)φ(q)dq. (3)

The above function provides a measure of the sensing performance expected value
provided by all sensors at any point q ∈ Q [31]. Now, in order to find the optimal
placement for all sensors, an optimization problem needs to be solved to maximize the
value ofH(p1, · · · , pn).

Remark 1. Note that there are slightly different definitions for f in the references [1,31,59] where
it can be either considered as a representation of sensing degradation or sensing performance over Q
(as considered here). This does not affect the overall analysis done here except that the considered
optimization problem will either be minimization (of sensing degradation) or maximization (of
sensing performance).

3.3. Voronoi Partitions (Tessellation)

This subsection highlights some key points about Voronoi partitions needed for our
problem formulation. A Voronoi partition/tessellation is the subdivision of a space into a
number of regions generated by a set of points (see Figure 1 for a 2D example). Consider
that we have n sensors located at fixed locations P = {p1, · · · , pn} ∈ Qn. A voronoi
partition of Q consists of a set of disjoint Voronoi regions/cells V(P) = {V1, · · · , Vn}
generated by these sensors where

Vi = {q ∈ Q : ||q− pi|| ≤ ||q− pj||, ∀j 6= i}, (4)

and V1 ∪V2 ∪ · · · ∪Vn = Q.
It has been established that this Voronoi partition is the optimal partition of Q among

all other partitions [59]. For any sensor located at a position pi, its Voronoi neighbors
NV ,i ⊂ P are defined as the sensors corresponding to adjacent Voronoi cells such that:

NV ,i = {j ∈ {1, · · · , n} : Vi ∩Vj 6= ∅, j 6= i}. (5)
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Figure 1. Example Voronoi partition of a 2D plane divided into number of regions with their
associated points.

Considering the above definition, one can rewrite (3) as:

HV (P,V(P)) =
n

∑
i=1

∫
Vi(P)

f (||q− pi||)φ(q)dq. (6)

By taking the partial derivative of (6) with respect to pi, the following is obtained:

∂HV
∂pi

(P,V(P)) =
∫

Vi

∂

∂pi
f (||q− pi||)φ(q)dq, (7)

where it is assumed that f does not have any discontinuities. Furthermore, considering
f (x) = −x2, the multicenter cost function in (6) becomes:

HV (P,V(P)) = −
n

∑
i=1

∫
Vi(P)

||q− pi||2φ(q)dq := −
n

∑
i=1

JVi ,pi , (8)

where JVi ,pi is the polar moment of inertia of Vi about pi. Consequently, (8) reduces to:

∂HV
∂pi

= 2MVi (CVi − pi), (9)

where MVi ∈ IR+ and CVi ∈ IR3 are the mass and center of mass (centroid) of the corre-
sponding Voronoi partition Vi with respect to the density function φ(q). It is clear from (9)
that the critical points of HV (P,V(P)) are the configurations P ∈ Qn where pi = CVi ∀i,
which are referred to as centroidal Voronoi configurations.

4. 3D Coverage Problems

Consider a 3D bounded region of interest S ⊂ IR3. A multi-vehicle system can perform
coverage tasks over S where coverage objective may vary according to the problem in hand.
Definitions of the considered barrier and sweep coverage problems in 3D are defined next.

Problem 1. (3D Barrier Coverage) Deploy a network of vehicles/sensors to form a static arrange-
ment over some region B ⊂ S (i.e., a barrier) maximizing the sensing performance of the overall
network to detect any intruder going through the barrier.

A special case of the above problem is when deploying the sensors over a planar region
within S defined by B = {(x, y, z) : σ(x, y, z) = 0} where σ(x, y, z) is the plane’s equation.
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Note that for this problem to be solvable, the number of vehicles/sensors needed depends
on the size of S and the sensing range of all vehicles (assuming a homogeneous system).

Problem 2. (3D Sweep Coverage) Consider a group of vehicles whose overall sensing range is not
large enough to achieve complete coverage over S . It is required to survey the region S by moving
the whole group across S as a dynamic formation over some region F (t) ⊂ S .

The coverage task can be considered completed once the whole region S is scanned/surveyed.
Alternatively, the coverage task can be done repetitively over a specified period of time (i.e., continu-
ously survey S for several times).

Note that F (t) can be of any 3D shape in which its motion along S following a certain
pattern can achieve complete coverage. A special case is when F (t) is a plane which
is considered in this work. In this case, F (t) will referred to as the sweeping plane. The
dynamics of the sweeping plane Ḟ (t) can be determined in a way to achieve complete
coverage over S . It is also assumed that F (t) can change size and shape over time which
can be utilized for other motion objectives such as obstacle avoidance as will be shown later.

Problem Formulation

The aim of this work is to develop distributed control laws for multi-UAV systems to
address Problems 1 and 2. We consider a system of n homogeneous vehicles (UAVs/AUVs)
with a single integrator motion model given by:

ṗi(t) = ui(t), (10)

where pi ∈ IR3 is the i-th vehicle position defined in some inertial frame {I}, and ui ∈ IR3

is its control input (velocity) where

‖ui‖ ≤ umax. (11)

All vehicles can sense events in the environment within a sensing range rs > 0.
Furthermore, any vehicle can exchange information with nearby vehicles within some
communication range rc > 0. Obviously, it is assumed that rc > rs so that it is possible
to design control laws which can maintain the connectivity of the network with minimal
sensors overlapping. It is assumed that the vehicles are homogeous in terms of sensing and
communication ranges. However, they can be of different types, sizes and/or weights.

5. Distributed Coverage Control Strategies

The proposed control schemes to address Problems 1 and 2 are based on a self-
deployment method for the multi-vehicle system over a planar region B ⊂ S which
is static for barrier coverage problems and dynamic for sweep coverage problems. We
consider a set of l vertices E to describe the boundary of B as a polygon such that E =
{e1, e2, · · · , el} ⊂ S ; clearly, l > 2. Lloyd’s algorithm is adopted in the designed
controllers to guide the vehicles to reach the instantaneous centroids of their associated
Voronoi regions over B (i.e., reaching the centroidal Voronoi configuration). Once this is
reached, an optimal coverage over B is achieved. Furthermore, for sweeping problems, the
designed dynamics of B will achieve coverage over S .

5.1. Online Computation of Centroidal Voronoi Configurations

The developed control law requires each vehicle to be able to compute the centroid
of its Voronoi region in a distributed fashion based only on information exchanged with
vehicles within its neighbourhood. We extend the approach proposed in [1] to compute
Voronoi cells for planar regions in 3D in a distributed fashion.

To simplify the mathematical development, a new 3D coordinate frame {B} attached
to B is needed. The origin of {B} can be selected to be one of the barrier vertices defined as
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OB = e1. Furthermore, the axes of {B} are defined using the orthonormal basis {~a1,~a2,~a3}
where:

~a1 =
e2 − e1

||e2 − e1||

~a2 =
h(~a1,~b)

||h(~a1,~b)||
, ~b =

el − e1

||el − e1||
~a3 =~a1 ×~a2,

(12)

where h(~w1, ~w2) = ~w2 − (~w1 · ~w2)~w1 is a mapping function which gives an orthogonal
vector to ~w1 ∈ IR3 directed towards ~w2 ∈ IR3.

All computations needed to find Voronoi centroids are carried out in the {B} frame
through a transformation between {B} and the inertial frame {I}. Let vI ∈ IR3 be a vector
defined in the {I} frame. This vector can be transformed to the {B} coordinate frame
using a transformation matrix TBI as follows:[

vB

1

]
= TBI

[
vI

1

]
, (13)

where TBI is a 4× 4 affine transformation matrix given by:

TBI =
(

TIB
)−1

=

[
~a1 ~a2 ~a3 OB
0 0 0 1

]−1

.

Note that we represent the transformation using an augmented matrix to consider
both rotation and translation in a single matrix multiplication. Furthermore,~a1,~a2,~a3, and
OB are column vectors.

From now on, vectors represented in the inertial frame will be represented without
the I superscript for simplicity. Given a UAV at position pi, it is required to compute
instantaneous Voronoi centroid CVi of its projection onto B. First, the following assumption
is made.

Assumption 1. Each Voronoi cell Vi ⊂ B, generated by the projection of UAV i onto B, is a
convex polygon defined by m vertices {vB1 , vB2 , · · · , vBm} where vBj = (x̄j, ȳj, 0), j = {1, · · · , m}.

The proposed approach can now be described in these steps:

S1: Transform the position pi into the {B} frame to obtain pBi = [x̄i, ȳi, z̄i]
T by applying

(13).
S2: Compute the projection of pBi onto B defined in the {B} frame by setting z̄i = 0 as

p̃Bi = [x̄i, ȳi, 0]T .
S3: Compute the Voronoi cell centroid C̃BVi

= [c̄x,Vi , c̄y,Vi , 0]T associated with p̃Bi using the
following [1]:

MVi =
1
2

m

∑
k=1

(x̄k ȳk+1 − x̄k+1ȳk)

c̄x,Vi =
1

6MVi

m

∑
k=1

(x̄k + x̄k+1)(x̄k ȳk+1 − x̄k+1ȳk)

c̄y,Vi =
1

6MVi

m

∑
k=1

(ȳk + ȳk+1)(x̄k ȳk+1 − x̄k+1ȳk),

(14)

where vBm+1 = (x̄m+1, ȳm+1, 0) = vB1 . These equations are obtained considering
Assumption 1 and a constant distribution density function φ(q) = 1. Voronoi cell
vertices {vB1 , vB2 , · · · , vBm} can be determined based on locations of Voronoi neighbours
in a distributed fashion (see Remark 2).

S4: Transform C̃BVi
to the inertial frame {I} to get C̃Vi = [cx,Vi , cy,Vi , cz,Vi ]

T using (13).
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Remark 2. The vertices of a Voronoi cell Vi can be found as the circumcenters of triangles formed
by p̃Bi and any two of its Voronoi neighbours. A triangle made by three points p1, p2 and p3 with
an area of A has a circumcenter at [1]:

circumcenter =
1

4A

(
||α32||2(α21 · α13)p1

+ ||α13||2(α32 · α21)p2 + ||α21||2(α13 · α32)p3

)
,

(15)

where αls = pl − ps.

5.2. Barrier Coverage Control Design

In order to present our control design, some technical assumptions need to be made
as follows.

Assumption 2. The communication graph G(U , E) remains connected for t ≥ 0.

Assumption 3. Each UAV is capable of estimating the Voronoi cell centroid of its projected position
onto B at any time using only information from UAVs within its communication range (i.e., UAVs
in its neighborhood Ni).

Assumption 4. The Voronoi neighbours of p̃Bi correspond to UAVs within the neighbourhood Ni.

Assumption 5. The initial configuration of the multi-UAV system satisfies the following condition:
pi(0)−pj(0)
||pi(0)−pj(0)||

· a3 6= ±1, ∀i, j ∈ {1, · · · , n}, i 6= j where a3 is the barriers normal as defined

in (12).

Assumption 2 is made to make sure that updated information about the barrier B is
available to all vehicles at any time during the motion. This is essential in cases where
B is dynamic. For example, a decision could be made by one of the UAVs to apply
changes to the shape of B based on some detected obstacles. Such information needs to be
shared among all vehicles so that they can compute their Voronoi regions accordingly. It
is possible to ensure the connectivity of G(U , E) by enforcing constraints on B based on
the number of vehicles and communication ranges to ensure that Voronoi neighbors are
within the communication range of each others. Assumptions 3 and 4 ensures that UAVs
can determine Voronoi centroids in a distributed fashion. Finally, Assumption 5 ensures
that all UAVs are initially located at positions with unique projections onto B.

Now, the main results of this section can be presented. Consider the following control
law ui : IR3 → IR3 based on Lloyd’s algorithm:

ui = K̄i(C̃Vi − pi), (16)

where the parameter K̄i is a diagonal positive definite gain matrix. We also propose a more
practical bounded control law ui : IR3 → Γ which can satisfy bounds umax on the control
input such that Γ = {u ∈ IR3 : ||u|| ≤ umax}. It is given as follows:

ui = Ki tanh
(

γi(C̃Vi − pi)
)

, (17)

where Ki = diag{ki,x, ki,y, ki,z} is a positive definite diagonal matrix, γi > 0, and tanh(v)
is the hyperbolic tangent function defined element-wise for any vector v ∈ IR3. Clear, the
bound of this control law depends on the gain matrix Ki as follows:

||ui|| ≤
√

k2
i,x + k2

i,y + k2
i,z := ui,max. (18)
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Theorem 1. Consider a multi-UAV system with n vehicles whose motion are modelled as (10).
Under Assumptions 2–5, the distributed control law (16) (or (17) for bounded inputs) along with
the algorithm in S1-S4 solves the 3D barrier coverage problem defined in Problem 1.

Proof. Let Pe be a centroidal Voronoi configuration. We define a Lyapunov canidate
function as

V1(P(t)) =
1
2
H̄ − 1

2
HV (P(t),V(P(t))), (19)

where HV is defined in (8) with φ(q) = 1, and H̄ = HV (Pe,V(Pe)) which is constant.
Hence, V1(Pe) = 0. Furthermore, H̄ ≥ HV (P(t),V(P(t))) ∀P ∈ Sn\{Pe} since a cen-
troidal Voronoi configuration is optimal forHV among all other configurations (see Propo-
sition 2.14 in [59]). This indicates that V1(P(t)) > 0 which makes it a valid Lyapunov
function.

The time derivative of (19) can be obtained using (9) and (10) and the control law
(16) as:

V̇1 =
−1
2

n

∑
i=1

(
∂HV
∂pi

)T
ui (20)

= −
n

∑
i=1

(C̃Vi − pi)
T L̄i(C̃Vi − pi) (21)

≤ −
n

∑
i=1

λmin(L̄i)‖C̃Vi − pi‖2, (22)

where L̄i = MVi K̄i, and λmin(L̄i) is the smallest eigenvalue of L̄i. It is clear from (22) that
V̇1 < 0 ∀P ∈ Sn\{Pe} since K̄i is positive definite (i.e., λmin(L̄i) > 0). Hence, the set of
centroidal Voronoi configurations Pe is locally asymptotically stable, and lim

t→∞
pi = C̃Vi , ∀i.

Similarly, for the bounded control law, the time derivative of V1(P(t)) can be obtained
by substituting (17) into (20) as follows:

V̇1 = −
n

∑
i=1

(C̃Vi − pi)
T Li tanh

(
γi(C̃Vi − pi)

)
(23)

:= −
n

∑
i=1

eT
i Li tanh(γiei). (24)

It is evident from (24) that V̇1 < 0 ∀P ∈ Sn\{Pe} since the hyperbolic tangent function
is an odd function and γi > 0. This implies that Pe is also locally asymptotically stable
under the application of the bounded control law (17).

Therefore, the control law (16) (or (17)) guarantees that the vehicles will converge
to centroidal Voronoi configurations which maximizes the sensing performance over the
barrier B according to Proposition 2.13 in [59]. Furthermore, Assumptions 2–5 ensures that
all vehicles can compute the centroids of their Voronoi cells in a distributed fashion at all
times with no overlapping following the algorithm in S1–S4. This completes the proof.

Note that the proposed control law ensures that the vehicles will converge to centroidal
Voronoi configurations generated by their projections onto B. Thus, all the vehicles will
eventually reach B such that lim

t→∞
pi = C̃Vi ∈ B even if they are initially deployed at some

positions pi(0) /∈ B. Additionally, the trajectory of each vehicle remains within its Voronoi
region which does not intersect with any other regions by definition. This guarantees that
vehicles motions are collision-free using the proposed control laws.

5.3. Sweep Coverage Control Design

Theorem 1 shows that the proposed control laws can force the vehicles to reach a
specified region within the 3D space (i.e., the barrier) and constrain their motion within
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that region. This is extended in this section to address the sweep coverage control problems.
It can be achieved by enforcing vehicles to deploy over some dynamical "virtual" region
whose motion is determined by the group.

In general, motion coordination control laws for coverage problems needs to satisfy
the following objectives:

O1 Avoid collisions with other vehicles while maintaining a certain formation as a group
O2 Avoid collisions with obstacles within the environment
O3 Achieve optimal coverage of the targeted environment S collaboratively

The proposed sweeping algorithm targets these objective on two levels. At a lower
level, the vehicles motions are constrained within a dynamic "sweeping "region F (t) ⊂ S ,
and they maintain an optimal formation over that region for maximal sensing. This
achieves objective O1. At a higher level, decisions can be made in real-time collaboratively
by the vehicles to decide the dynamics of F (t) (i.e., Ḟ (t)). Note that it is also possible to
apply deformations to F (t) (will be shown in simulations) as long as the deformed region
is large enough for the vehicles to distribute over with safe spacing. This provides a good
way in addressing objectives O2 and O3. In particular, the trajectory of F (t) will result
in sweeping the whole environment S providing optimal coverage. Moreover, obstacle
avoidance can be achieved by only changing the dynamics of F (t) rather than having each
vehicle reacting independently to obstacles.

For r ∈ F (t), the motion dynamics of the sweeping region can be described as follows:

ṙ = g(t, r), ‖g(t, r)‖ ≤ ḡ, ‖ġ(t, r)‖ ≤ ¯̄g, (25)

where g(t, r) ∈ IR3 is a desired velocity profile, ḡ, ¯̄g > 0 are upper bound design parameters
to account for dynamic limitations where the following condition must hold:

ḡ ≤ umax. (26)

In other words, the speed of F (t) should not be larger than the maximum physical
speed that can be achieved by the vehicles. Note that g(t, r) ∈ IR3 can have any direction.
However, for simplicity in achieving sweeping coverage, it assumed that F (t) is a planar
region, and it is defined similar to B (see Section 5.1) at different time instants. A simple
example is moving F (t) in the direction of its normal (i.e.,~a3) with a constant sweeping
speed g0 > 0 such that:

g(t, r) = g0~a3. (27)

More complex movements can be achieved depending on the considered environ-
ment shape and nearby obstacles. One can also adopt a 3D holonomic or non-holonomic
model for (25) utilizing the available literature in obstacle for these models. Generally,
obstacle avoidance can be achieved either by varying the dynamics in (25) or by dynam-
ically deforming F (t). Simulation cases showing both approaches will be shown later.
Note that the distributed behavior of the proposed algorithm is maintained in all these
cases since information about g(t, r) are exchanged over the connected network following
Assumption 2. At this point, we will leave out the design of (25) to a high-level controller
shared among the vehicles while assuming the following:

Assumption 6. The sweeping plane F (t) remains all the time within the sensing environment
(i.e., F (t) ⊂ S , ∀t > 0), and its movement governed by (25) will completely span the volume of
the sensing environment S .

The main results of this section can now be presented.

Theorem 2. Consider a multi-UAV system of size n where each vehicle’s motion model is repre-
sented by (10). The control law (16) along with the algorithm in S1–S4 defined for a sweeping
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region F (t) whose dynamics is governed by (25) solves the 3D sweeping coverage problem defined
in Problem 2 under Assumptions 2–6 and the condition (26).

Proof. Let
eCi = C̃Vi − pi → ėCi =

˙̃CVi − ui, (28)

where ui(t) is given by (16). Now, define a Lyapunov candidate function as follows:

V2(t) := V2(eC1(t), · · · , eCn(t), ėC1(t), · · · , ėCn(t))

= V1 +
1
2

n

∑
i=1

(
k1eT

Ci
eCi + k2ėT

Ci
ėCi

)
,

(29)

where V1 is defined in (19), and k1 and k2 are positive kinematic constants with units of m2

and m2 · s2 to match the physical units of V1 which is m4. The choice (29) guarantees that
V2(t) > 0 for

(eC1(t), · · · , eCn(t), ėC1(t), · · · , ėCn(t)) 6= (0, · · · , 0),

and V2(0, · · · , 0) = 0 is also true.
The time derivative of (29) is obtained using (10) and (16) as follows:

V̇2 = V̇1 +
n

∑
i=1

(
k1eT

Ci
ėCi + k2ėT

Ci
ëCi

)
= V̇1 +

n

∑
i=1

(
k1eT

Ci
( ˙̃CVi − K̄ieCi ) + k2ėT

Ci
( ¨̃CVi − K̄i ėCi )

)
≤ V̇1 +

n

∑
i=1

(
k1‖ ˙̃CVi‖‖eCi‖ − λmin(K̄i)k1‖eCi‖

2 + ¯̄gk2‖ėCi‖ − λmin(K̄i)k2‖ėCi‖
2
)

(30)

Recall that V̇1 < 0 which was established in (24). Therefore, the time derivative of V2
is negative outside the compact set BΓ = BΓ1 ∪ · · · ∪ BΓn where BΓi = {eCi ∈ IR3, ėCi ∈ IR3 :
‖eCi‖ > Γi,1, ‖ėCi‖ > Γi,2} and Γi,1 and Γi,2 are given by:

Γi,1 =
‖ ˙̃CVi

‖
λmin(K̄i)

, Γi,2 =
¯̄g

λmin(K̄i)
, (31)

which represent closed balls with radius Γi,1 and Γi,2 respectively. Thus, starting from any
initial condition outside the set BΓ, the errors will converge to the closed set BΓ in finite
time and stay there forever. That is,

lim sup
t→∞

‖C̃Vi − pi‖ ≤ Γi,1, lim sup
t→∞

‖ ˙̃CVi − ui‖ ≤ Γi,2,

which means that the errors will be uniformly ultimately bounded with respect to BΓi .
Moreover, the radius of BΓi can be made arbitrary small by increasing K̄i such that
λmin(K̄i) � ḡ and λmin(K̄i) � ¯̄g. Furthermore, since C̃Vi ∈ F (t), its derivative fol-
lows (25) (i.e., lim sup

t→∞
‖g(t, C̃Vi )− ui‖ ≤ Γi,2). Hence, all the vehicles will converge to their

centroidal Voronoi configurations over F (t) and follow its trajectory associated with (25).
According to Assumption 6, the movement of the multi-UAV along the trajectory of F (t)
solves the sweeping coverage problem. This completes the proof.

Theorem 3. Consider a multi-UAV system of size n where each vehicle’s motion model is repre-
sented by (10). Furthermore, consider using the algorithm in S1–S4 defined for a sweeping region
F (t) whose dynamics is governed by (25) so that the vehicles can compute their centroidal Voronoi
configurations. The bounded control law (17) solves the 3D sweeping coverage problem defined in
Problem 2 under Assumptions 2–6 and the condition (26).
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Proof. Again, consider the errors definitions in (28). We now define a Lyapunov candidate
function as follows:

V3(t) := V3(eC1(t), · · · , eCn(t), ėC1(t), · · · , ėCn(t))

= V1 +
n

∑
i=1

( k3

γi
[1 1 1]T log(cosh(γieCi )) +

1
2

k4ėT
Ci

ėCi

)
,

(32)

where log(v) ∈ IR3 and cosh(v) ∈ IR3 are defined element-wise for any vector v ∈ IR3,
k3 and k4 are positive kinematic constants, and ui is defined using (17). Furthermore, let
Sech2(v) : IR3 → IR3×3 be a mapping function, based on the hyperbolic secant function,
which maps the vector v = [v1, v2, v3]

T into a diagonal matrix as follows:

Sech2(v) =

 sech2(v1) 0 0
0 sech2(v2) 0
0 0 sech2(v3)

.

The time derivative of V3 can then be obtained as follows:

V̇3 = V̇1 +
n

∑
i=1

(
k3 tanh(γieCi )

T( ˙̃CVi − Ki tanh(γieCi )) + k4ėT
Ci
( ¨̃CVi − γiKiSech2(γieCi )ėCi )

)
≤ V̇1 +

n

∑
i=1

(
k3‖ ˙̃CVi‖‖ tanh(γieCi )‖ − λmin(Ki)k3‖ tanh(γieCi )‖

2

+ k4‖ ¨̃CVi‖‖ė
T
Ci
‖ − γiλmin(Λi)k4‖ėCi‖

2
)

, (33)

where Λi = KiSech2(γieCi ).
Similar to the previous analysis, V̇3 is negative outside the compact set DΥ = DΥ1 ∪

· · · ∪ DΥn where DΥi = {eCi ∈ IR3, ėCi ∈ IR3 : ‖ tanh(γieCi )‖ > Υi,1, ‖ėCi‖ > Υi,2} where
Υi,1 and Υi,2 are given by:

Υi,1 =
‖ ˙̃CVi

‖
λmin(Ki)

, Υi,2 =
¯̄g

γiλmin(K̄i)
. (34)

Thus, the system trajectories will converge to the set DΥ starting from any initial
condition, and stay there forever leading to the following:

lim sup
t→∞

∥∥∥tanh
(

γi(C̃Vi − pi)
)∥∥∥ ≤ Υi,1, lim sup

t→∞
‖ ˙̃CVi − ui‖ ≤ Υi,2.

Therefore, the tracking errors are uniformly ultimately bounded with respect to DΥi .
By choosing, λmin(Ki)� ḡ and γiλmin(Ki)� ¯̄g, the errors can be made arbitrarily small.

Moreover, C̃Vi ∈ F (t)→
˙̃CVi = g(t, C̃Vi ) according to (25) and S1–S4. By Assumption 6,

the multi-UAV system solves the sweeping coverage problem which completes the proof.

6. Validation & Discussion

Simulations were carried out to validate the performance of the proposed 3D coverage
control laws in (16) and (17) using the algorithm in S1–S4 to compute the centroidal Voronoi
configurations. Additionally, more simulation cases were performed to demonstrate the
robustness of the proposed method and how obstacle avoidance can be incorporated within
the overall framework. The following subsections provide details of these simulations and
the obtained results.

6.1. Simulation Cases 1–4: Performance Validation

In the first set of simulations, a multi-UAV system of size n = 20 was used. All
vehicles have been initially deployed to random locations in some predefined region
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I =
{
(xi, yi, zi) : 0 ≤ xi, yi ≤ 4, 0 ≤ zi ≤ 2, ∀i = {1, · · · , 20}

}
. The control design

parameters were chosen to be Ki = diag{2.5, 0.5, 0.5} and K̄i = diag{0.3, 0.3, 0.3} for
all vehicles.

The 3D barrier coverage problem was considered in the first two simulation cases
where the unbounded control law (16) and the bounded control law (17) are used. The goal
was to achieve optimal coverage over a barrier region defined according to B = {(x, y, z) :
x = 20, 0 ≤ (y, z) ≤ 10}. The obtained results for this case are presented in Figures 2–5.
Figures 2 and 4 show the complete trajectories taken by all UAVs and their final locations
which are optimally distributed over the barrier B (rectangular area highlighted in yellow).
The multi-UAV system reaches the centroidal Voronoi configurations and all vehicles form
a static arrangement over B. Note that the shape of B and the number of UAVs were chosen
arbitrarily just as a proof of concept. However, in practical applications, the number of
UAVs and the design of the barrier can be considered as a design problem which depends
on the UAVs sensing and communications capabilities. Having a larger number of vehicles
may result in some overlapping between sensors field-of-view (FOV). On the other hand,
It may not be possible to completely cover B using lower number of UAVs than what
is needed (i.e., the combined FOV of all sensors is less than the size (area/volume) of B.
Overall, the sensing performance will be maximized using the developed strategy. It can
also be seen that the resultant trajectories are collision-free.

The time evolution of control inputs for all vehicles are shown in Figures 3 and 5 for
both the bounded and unbounded control laws, respectively. Using (16) would require
choosing the controller gain matrix K̄i properly in order to satisfy the constraint (11). This
depends mostly on how far the vehicle is from its centroidal Voronoi configuration initially
which indicates that tuning K̄i could not be ideal in practice. Alternatively, using (17)
provides an easier way of choosing Ki to ensure that the physical limit on the vehicles
velocity is respected (i.e., (11) is satisfied). This can be clearly seen in Figure 5 where the
vehicles speed remains constant for the first 8 s until the barrier is reached at which the
velocities drop down to zero, and the vehicles become statically distributed over B. The
upper bounds on ||ui|| in this case was ui,max = 2.6 m/s ∀i which is in accordance with (18).

In the next two simulation cases, the sweeping coverage problem was considered. The
task was to completely scan a 3D sensing region S which was defined as S = S1 ∪ S2 ∪ S2
where

S1 = {(x, y, z) : 10 ≤ x ≤ 60, 0 ≤ y ≤ 10, 0 ≤ z ≤ 5}
S2 = {(x, y, z) : 10 ≤ x ≤ 60, 0 ≤ y ≤ 2.5, 5 ≤ z ≤ 10}
S3 = {(x, y, z) : 10 ≤ x ≤ 60, 7.5 ≤ y ≤ 10, 5 ≤ z ≤ 10}.

Based on the environment shape, an initial sweeping plane F (t = 0) was determined
by the multi-UAV system as F (0) = {(x, y, z) ∈ S : x = 10}. The dynamics of F (t) was
also considered to be the simplest case as in (27) where the sweeping plane is moving
with a constant speed of g0 = 1.5 m/s in a progressive direction that can result in a
sweeping behavior, as will be shown. In more complex cases, some other patterns could be
adopted for moving F (t) as a higher level decision making which can still be done in a
distributed manner as the vehicles can exchange information over the connected network.
For example, the literature on coverage path planning for single-vehicle systems can be
utilized in this case.

Figures 6 and 7 shows the results for the sweeping coverage problem when using (16),
and the results obtained when applying (17) are shown in Figures 8 and 9. For both cases,
the vehicles move from their initial positions to quickly deploy over F (t) reaching their
centroidal Voronoi configurations. As the position of F (t) evolves over time according
to (27), the vehicles corresponding centroidal Voronoi configurations evolve accordingly
since C̃Vi ∈ F (t). Hence, the vehicles will start to move with the same velocity as of F (t).
This can be clearly seen from Figures 7 and 9. You can see that the vehicles starts with a
higher speed to reach the moving sweeping plane and achieve optimal distribution. Once
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this is achieved (around t = 10 s), the vehicles are no longer moving within F (t) at which
all velocities converge to g0 = 1.5 m/s in the direction of the sweeping plane’s movement.
It is important to notice that the speed of F (t) (i.e., g0) should be slower than the maximum
velocity achievable by any vehicle (umax ≥ g0). After scanning the desired region S , the
sweeping plane F (t) becomes static which reflects on all the vehicles as can be seen from
the results where all velocities converge to 0. The complete trajectories of the vehicles along
with the scanned 3D volume (highlighted in yellow) are shown in Figures 6 and 8 which
confirms that the sweeping coverage problem is achieved over S . These results clearly
validate the performance of the proposed 3D coverage control strategy.

Figure 2. UAVs trajectories for the barrier coverage case using (16) (Simulation Case 1).
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Figure 3. Norms of the control inputs applied to the UAVs for the barrier coverage case using (16)
(Simulation Case 1).
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Figure 4. Sensors trajectories for a barrier coverage case using bounded control laws (17) (Simulation
Case 2).
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Figure 5. Sensors control inputs norms for a barrier coverage case using bounded control laws (17)
(Simulation Case 2).

Figure 6. Sensors trajectories for a sweeping coverage case (Simulation Case 3).
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Figure 7. Sensors control inputs norms for a sweeping coverage case using (16) (Simulation Case 3).

Figure 8. Sensors trajectories for a sweeping coverage case using bounded control laws (17) (Simula-
tion Case 4).
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Figure 9. Sensors control inputs norms for a sweeping coverage case using bounded control laws
(17) (Simulation Case 4).

6.2. Simulation Case 5: Robustness

Another simulation case was considered to show how the proposed method perform
very well in situations where the number of active UAVs within the multi-UAV system
change over time during a sweeping coverage mission. For example, when a number of
UAVs fail, the whole group should still be able to continue their coverage task as long
as there is enough number of active UAVs to finish the mission. This goes the same way
when adding new vehicles to the system during the mission; however, this case was not
considered here for brevity.

We considered a similar environment S and sweeping plane choice F (t) as in sim-
ulations cases 3 and 4. Different time instants of the simulation are shown in Figure 10.
The Voronoi regions generated by the UAVs over F (t) with their centroids are clearly
highlighted to show how they change over time as the vehicles move. Once centroidal
Voronoi configurations are reached, the vehicles move according to the plane’s movement
as was discussed earlier. However, some vehicles fail and become inactive at certain time
instants as in Figure 10e,g,i,k. Whenever this occurs, the remaining active vehicles quickly
adjust their distribution over F (t) while still moving in accordance with Ḟ (t). For example,
at t =21s, one vehicle fail as shown in Figure 10e which directly indicates a change of the
Voronoi partition of F (t). This results in a change of the centroidal Voronoi configurations
which causes the vehicles to quickly adapt to the situation in a robust way by moving to
the new centroidal Voronoi configurations. It can be noticed that once a vehicle fail, only
the vehicles in the neighborhood of that vehicle will be affected (i.e., their Voronoi regions
will be extended).

Initially, the multi-UAV system had a size of n = 9. The complete collision-free
trajectories of all vehicles are shown in Figure 11 where 4 vehicles have failed during the
mission (inactive UAVs), and the coverage task was completed efficiently by the remaining
5 vehicles (active UAVs). This clearly shows how robust and scalable our method can
be. It is also worth mentioning that changes to F (t) can be applied in real-time if its
size becomes larger/smaller than what the remaining vehicles can cover based on their
combined sensing FOV. Such a decision can be autonomously made by the vehicles and
shared among the connected network. The next simulation case shows how the proposed
control laws work when such changes to F (t) are applied which is really important when
considering obstacle avoidance.
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(a) t=3s (b) t=7s (c) t=11s

(d) t=20s (e) t=21s (f) t=40s

(g) t=41s (h) t=60s (i) t=61s

(j) t=80s (k) t=81s (l) t=91s

Figure 10. UAV locations at different time instants showing the robustness of the proposed approach against UAVs failures
when they get removed from the group (Simulation Case 5).
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Figure 11. Complete trajectories of the Multi-UAV system showing both active and inactive UAVs
(Simulation Case 5).

6.3. Simulation Case 6: Obstacle Avoidance

An additional simulation case was performed to show one way of incorporating
obstacle avoidance capabilities within the proposed method. The simulation results for
this case are given in Figures 12–14. In this case, six vehicles were initially deployed, and a
rectangular region was considered to be the sweeping plane F (t). This particular choice of
F (t) can be used in scenarios where the vehicles are equipped with some downward-facing
sensors (ex. cameras), and their sensing FOV are simply a footprint on the ground. Even
though using six vehicles may be redundant in this case as there will be overlapping in
the vehicles’ sensing FOV, the aim here is only to show a particular way for the multi-UAV
system to avoid obstacles.

The adopted approach is simply to manipulate the shape, size, orientation and/or
velocity of the sweeping plane F (t) to safely avoid detected obstacles. Note that in this
case, only vehicles within a sensing range from obstacles can determine such required
action which then sent to the remaining vehicles over the connected network. Obstacle
avoidance is ensured in this case because vehicles are guaranteed to maintain their motion
within F (t) once its reached using the proposed control laws (i.e., pi(t) ∈ F (t), ∀t > t∗
where t∗ is the time at which the vehicles reach F (t)).

It can be seen from Figure 12a,b that the vehicles are approaching F (t) since they
were initially deployed away from it. Simultaneously, the vehicles move along F (t) to
reach centroidal Voronoi configurations. At t = 15 s, two obstacles are detected along the
way of the sweeping plane’s movement by two nearby vehicles. The vehicles decide to
dynamically change the size of F (t) to avoid both obstacles as shown in Figure 12g–j. A
different decision is also made by the multi-UAV system when detecting another obstacle
at t = 49.5 s (Figure 12k). At this time, the sweeping plane is tilted in the z-direction as can
be seen from Figure 12l–n.

Overall, this approach has good potential for motion coordination of multi-vehicle
systems especially when considering obstacle avoidance compared to artificial potential
based approaches where sometimes there will be conflicts between achieving obstacle
avoidance and avoiding collision with other vehicles.
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(a) t=1s (b) t=1.5s (c) t=4s

(d) t=9s (e) t=14.5s (f) t=15s

(g) t=16.5s (h) t=24.5s (i) t=46s

(j) t=49s (k) t=49.5s (l) t=61.5s

Figure 12. Cont.
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(m) t=84s (n) t=90s

Figure 12. UAV locations at different time instants showing the obstacle avoidance capability of the proposed approach by
dynamically manipulating the sweeping plane F (t) (Simulation Case 6).

(a) XY View

(b) XZ View

Figure 13. Complete trajectories of the Multi-UAV system showing the obstacle avoidance capability of the proposed
approach [Planar Views] (Simulation Case 6).
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Figure 14. Complete trajectories of the Multi-UAV system showing the obstacle avoidance capability
of the proposed approach [3D View] (Simulation Case 6).

7. Generalized Multi-Region Approach & 3D Flocking
7.1. Approach

The proposed strategy constraints the vehicles’ movement within a desired plane.
This can be sufficient for sweep coverage problems as the region’s movement will ensure
that the 3D environment is covered. However, when considering flocking problems and
swarms with large number of vehicles, it becomes limiting to constrain the movement of
all vehicles within a planar region. Thus, this section generalizes the proposed method by
introducing the use of multi-regions.

Let F(t) = {F1(t), ·,Fm(t)} be a list of m 3D polygonal regions defined by their
vertices such that the following condition is satisfied:

Fi(t) ∩ Fj(t) = ∅, i, j ∈ {1, · · · , m}, i 6= j, t ≥ 0. (35)

Each region has dynamics governed by:

ṙi(t) = gi(t, ri), i = {1, · · · , m}, (36)

where ri and gi(t, ri) are as defined in (25), and gi(t, ri) is subject to the same constraint
in (26). Furthermore, let Qmax ∈ IRm be a vector representing the maximum capacity for a
region (i.e., the maximum number of vehicles it can include without violating the safety
condition). Additionally, define Q(T) ∈ IRm as a vector of the instantaneous number of
vehicles allocated for each region.

The proposed approach using Centroidal Voronoi tessellations along with the control
law (16) (or (17)) can guarantee collision avoidance among vehicles moving towards the
same region. However, the control law (16) (or (17)) need to be modified to ensure that
vehicles can avoid collisions when moving towards centroidal Voronoi tessellations of
different regions. Thus, the following control law is proposed (based on (17)):

ui = Ki tanh
(

γi(C̃Vi − pi)
)
+ ∑

j∈Ni

Kij tanh
(

γi max(0, d2
c − ||pi − pj||2)

) pi − pj

||pi − pj||
, (37)

where Kij is a positive semi-definite diagonal matrix, and dc > 0 is some threshold distance
at which the repelling force (the second component of (37)) is applied. Once all vehicles
converge to their associated regions, this component vanishes given that the regions design
is feasible. Note that the control law (37) allows us to tune the gains Ki and Kij while
ensuring that the condition (11) is satisfied.
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To maintain the distributed nature of the overall strategy, it is assumed that F(t) is
shared among the connected networked vehicles along with the regions’ dynamical model,
the maximum capacity vector Qmax and the vector Q(t). Thus, whenever a vehicle decides
to pick a region Fi(t), it can chose the closest one where Qi(t) < Qmax.

7.2. Simulations

Several simulations have been carried to verify the generalized approach presented in
this section. The simulation cases show how the swarm converges to the desired structure
and how the flocking objective can be achieved. Different swarm sizes, desired structures
and movement patterns have been considered.

The obtained results for four cases are shown in Figures 15–18. In all cases, the vehicles
are initially deployed to random locations. Figures 15–18a show the trajectories taken by
all vehicles, which verify that the swarm can converge to and hold the desired structure
while following the desired movement pattern. Figures 15–18b show the multi-regions
considered and the final locations of the vehicles. Notice that there is no constraints on the
shapes of the regions except that they should not intersect according to (35).

(a) (b)

Figure 15. Multi-Region simulation case 1 (n = 100 and m = 10).
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(a) (b)

Figure 16. Multi-Region simulation case 2 (n = 100 and m = 10).

(a) (b)

Figure 17. Multi-Region simulation case 3 (n = 108 and m = 6).

(a) (b)

Figure 18. Multi-Region simulation case 1 (n = 40 and m = 5).
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8. Implementation Using a Multi-Quadrotor System

The proposed control methods are developed based on the general kinematic model
in (10) which is applicable to different UAV types and AUVs. An example way in imple-
menting the sweep coverage control method is presented in this section for a particular
application in precision agriculture using a group of quadrotor UAVs.

8.1. Quadrotor Dynamics

Now, we will extend the model in (10) to include the dynamics of quadrotor-type
UAVs according to the following model:

ṗi = vi (38)

v̇i = −ge3 +
1

mi
TiRie3 (39)

Ṙi = Riskew(Ωi) (40)

IiΩ̇i = −Ωi × IiΩi + τi (41)

where the velocity vector ui is replaced by vi for convenience, g is the gravitational acceler-
ation, e3 = [1 1 1]T , mi is the UAV mass, and Ii is the inertia matrix. Recall that the vehicle’s
position and velocities are expressed in the inertial coordinate frame {I}. Consider also
another reference frame attached to the UAV body with its origin at the center of mass.
This frame is referred to as the body-fixed frame {Bi}. The orientation of the UAV is
represented using a rotation matrix Ri between {Bi} and {I}. The rate of change in the
vehicle’s orientation is denoted by Ωi (i.e., angular velocity) which is expressed in the
{Bi} frame. The control inputs for this model are the collective thrust Ti ∈ IR and the
body-torques vector τi ∈ IR3. For more details about quadrators modelling, the reader is
referred to [84,85].

8.2. Tracking Control

There are different ways to implement the proposed sweeping control strategy. One
possible approach is to directly couple the velocity commands in (16) (or (17)) into attitude and
thrust control inputs. Another possible direction is to use the determined centroidal Voronoi
configurations by the algorithm S1–S4 as goal positions with a position tracking controller.
The latter approach is considered here for a control design based on the differential-flatness
property of the quadrotor dynamics and the sliding mode control technique.

Let us redefine the position and velocity tracking errors as follows:

ep,i = pi − cVi (42)

ev,i = vi − ċVi (43)

consider sliding surfaces σi such that:

σi = ev,i + L1,i tanh(µ1ep,i), (44)

where µ1 > 0, and L1,i is a positive definite diagonal matrix. Note that this choice will
ensure that the velocities can remain bounded by λmax(L1,i) to account for physical limits.

A desired acceleration command can then be computed using:

1
mi

ades,i =ge3 + L2,i tanh(µ2σi)

+ ∑
j∈Ni

Lij max(0, d2
c − ||pi − pj||2)

pi − pj

||pi − pj||
,

(45)
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where L2,i and Lij are positive definite diagonal matrices. The additional term in (45)
provides more safety as it represents a repelling force from vehicles closer than some
critical distance dc > 0 in the neighbourhood of vehicle i.

The differential-flatness property is then utilized to achieve the acceleration command
in (45) while maintaining some desired yaw angle ψre f ,i using the following equations:

Ti = aT
des,iRie3 (46)

Rdes,i = [xi
Bi ,des, yi

Bi ,des, zi
Bi ,des] (47)

zi
Bi ,des =

ades,i

||ades,i||
(48)

xi
Bi ,des =

yi
Ci × zi

Bi ,des

||yi
Ci × zi

Bi ,des||
(49)

yi
Bi ,des = zi

Bi ,des × xi
Bi ,des (50)

yi
Ci = [− sin(ψre f ,i) cos(ψre f ,i) 0]T . (51)

A low-level control is then used to compute τi to ensure that the vehicle can achieve the
desired attitude Rdes,i. Further details about the differential-flatness property of quadrotor
dynamics can be found in [85,86].

8.3. Software-in-the-Loop Simulations

The performance of the suggested sweeping coverage control for multi-quadrotor
systems was evaluated using Software-in-the-Loop (SITL) simulations using Gazebo and
the Robot Operating System (ROS) framework. This allows us to test the computational
performance of the production code which can be used directly on the real vehicle’s
onboard computer to implement our algorithms and control strategies in real-time. A
simple scenario was considered where a group of three quadrotors were needed to survey
a crops field S̃ = {x, y, z ∈ IR : 0 ≤ x ≤ 32, 0 ≤ y ≤ 40, z = 0}. Each vehicle is
assumed to have an onboard camera providing a sensing footprint Ai ⊂ S dependent on
its characteristics and the UAV’s altitude. For simplicity, an obstacle-free environment was
used as shown in Figure 19.

We used the open-source PX4 flight stack as an implementation for the low-level con-
troller and an extended Kalman filter for states estimation considering noisy measurements.
Our tracking control logic was implemented using C++ providing thrust and attitude in-
puts at a rate of 100Hz. Furthermore, centroidal Voronoi configurations computations were
implemented using Python utilizing some of the available tools from the "scipy.spatial"
Python module to determine Voronoi cells as a convex polygon in accordance with As-
sumption 1. Furthermore, the algorithm in S1–S4 was used to obtain the centroids. This
turned out to be very computationally efficient since the computations rely on closed-form
expressions.

In order to achieve the coverage task in hand, an initial rectangular sweeping plane
was selected as: F (0) = {x, y, z ∈ IR : 0 ≤ x ≤ 8, 0 ≤ y ≤ 2, z = 2} where it was
required for the UAVs to fly at a fixed altitude of 2m. The classical lawn-mower pattern
was considered to generate the trajectory of F (t) to completely scan S̃ while keeping the
yaw angle at ψre f = 0 without loss of generality. The following parameters were used in
the simulation: L1,i = diag{2, 2.5, 3}, L2,i = diag{2.5, 3, 4}, Lij = diag{1, 1, 1}, dc =0.5 m,
µ1 = 2 and µ2 = 1.5 (where diag{·} represents a diagonal matrix).
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Figure 19. UAVs and environment used in simulations.

During the simulation, all measurements and data were captured as a bag file using
available ROS recording tools. The results are plotted using MATLAB which are shown
in Figures 20–25. In Figure 20, coordinates of all vehicles are plotted with respect to time.
The overall paths taken by the vehicles are shown in Figures 21 where the highlighted
rectangular area represents the crops field to be surveyed (i.e., S̃). Note that in this time,
the vehicles were moving along some other region S whose projection on the ground floor
is S̃ . Thus, the trajectory of F (t) was designed to cover S̃ given that the equipped sensors
have a collective footprint which ensures the optimal coverage of S̃ . It is clear from these
results that the overall motion is collision-free, and the lawn-mower pattern decided for
F (t) was followed by the whole group. Velocity norms are shown in Figure 23. Overall
the vehicles are moving with a constant speed g0 = 1 m/s except for some changes in
velocity at times where the vehicles are turning (t ≈ 60 s, 110 s,160 s) in order to avoid
collisions with each others. Overall, velocities remain within the desired limits of ‖v‖ ≤ 3.5
m/s except at the start when vehicles were taking off which is based on a different control
law. The high-level control commands, namely roll, pitch, yaw and thrust, are shown in
Figures 24 and 25 where the thrust is normalized in the range [0, 1]. This simulation case
shows that our control can be successfully implemented using multi-quadrotor systems.
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Figure 20. UAVs coordinates with respect to time.
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Figure 21. UAVs actual trajectories (3D prospective).

Figure 22. UAVs actual trajectories (2D prospective).
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Figure 23. UAVs linear velocities with respect to time.
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Figure 24. UAVs attitude (roll, pitch and yaw) with respect to time.

0 50 100 150 200 250 300 350

time (s)

0

0.2

0.4

0.6

0.8

N
o

rm
a

liz
e

d
 C

o
lle

c
ti
v
e

 T
h

ru
s
t

Figure 25. UAVs normalized collective thrust input with respect to time.

9. Conclusions & Future Work

Distributed cooperative control methods were proposed in this paper for multi-UAV
systems to address coverage problems in 3D spaces including barrier and sweeping prob-
lems. Additionally, a generalization of these approaches was given to address flocking
problems. The development of control laws was based on general kinematic model which
make them applicable to different UAV types and autonomous underwater vehicles as
well. A region-based control mechanism was adopted to constrain the movement of the
vehicles within some desired region providing a computationally efficient solution that
is both robust and scalable. Mathematical analysis was performed to ensure the stability
of the developed control laws. Several simulations have been performed confirming the
performance of the developed methods for 3D static and dynamic coverage problems.
Additional simulation cases were also presented to show how well the suggested approach
can handle obstacle avoidance as well as being robust against vehicles’ failure. To evaluate
the computational performance, software-in-the-loop simulations, using Gazebo and ROS,
were also carried out considering a special case of using a multi-quadrotor system in
precision agriculture. To that end, specific implementation details were also proposed
based on quadrotor dynamics. Future work can consider practical implementation and
developing proper ways where the vehicles can collaboratively decide the shape of the
dynamic region based on the multi-UAV system characteristics and the targeted sensing
region size.
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24. Cole, D.T.; Thompson, P.; Göktoğan, A.H.; Sukkarieh, S. System development and demonstration of a cooperative UAV team for
mapping and tracking. Int. J. Robot. Res. 2010, 29, 1371–1399. [CrossRef]

http://doi.org/10.1109/TRA.2004.824698
http://dx.doi.org/10.1109/TCST.2007.899155
http://dx.doi.org/10.1109/LCOMM.2009.091178
http://dx.doi.org/10.1177/0278364908100177
http://dx.doi.org/10.1017/S0263574710000147
http://dx.doi.org/10.1109/TAC.2015.2409903
http://dx.doi.org/10.3182/20080706-5-KR-1001.01989
http://dx.doi.org/10.33440/j.ijpaa.20180101.0008
http://dx.doi.org/10.3390/electronics7090162
http://dx.doi.org/10.1016/j.tplants.2018.11.007
http://www.ncbi.nlm.nih.gov/pubmed/30558964
http://dx.doi.org/10.1002/rob.20401
http://dx.doi.org/10.1007/s10514-010-9205-0
http://dx.doi.org/10.1177/0278364910382803
http://dx.doi.org/10.1109/LRA.2018.2808541
http://dx.doi.org/10.1186/s41018-018-0045-4
http://dx.doi.org/10.1007/s10514-020-09926-9
http://dx.doi.org/10.3390/drones5010017
http://dx.doi.org/10.3390/fi13070174
http://dx.doi.org/10.3390/drones5020033
http://dx.doi.org/10.1177/0278364910364685


Drones 2021, 5, 124 33 of 35

25. Hu, J.; Xu, J.; Xie, L. Cooperative search and exploration in robotic networks. Unmanned Syst. 2013, 1, 121–142. [CrossRef]
26. Mahdoui, N.; Frémont, V.; Natalizio, E. Communicating Multi-UAV System for cooperative SLAM-based exploration. J. Intell.

Robot. Syst. 2020, 98, 325–343. [CrossRef]
27. Gage, D.W. Command control for many-robot systems. Unmanned Syst. 1992, 10, 28–34.

Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH Computer Graphics; ACM: New York, NY, USA,
1987; Volume 21, pp. 25–34.
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