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Abstract: Localization and mapping technologies are of great importance for all varieties of Un-
manned Aerial Vehicles (UAVs) to perform their operations. In the near future, it is planned to
increase the use of micro/nano-size UAVs. Such vehicles are sometimes expendable platforms, and
reuse may not be possible. Compact, mounted and low-cost cameras are preferred in these UAVs
due to weight, cost and size limitations. Visual simultaneous localization and mapping (vSLAM)
methods are used for providing situational awareness of micro/nano-size UAVs. Fast rotational
movements that occur during flight with gimbal-free, mounted cameras cause motion blur. Above a
certain level of motion blur, tracking losses exist, which causes vSLAM algorithms not to operate
effectively. In this study, a novel vSLAM framework is proposed that prevents the occurrence of
tracking losses in micro/nano-UAVs due to the motion blur. In the proposed framework, the blur
level of the frames obtained from the platform camera is determined and the frames whose focus
measure score is below the threshold are restored by specific motion-deblurring methods. The major
reasons of tracking losses have been analyzed with experimental studies, and vSLAM algorithms
have been made durable by our studied framework. It has been observed that our framework can
prevent tracking losses at 5, 10 and 20 fps processing speeds. vSLAM algorithms continue to normal
operations at those processing speeds that have not been succeeded before using standard vSLAM
algorithms, which can be considered as a superiority of our study.

Keywords: vSLAM; feature-based methods; direct methods; GPS denied environment; indoor
environment; micro/nano-unmanned systems; tracking loss

1. Introduction

Nowadays, it has become possible to come across robots and unmanned systems in
various areas, including health, agriculture, mining, driverless vehicles, planet exploration
and nuclear studies [1]. In the unmanned systems integrated roadmap document [2]
presented by the Department of Defense, it is seen that the use of mini/micro robots and
Nano-Unmanned Aerial Vehicles (UAVs) will become widespread by 2035 and beyond.
As the dimensions of platforms become smaller, it becomes impossible to use a Global
Positioning System (GPS) with position errors expressed in meters [3]. Specifically, the
amount of position-error becomes a hundred times larger than the mini-platform size with
an approximately 10 cm scale, a level of error which may cause collisions. In addition,
GPS signals cannot be used indoors [4] and in planetary exploration [5]. Simultaneous
localization and mapping (SLAM) have been an active research area in Robotics for 30 years
that enable operations even in a GPS-denied environment [6]. The weight of the men-
tioned mini/micro-platforms is approximately 100 g, and their length and width are a few
centimeters (Figure 1). Nano mini- and micro-platforms are only sized to carry compact,
light, low cost, easily calibrated monocular RGB cameras [7]. Micro/nano-UAVs must be
able to perform localization and mapping simultaneously by using such cameras. These
cameras are mostly mounted directly on the vehicle and are used without a gimbal [8,9].
As the main challenges of using monocular cameras in a mounting structure, image scale
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uncertainty [10] and motion blur [11] in images are observed. In recent studies, resolution
of such troubles has been attempted by using stereo [12,13] and RGB-D [14–16] cameras
and visual inertial SLAM (viSLAM) methods. However, such types of cameras have disad-
vantages in terms of size, weight and energy consumption. In addition, since the flight time
in micro/nano-UAVs is about 10 min due to battery limitations, visual SLAM (vSLAM)
applications are performed via transmitting the video on the control panel rather than
on-board computations, which enhances the corresponding battery efficiency. Furthermore,
IMU calibration time can take up to three minutes on the platform for using IMU data in
viSLAM algorithms, which is not required for vSLAM algorithms. Because of the difficulty
in synchronization of the IMU and video data at control station, and the long calibration
times, the viSLAM methods may not be suitable for such vehicles, which is the main reason
for the vSLAM preference in our study.
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In this study, a new framework is proposed to solve the problems caused by motion 
blur for monocular RGB cameras. To the best of the authors’ knowledge, this is the first 
time that the proposed framework has included modules for detecting and reducing 
motion blur. Thus, the framework becomes more resistant to existing motion blurs than 
the frameworks that have been introduced earlier. In our framework, a focus measure-
ment operator (LAP4) has been used to detect the motion blur level and blurry images 
that remain under the specified threshold are directed to the deblurring module. Motion 
blur is then reduced by using the selected algorithm in the deblurring module. After that, 
the process continues with tracking and local mapping stages similar to previously 
studied frameworks. The proposed method has been tested in the state-of-the-art 
ORB-SLAM2 [17] (feature-based method) and DSO [18] (direct method) algorithms, and 
its success has been demonstrated. 

By definition, the SLAM technique, in which only cameras are used in unmanned 
systems, is specifically named as vSLAM. The vSLAM method consists of three main 
modules [19]. 
• Initialization. 
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Three main modules can be negatively affected by motion blur. Generally, motion 
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sure time [20]. In our case, the fast rotational movements of robotic platforms create the 
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In this study, a new framework is proposed to solve the problems caused by motion
blur for monocular RGB cameras. To the best of the authors’ knowledge, this is the first time
that the proposed framework has included modules for detecting and reducing motion blur.
Thus, the framework becomes more resistant to existing motion blurs than the frameworks
that have been introduced earlier. In our framework, a focus measurement operator (LAP4)
has been used to detect the motion blur level and blurry images that remain under the
specified threshold are directed to the deblurring module. Motion blur is then reduced by
using the selected algorithm in the deblurring module. After that, the process continues
with tracking and local mapping stages similar to previously studied frameworks. The
proposed method has been tested in the state-of-the-art ORB-SLAM2 [17] (feature-based
method) and DSO [18] (direct method) algorithms, and its success has been demonstrated.

By definition, the SLAM technique, in which only cameras are used in unmanned
systems, is specifically named as vSLAM. The vSLAM method consists of three main
modules [19].

• Initialization.
• Tracking.
• Mapping.

Three main modules can be negatively affected by motion blur. Generally, motion
blur arises from the relative motion between the camera and the scene during the exposure
time [20]. In our case, the fast rotational movements of robotic platforms create the motion
blur, causing the vSLAM algorithms to lose the pose estimation and thus, the track losses
occur [21]. In this case, if the re-localization of UAVs cannot be applied, the pose of the
platform cannot be estimated after the tracking loss. Therefore, some kidnapped robot
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problems occur. This situation prevents the planned task from being carried out correctly.
Moreover, the created map becomes unusable due to inconsistency between the new
position and the former one.

Feature-based methods map and track the feature points (corner, line and curves) by
extracting the features in the frame with preprocessing. After that, a descriptor defines the
features. Some commonly used descriptors are ORB [22], FAST [23], SIFT [24], Harris [25],
SURF [26]. On the other hand, direct methods use the input image directly without
using any feature detector or descriptor [19]. Nevertheless, motion blur has negative
impacts on vSLAM performance in both feature-based and direct methods. Another crucial
remark is that while motion blur prevents the detection of feature points in feature-based
methods, strong rotations obstruct triangulation in direct methods. Therefore, the proposed
framework should be compatible with the use of feature-based [17] and direct [18] methods
(Figure 2). In our study, both methods are validated experimentally and the corresponding
results are presented in the “Experimental Results” section, Section 3.
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2. Proposed Framework and Experimental Setup

Hitherto, limited robotics and SLAM studies have been conducted on reducing mo-
tion blur-induced errors or preventing tracking loss in monocular camera-based vSLAM
methods; in the paper [21], several solutions are presented with the prevention of data loss
(reverse replay) after the emergence of tracking loss and the implementation of a branching
thread structure (parallel tracking) even though it is not suitable for real-time applica-
tions. Similarly, in another study [28], a feature matcher method has been presented for
humanoid robots by using point spread function estimation, which is robust to the motion
blur effects originating from walking, rotation and squatting movements. In addition to
the aforementioned studies, various research has already been established that one must
detect additional features such as edges, lines, etc., in order to enhance the corresponding
map richness and tracking performance [29,30]. If the direction of the motion blur and
the direction of the lines/edges are consistent, such approaches become appropriate to
improve tracking performance, i.e., trajectory estimation of the vehicle. However, the same
performance cannot be achieved in mapping, i.e., the projection of 2D image-features to
the 3D space: mapping performance decreases due to floating lines on the map caused by
motion blur. It is also crucial to ensure map consistency while avoiding tracking loss.

In the image processing approaches, motion blur is described by the following equa-
tion [20]:

b = p ⊗ o + n (1)
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In this expression, o is the original image, b is the blurry image, p is the point spread
function and operator (⊗) is the convolution process. Additive noise is denoted by n.
Image deblurring algorithms can utilize a point spread function (PSF) to deconvolve the
blurred image. Deconvolution is categorized into two types: blind and non-blind deconvo-
lution. Blind deconvolution uses the blurred image whereas non-blind deconvolution uses
the blurred image and known point spread function for the deblurring process. Blind de-
convolution is more complicated and more time-consuming than non-blind deconvolution
because it estimates the point spread function after each iteration [31].

A great number of approaches have been developed in recent years to solve the
motion blur problem. For example, a novel local intensity-based prior, namely the patch-
wise minimal pixels prior (PMP) [32], a novel recurrent structure across multiple scales
(SRN) [33], SIUN [34] with a more flexible network and additive super-resolution, a
natural image prior named Extreme Channels Prior (ECP) [35], graph-based blind image
deblurring [36] and other state of the art methods such Lucy and Richardson [37], blind
deconvolution [38] and Wiener filter [39] are available in the literature.

We proposed a framework (Figure 3) to detect and to reduce motion blur occurrence
when compact, lightweight, low cost, easily calibrated monocular cameras are mounted on
micro/nano-UAVs. In the proposed framework, Variance of Laplacian (LAP4) is selected as
a focus measure operator for detecting motion blur. In the preferred LAP4 method, a single
channel of the image is convolved with the Laplacian kernel, and the focus measure score
is found by calculating the variance of response. If the focus measure score is above the
threshold, then the vSLAM process continues as expected. Otherwise, images are restored
by image deblurring methods. Deblurring is applied only for frames below the threshold
and not for all frames. In this way, the processing time is kept at a suitable level. It has
been observed that the tracking performance is increased, and the tracking loss ratio is
decreased in the case of vSLAM algorithms with images restored by deblurring techniques.
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Figure 3. Proposed Framework for motion blur robust vSLAM.

In this study, selected motion-deblurring methods (PMP, SRN, SIUN, ECP, graph-
based blind image deblurring, Lucy and Richardson, blind deconvolution and Wiener
filter) are applied to prevent tracking loss in vSLAM algorithms on a dataset prepared for
mini/micro robots and nano-UAVs. A low-cost, low-power light camera was mounted
on the mini-UAV and then the blurred low-resolution images were merged to prepare the
created dataset. Obtained results based on the created datasets reveal that the proposed
framework in Figure 3 can be implemented in both direct and feature-based vSLAM
algorithms.

An experiment was performed at an average speed of 1.2 m/s in the corridor environ-
ment to observe the tracking loss. A schematical view of the experimental area is drawn in
Figure 4. The experimental area consists of three corridors (17–26.5 and 15.7 m) and two
sharp corners. As declared in Figure 4, the forward movement is plotted in a green color,
and fast rotational movements are shown in a red color. In addition, the starting, finish
points and the frame numbers corresponding to the rotational movements are given in the
same figure.
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The experimental area was set up only to observe motion blur caused by fast rotational
movements. Tracking loss in forward motion generally occurs in textureless environments,
especially in feature-based algorithms. However, ORB-SLAM2 [17] and DSO [18] algo-
rithms were resistant to motion blur in forward movements at 1.2 m/s average speed,
which was investigated in our experimental area. Several crucial remarks have been de-
duced from the experiment: the proposed UAV achieved fast rotational movements in
the vicinity of rich feature corners at 22 deg/s or 0.384 rad/s. It has been attempted to
observe motion blur-based tracking loss in the case when an RGB camera is mounted on
the platform and the rapid rotational movement of the unmanned vehicle is realized. A
pinhole camera, which is frequently used in nano/micro-unmanned systems and robot
platforms, was selected for the experiment. The common feature of such cameras is that
they have advantages in terms of both size and cost. In the experiment, a Raspberry Pi
v2.1 camera was recorded at the frame rate of 20 fps in 640 × 480 resolutions. Compact
and non-gimbal cameras in micro/nano-size unmanned systems are more preferred in
terms of dimensions. In addition, the low-cost cameras are considered to be the most
preferable ones in disposable, non-reusable vehicles in the future [2]. The reason why
our own dataset is studied is the following: the vSLAM experiments have already been
conducted in available datasets such as EUROC [40] and KITTI [41]. Nevertheless, the
captured images were obtained with high-quality cameras and there were no fast rotational
movements defined in vicinity of corners. Even though fast movements were performed
in these datasets, sharp rotational movements are not included at large angles such as
90 degrees. Under these circumstances, no targeted tracking losses were observed, which
is the requirement for the use of deblurring algorithms.

Drone images flying at the height of 140 cm were obtained in the experiment. The
platform made a straight motion with an average speed of 1.2 m/s until it reached the
corners. In the turns, especially, 90 degrees of sharp and rapid yaw movement was achieved.
The dataset was created by obtaining 1121 frames in the corresponding corridor orbit with
a forward-facing camera. Processing speed is crucial for the extraction of targeted features
from the dataset. For different processing speeds, the motion blur level does not change,
but detector and descriptor’s allocated processing time varies. For example, when the
processing speed is varied from 20 to 10 fps, the allocated processing time is doubled, and
thus more time can be given to complete the process in the relevant frame. Nevertheless,
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the corresponding exposure time was kept the same for every processing speed and the
blurring effect was the same as well. The images in the studied dataset were processed at a
processing speed of 20, 10 and 5 fps in ORB-SLAM2 [17] and DSO [18] algorithms. In both
algorithms, tracking loss occurred in fast rotational movements at the selected processing
speeds. Various objects such as coffee machine, cabinets, doors, etc., were located with
distinctive features in the corridor environment. In this way, the feature extraction and
triangulation processes were accomplished easily in forward movement.

3. Experimental Results

There are an excessive number of focus measurement operators used for motion blur
analyses [42]. The dataset in our study was analyzed with the LAP4 method, which is one of
the most suitable for real-time applications. Laplacian operators are aimed to measure the
number of edges present in images through the second derivative of Laplacian. Laplacian-
based operators are very sensitive to noise because of second derivative calculations [43].
By means of Variance of Laplacian analysis, the corresponding focus measure score (FMS)
was relatively low in fast rotational movement cases.

It has been determined that tracking loss occurs in regions where the focus measure
score is relatively low, as pointed out via red arrows in Figure 5. Frames at which the
focus measure score is below 10 were sorted out from the entire dataset and merged in
Figure 6. It was observed that these frames were more exposed to motion blur. In this case,
the focus measure score of FMS = 10 was assigned as a threshold value of motion blur
throughout the study. In order to eliminate/reduce the motion blur, previously selected
deblurring techniques (PMP, SRN, SIUN, ECP, graph-based blind image deblurring, Lucy
and Richardson, blind deconvolution and Wiener filter) were applied for the frames with
a focus measure score of FMS < 10. Thus, pictures exposed to motion blur were restored
via different deblurring techniques. Corresponding focus measure score of the restored
pictures was recalculated using the LAP4 method and most of the resultant FMS values
were found to be higher than the assigned threshold value of FMS = 10, which indicates
the deblurring performance of the studied techniques. Finally, the framework was tested
under the observation of the success of the restored images in direct and feature-based
vSLAM methods.
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Figure 6. Focus measure score < 10 vs. frame number.

Changes in the restored images have been measured with different metrics. The
metrics used to measure the correlation between the restored images and the motion blur
exposed dataset images are Peak Signal to Noise Ratio (PSNR) and Structural Similarity
(SSIM). Such metrics are used for the restored image set, which has a focus measure score
below 10.

From 1 to 10 pixels, a 360-degree full-circle scanning was performed, and the most
suitable point spread function was chosen for Wiener filter, Lucy and Richardson and blind
deconvolution algorithms. In addition, the PSNR and SSIM values of each method are
given on the graph in Figure 7. The improvement in focus measure scores of restored
images is shown in Figure 8. An increment in focus measure score was achieved by using
the related methods.

3.1. PSNR and SSIM Results

As the well-known image quality metrics, PSNR and SSIM metrics are investigated for
the rest of the study. Terminologically, PSNR is the ratio between the maximum power of
the restored image and of its blurred input. SSIM is another indicator used for measuring
the similarity between the input blurred image and its restored version. If the calculated
SSIM value is close to one, that indicates the structural information of the restored image is
very similar to the original blurred one. The value of SSIM is always desired to be close
to unity. Corresponding PSNR as well as SSIM analyses were carried out for the selected
deblurring methods and represented in Figure 7. In PSNR and SSIM analyses, it was
observed that blind deconvolution and Lucy and Richardson (L&R) algorithms provide
similar performance. According to the experimental measurements, the improvement in
restored images is the best in these two algorithms.
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Figure 8. Focus measure scores of selected algorithms.
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3.2. Focus Measure Score Analysis

The change of focus measure scores of each deblurring method are given in the
Figure 8. The most successful algorithms in terms of the focus measurement score are
PMP, ECP, Wiener, L&R, BD, Graph-Based, SRN and SIUN, respectively (Table 1). The
gain in focus measure score is of the lowest level for the SIUN and SRN algorithms. Other
algorithms contributed to three times greater increase in FMS value compared to SIUN and
SRN techniques.

Table 1. Average ∆FMS value of selected motion-deblurring algorithms.

Deblurring Method Average ∆FMS (Pixel Intensity)

PMP 74.53
ECP 51.23

Wiener 39.96
L&R 37.83
BD 33.82
GB 32.18

SRN 2.49
SIUN 2.18

The tracking performance of direct and feature-based vSLAM algorithms was ob-
served on a dataset with restored frames, which are the output of each motion-deblurring
algorithm. The restored dataset was processed at processing speeds of 5, 10 and 20 fps. The
performances of ORB-SLAM2 [17] and DSO [18] algorithms, which are the state-of-the-art
methods, are given in Tables 2 and 3, respectively. A tracking score parameter was created
to reveal how many different processing speeds vSLAM algorithms were successful in total.
The tick symbol is used for “successful” results whereas the cross symbol reveals a “fail”.

Table 2. Tracking performance of ORB-SLAM2 algorithm on dataset with restored images.

ORB_SLAM2 5 Fps 10 Fps 20 Fps Tracking Score

PMP X X X 3
Wiener X X X 3

L&R X X X 2
ECP X X X 2
BD X X X 1

SIUN X X X 1
SRN X X X 1
GB X X X 0

Table 3. Tracking performance of DSO algorithm on dataset with restored images.

DSO 5 Fps 10 Fps 20 Fps Tracking Score

PMP X X X 3
Wiener X X X 2

L&R X X X 2
ECP X X X 1
BD X X X 0

SIUN X X X 0
SRN X X X 0
GB X X X 0

The average change in FMS results, ∆FMS, for selected motion-deblurring algorithms
is presented in Table 1. It has been observed that the PMP method has better performance
in both rapid rotational movements and forward movement cases. Even though the ECP
method seems to have a rather higher average ∆FMS value, it shows a worse performance,
especially at sharp corners, which could be inferred from ∆FMS scores tables in Figure 8.
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The Wiener and L&R methods also possess relatively higher average ∆FMS value compared
to other deblurring methods {BD, GB, SIUN, SRN}. An important remark from the table
is that although Wiener and L&R methods have lower ∆FMS than the ECP method, both
methods have better performance in the case of rapid rotational motion, which can be
deduced from the comparison regarding tables in Figure 8.

Investigating the results in Figure 7 and Table 1, the calculated SSIM graph for the
GB method shows fluctuating behavior with the lowest value, which implies that the
restored images are not structurally matched with the original blurry images in the GB
algorithm. For that reason, the GB method may not be considered as a successful candidate
for deblurring process in vSLAM algorithms.

The ORB-SLAM2 algorithm was experimentally studied and the tracking loss perfor-
mance were investigated for selected PMP and L&R deblurring methods. Sample frames
for different methods at specified frame rate are demonstrated in Figure 9. Compared to
the original ORB-SLAM2 algorithm results (without applying any deblurring methods),
successful tracking was achieved for the case of PMP (L&R) with a processing speed of
20 fps (5 fps) (see Figure 9).

Drones 2021, 5, x FOR PEER REVIEW 11 of 15 
 

Investigating the results in Figure 7 and Table 1, the calculated SSIM graph for the 
GB method shows fluctuating behavior with the lowest value, which implies that the re-
stored images are not structurally matched with the original blurry images in the GB al-
gorithm. For that reason, the GB method may not be considered as a successful candidate 
for deblurring process in vSLAM algorithms. 

Table 2. Tracking performance of ORB-SLAM2 algorithm on dataset with restored images. 

ORB_SLAM2 5 Fps 10 Fps 20 Fps Tracking Score 
PMP    3 

Wiener    3 
L&R   X 2 
ECP   X 2 
BD  X X 1 

SIUN  X X 1 
SRN  X X 1 
GB X X X 0 

Table 3. Tracking performance of DSO algorithm on dataset with restored images. 

DSO 5 Fps 10 Fps 20 Fps Tracking Score 
PMP    3 

Wiener   X 2 
L&R   X 2 
ECP  X X 1 
BD X X X 0 

SIUN X X X 0 
SRN X X X 0 
GB X X X 0 

The ORB-SLAM2 algorithm was experimentally studied and the tracking loss per-
formance were investigated for selected PMP and L&R deblurring methods. Sample 
frames for different methods at specified frame rate are demonstrated in Figure 9. Com-
pared to the original ORB-SLAM2 algorithm results (without applying any deblurring 
methods), successful tracking was achieved for the case of PMP (L&R) with a processing 
speed of 20 fps (5 fps) (see Figure 9). 

   
(a) (b) (c) 

Figure 9. ORB-SLAM2 algorithm results after fast rotational movement. (a) Tracking loss in original ORB-SLAM2; (b) 
successful tracking (121 matches) in proposed framework (PMP—20 fps); (c) successful tracking (60 matches) in proposed 
framework (L&R—5 fps). 

  

Figure 9. ORB-SLAM2 algorithm results after fast rotational movement. (a) Tracking loss in original ORB-SLAM2; (b)
successful tracking (121 matches) in proposed framework (PMP—20 fps); (c) successful tracking (60 matches) in proposed
framework (L&R—5 fps).

4. Discussion

Today, it has become possible to use robots and unmanned vehicles in many areas.
Shortly, it is planned to increase the use of micro/nano-size UAVs. Localization and
mapping are essential for unmanned vehicles to perform expected operations. GPS signals
cannot be used by micro/nano-UAVs because the accuracy of GPS at the meter level is
hundreds of times greater than the size of the platforms. Localization with this level of
precision is not possible for micro/nano-UAVs. In addition, micro/nanoscale unmanned
vehicles and robots are also expected to operate indoors. However, their payload can be
compact, lightweight, low cost and easily calibrated monocular RGB cameras. It is also
not possible to use a gimbal due to weight and size limitations. Visual SLAM (vSLAM)
methods are the preferable methods for locating systems with monocular RGB cameras.
Fast rotational movements of UAVs that will occur in operations may cause motion blur.

In the previous studies, the resolution of the tracking loss problem was mostly at-
tempted by the integration of the IMU or the use of more featured cameras such as an
RGB-D or stereo-camera. However, hardware-based solutions caused the platforms to
increase in dimensions and weight, which hinders their usage in nano platforms. Nano
mini and micro-UAVs are only sized to carry compact, light, low cost, easily calibrated
monocular RGB cameras. Moreover, such platforms do not have suitable battery capacity
for onboard computation. Hence, image processing is applied on the control station with
transmitted video. Thus, the transmitted video can be utilized both from the operator to
control the platform and for vSLAM applications to mapping and localization.
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Event cameras can be an alternative to monocular RGB cameras for vSLAM applica-
tions, if developers can produce them cheaply in nanoscale. Nevertheless, an additional
reconstruction phase is required in the case of event cameras to provide details of the
environment. On the other hand, detailed environmental data can be easily provided
by RGB cameras. Moreover, output images of RGB cameras are similar to human vision,
which facilitates the operators’ control of the platform.

Our study has two major contributions to the vSLAM literature: for the first time,
blur level detection was performed by including the focus measure operator in vSLAM
algorithms. In this way, frames with high motion blur levels can be detected without
causing tracking loss. The second contribution is to ensure that the algorithm continues to
operate both in the mapping and tracking stages by correcting only the frames with high
blur level.

As a general evaluation of the experimental data, several important remarks could
be declared: (1) it has been observed that tracking loss can be prevented at some speeds
when the original frames in the dataset are replaced with restored frames; (2) motion blur
in feature-based methods negatively affects feature extraction. When the blurred image is
restored via specified deblurring methods, there have been improvements in detecting the
relevant features in the restored images; (3) in direct methods, it has been observed that the
motion blur reduces the triangulation performance, and deblurring methods can annihilate
this situation; (4) it has also been experimentally verified that the tracking performance
obtained in vSLAM algorithms is not directly proportional to PSNR and SSIM values even
though it is directly related to the focus measure score.

A comparative investigation of existing features such as initialization, tracking, map-
ping, blur detection and motion blur reduction/elimination is represented in Table 4. It can
be easily explored that the proposed framework is more resistant under motion blur and
applicable under the initialization stage.

Table 4. Comparison of the proposed framework with existing frameworks.

Modules Feature-Based Method Direct Method Proposed Framework

Initialization Applicable Applicable Applicable

Tracking Tracking loss is about to
Observe under motion blur condition

Tracking loss is about to observe
under motion blur condition

More resistant tracking
under motion blur

Mapping Mapping may stop under motion blur
condition

Mapping may stop under
motion blur condition

More resistant Mapping
under motion blur

Blur Detection Not Applicable Not Applicable Applicable
Motion Blur

Reduction/Elimination Not Applicable Not Applicable Applicable

5. Conclusions

In this study, a framework has been proposed to increase the tracking performance
of SLAM algorithms by decreasing the motion blur-caused tracking loss rate. A focus
measure operator (Variance of Laplacian) is recommended for detecting motion blur and
deblurring methods (PMP, SRN, SIUN, ECP, graph-based blind image deblurring, Lucy
and Richardson, blind deconvolution and Wiener filter) are applied for the frames which
have a focus measure score less than 10. With our proposed method, reduction/elimination
of tracking loss through blur detection and prevention has been tested. The success of the
relevant framework has been demonstrated in feature-based and direct vSLAM algorithms.
It has been observed experimentally that compared to feature-based and direct methods,
the novel vSLAM framework is more resistant to motion blur and its mapping/tracking
capability is more effective by means of blur prediction and prevention.

As a future work, our study can be implemented for real-time applications. Detection
and reduction of motion blur in real time using learning-based methods may be an innova-
tive research topic for vSLAM algorithms. Our work is focused on reducing/eliminating
tracking loss due to motion blur, which stops vSLAM algorithms from working, rather
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than better trajectory estimation. The effects of motion blur on the trajectory estimation
can also be studied in future in a dataset containing blur at a level where tracking loss will
not occur. Furthermore, the proposed method also may be extended by using other types
of focus measure operators for certain environmental conditions.
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