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Abstract: Background: The present work aims at obtaining an approximate early production estimate
of olive orchards used for extra virgin olive oil production by combining image analysis techniques
with light drone images acquisition and photogrammetric reconstruction. Methods: In May 2019, an
orthophoto was reconstructed through a flight over an olive grove to predict oil production from
segmentation of plant canopy surfaces. The orchard was divided into four plots (three considered
as training plots and one considered as a test plot). For each olive tree of the considered plot, the
leaf surface was assessed by segmenting the orthophoto and counting the pixels belonging to the
canopy. At harvesting, the olive production per plant was measured. The canopy radius of the
plant (R) was automatically obtained from the pixel classification and the measured production was
plotted as a function of R. Results: After applying a k-means-classification to the four plots, two
distinct subsets emerged in association with the year of loading (high-production) and unloading.
For each plot of the training set the logarithm of the production curves against R were fitted with
a linear function considering only four samples (two samples belonging to the loading region and
two samples belonging to the unloading one) and the total production estimate was obtained by
integrating the exponent of the fitting-curve over R. The three fitting curves obtained were used to
estimate the total production of the test plot. The resulting estimate of the total production deviates
from the real one by less than 12% in training and less than 18% in tests. Conclusions: The early
estimation of the total production based on R extracted by the orthophotos can allow the design of
an anti-fraud protocol on the declared production.

Keywords: precision agriculture; EVOO; digital methods; tree canopy; image analysis; yield predic-
tion; UAV; KNN; anti-fraud; environmental monitoring

1. Introduction

Extra virgin olive oil (EVOO) is a precious ingredient, highly appreciated for its aroma
and excellent nutritional properties [1]. Due to its strict production requirements and
high-quality standards, EVOO has an average higher price than other vegetable oils (it
costs 4–5 times more) [2] This should in principle secure customers against frauds [3].
However, consumers do not always have an adequate level of knowledge to identify and
recognize specific characteristics distinguishing high quality products from those of lower
quality [4,5]. There are two types of certifications protected at the European Union (EU)
level, namely the Protected Designation of Origin (PDO) and Protected Geographical
Indication (PGI) [3]. This is also valid for table olives, among which Italy owns many
PDO/PGI cultivars e.g., Nocellara del Belice (Sicily), La Bella della Daunia (Puglia) and
Oliva Ascolana del Piceno (Marche) [6]. Recently, several definitions “on the origin of
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the product” have been proposed. One of these definitions considers the quality and
characteristics of a typical regional product, strongly linked to the geographical name of
the production area, i.e., country, region or locality and the human and natural resources
owing to that area [7]. Usually, consumers are more inclined to use typical local products
rather than products from atypical areas [8] and tend to identify local oil as “their own
product” [7]. Recently, consumers’ need to know the authenticity of EVOO has intensified.
EVOO is a food product often subject to adulteration with various less expensive food oils
(e.g., sunflower oil, soya oil and corn oil), and this represents a great danger not only for
economic reasons, but also for the consumer’s health and safety [9].

EVOO, in addition to being subject to various fraudulent practices involving blending
with cheaper olive oils, can also be produced by unapproved methods [10]. One of the
frauds related to the EVOO sector is the declaration of a higher production than the real one
obtained during the harvest period. As a result, Italian EVOO intended for the consumer
will no longer have a certain origin and the product sold to the consumer is likely to
be mixed with oils coming from other EU and non-EU countries [11]. One of the most
common types of fraud is EVOO mislabeling. It impacts consumers who are paying for
a false, non-quality product. In general, methods could be used that allow the consumer
to learn to recognize the fake product from the authentic one, with a certain origin. There
are tools that can mitigate counterfeiting. They make it possible to ensure traceability by
reconstructing the path of a product, along all stages from production to distribution. [1].

One technology that could help in tackling the problem related to EVOO counterfeiting
is blockchain technology. Compared to traditional methods of traceability, the latter ensures
greater transparency of data entered along the supply chain, such as security on the
geographical origin of products and greater economic security for primary producers
who can plan in advance agricultural and cultivation activities, in accordance with what
was stipulated before the start of activities [3,12]. Moreover, the production of EVOO is
composed of many steps such as pressing, oil storage or decanting processes. Through
blockchain, it is possible to properly monitor the production cycle of EVOO, extract data
from each process and obtain a real indication of the quality of the product. This makes it
possible to protect EVOO from possible risks of counterfeiting, which consist in trading
non-quality oils and selling them as EVOO [3,13].

In general, the volume of the olive tree canopy is evaluated approximately and
subjectively, and is a rather difficult task [14]. This does not allow a real and traceable
volumetric capacity estimation of the olive grove in question. In a traceability system,
to combat counterfeiting related to EVOO and table olives, the use of remote sensors to
acquire images from Unmanned Aerial Vehicles (UAV) and other aerial vehicles represents
a valid tool to estimate the production area, considering the minimum and maximum
production. Potentially, yield estimation can be done by remotely monitoring the olive
trees by Red, Green, Blue (RGB) sensing from UAV and estimating their production based
on parameters extracted from 3D or 2D reconstructions and statistically correlating the
segmented images with real production. These innovative methods replace the classical
manual and visual assessment, allowing objective data collection for processing through
dedicated software [15].

In addition, these digital methods, besides the tree crown volume, can also be used to
estimate the leaf area index (LAI). The use of UAV has low operational costs and flexibility
in flight planning. As far as the volume of the olive tree canopy is concerned, the projected
area of the canopy is used as a proxy of the canopy volume. It is considered that the central
part of the tree is empty, so as to improve the penetration of air and light. Consequently,
digital methods can be used to measure canopy density [16].

In the literature, recent investigations have focused on the use of UAV-based 3D
models of olive tree plantations. For example, in the study of Díaz-Varela et al. [17], the
performance of UAV imagery was developed and tested to estimate olive crown parameters
such as tree height and crown diameter in the framework of an olive tree breeding program.
Torres-Sánchez et al. [18] developed a procedure for a high-throughput and detailed 3D
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monitoring of agricultural tree plantations by combining UAV technology to an advanced
object-based image analysis. This methodology automatically classified every tree in the
field, computing its position, canopy projected area, tree height and crown volume. The
study of Zarco-Tejada [19] used a low-cost camera on board a UAV to quantify olive tree
height in a discontinuous canopy. In the study of Rallo et al. [20] the potential use of UAV
was employed to fasten and support decision making for table olive breeders regarding
the selection of the most promising genotypes according to some structural parameters
such as tree height, crown diameter, projected crown area and canopy volume.

In addition, UAV are also used in relation to precision agriculture management strate-
gies. For example, Cheng et al. [21] used a UAV demonstrating its potential as a valid
available and cheap alternative for spraying pesticides and fertilizers in comparison to con-
ventional ordinary manned aircraft. Moreover, through the UAV system, Park et al. [22]
collected high-resolution thermal images of a peach orchard, establishing a predictive
model for tree water stress for precision irrigation purposes. Also, Cheng et al. [21] pro-
posed an automatic segmentation method for canopy images based on UAV visual system
acquisitions, establishing an accurate spraying method based on the canopy extracted area.

The aim of this work was to assess the olive production of an olive grove in the Sabina
region (Central Italy) by the canopy radius (R) extracted from orthophotos acquired by
a UAV. The leaf area of the olive trees was estimated by applying a classification filter
based on the k-nearest neighbors (kNN) algorithm and counting the pixels belonging to the
aerial part of the plant. The classification of the pixels automatically provided the canopy
radius of the plant (R) via an original algorithm designed for this purpose. The production
estimate, once obtained, makes it possible not only to have a low-cost tool capable of
reducing fraud, but also to be integrated with new precision farming technologies to store
information on olive grove management plant by plant to improve its management (e.g.,
optimization of fertilization strategies, production yield, water management).

2. Materials and Methods
2.1. Olive Trees Phenology

The olive tree (Olea europaea L.) is an evergreen fruit tree species that is long-lived
and slow-growing. It presents a medium development (4–8 m in height) but in some
cases (depending on cultivar, environment, and cultural conditions) can also reach large
dimensions. The fruit is an oval drupe from whose pulp is extracted oil. This is the only
case in which the edible oil is obtained directly from the fruit, while usually the oil is
extracted exclusively from seeds [23]. In the olive tree the annual development is divided
into two cycles: a vegetative cycle and a reproductive cycle, within which different phases
have been conventionally identified [24]:

• Vegetative stasis: suspension or slowing of growth of vegetative organs (winter period);
• Sprouting: apical and lateral buds enlarge, elongate, and the emission of new vegeta-

tion begins (late winter and early spring);
• Budding: growth of the vegetative apex with appearance of new leaves, nodes, and

internodes (early spring);
• Pinking: from the flowering buds and, where present, from the mixed ones, inflores-

cences form and develop (between March and April);
• Flowering, from the opening of flower buds to the fall of stamens and petals (between

May and June);
• Cheerfulness: enlargement of the ovary in the calyceal portion still persistent, presence

of the browned stigma (June);
• Fruit growth: increase in size of drupes until they reach their final size (between June

and September);
• Flooding: gradual change from green to straw yellow, up to red-purple color for at

least 50% of the surface of the drupe and decreased consistency of the pulp (from
September to November);
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• Maturation: complete acquisition of the typical color of the cultivar, or of the color
corresponding to the commercial use of the product; beginning of the appearance of
senescence symptoms (between November and December);

• Leaf fall: gradual appearance of yellowish color until complete yellowing of the leaf
and subsequent phylloptosis (during winter).

It has been shown that some environmental parameters affect the physiology of the olive
tree, affecting its productivity and production. In fact, higher rainfall can positively influence
olive production in areas with a dry climate. Temperature variability is also a significant
factor in olive oil production. Olive trees decrease their production during dry and colder
periods throughout the Mediterranean region. This decrease in production could be due to
the limiting temperature conditions of the olive tree, i.e., its physiological limit [25].

2.2. Experimental Field and Setup

On 22 May 2019 (during flowering) a flight with the UAV DJI Spark (made by DJI SZ
DJI Technology Co., Ltd., Shenzhen, China) was performed in a farm (Ponzani Antonio
farm), located in Montorio Romano (Central Italy; N 42.1395917; E 12.77265), to make a
rough estimation of EVOO production from UAV RGB ortho-photos, using a leaf-area
estimation (Datum WGS84). The number of pixels relative to the aerial part per plant
has been related to the verified production plant by plant. Three main cultivars were
considered: Carboncella (57 olive trees), Frantoio (2 olive trees) and Leccino (15 olive trees).
The olive grove is located in the hills. The trees are separated by average distances of
10.2 × 8.9 m, or 110 plants per hectare. The mean height of the plants is 3.27 ± 1.18 m.
The surface is composed of an irregular planting layout and is characterized by a slope of
35%. The experimental design and the basic theory on the estimation of biophysical and
geometrical parameters of olive trees followed the approach proposed by Caruso et al. [16].
The olive orchard was divided into four plots (Figure 1A) using spatial proximity criterion,
where two plots included 18 trees and the remaining two 19 plants each. Three plots were
used as a training set for the regression model and one plot was used as a test (Figure 1A).
For each region of the training set a regression model was built using only four samples
(two small plants with low productivity and two highly productive large plants) and the
regression models obtained were finally tested on the test region. The dimension of the
plants considered was fixed based on the canopy radius extracted from UAV orthophoto.
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2.3. UAV Images Acquisition and Orthoimage Reconstruction

UAV orchard reconstruction was performed starting from an overfly done at a height
of 12 m above the ground. The UAV characteristics are visible in Table 1.

Table 1. Specifications of the unmanned aerial vehicle (UAV) DJI™ SPARK™.

Details Items Specifications

UAV

Weight 297 g
Dimensions 143 mm × 143 mm × 55 mm
Max speed 50 km/h

Satellite positioning systems GPS/GLONASS

Digital camera

Camera Focal length 4.5 mm
Sensor dimensions (W × H) 6.17 mm × 4.56 mm

Sensor Resolution 12 megapixels
Image Sensor Type CMOS
Capture Formats MP4 (MPEG-4 AVC/H.264)

Still Image Formats JPEG
Video Recorder Resolutions 1920 × 1080 (1080 p)

Frame Rate 30 frames per second
Still Image Resolutions 3968 × 2976

GIMBAL

Control range Inclination from −85◦ to 0◦

Stabilization Mechanical 2 axes (inclination, roll)
Obstacle detection distance 0.2–5 m

Operating environment
Surfaces with diffuse reflectivity

(>20%) and dimensions greater than
20 × 20 cm (walls, trees, people, etc.)

Remote Control
Operating Frequency 5.8 GHz

Max Operating Distance 1.6 km

Battery

Supported Battery
Configurations 3S

Rechargeable Battery Rechargeable
Technology lithium polymer

Voltage Provided 11.4 V
Capacity 1480 mAh

Run Time (Up to) 16 min
Recharge Time 52 min

The flight of the UAV drone was planned with the open-source Mission Planner soft-
ware [26]. This software allows for flight design obeying several prescriptions related to
the surface to be acquired, such as: e.g., overlap and sidelap, ground sampling distance
(GSD), total flight time and image acquisition synchronization. The mission, once appro-
priately designed, was exported to the application used to flight-control and pilot the UAV
(Litchi for Android), (Figure 1B). The application can load waypoints through csv files for
a predefined mission flight allowing for photogrammetric applications using a commercial
limited budget drone (under 400 €).

The UAV digital camera collected still images every 2.13 s using a shutter speed of
1/5000 s and a sensitivity of 100 ISO. The camera specifications are described in Table 1.
Images were collected using the UAV with the digital camera flying with a velocity of
2 ms−1 at 12 m above ground level (AGL) obtaining a GSD (Ground Sample Distance)
equal to 0.415 cm/pixel. The experimental flight was conducted on 22 May 2019. The
340 images were acquired with natural light illumination, with a time-lapse with the RGB
camera. The total flight time including take-off and landing was about 14 min.

Before flying, an image color checker GretagMacbeth (24 patches) (X-Rite, Grand
Rapids, MI, USA) was acquired for later color calibration. The a priori knowledge of
the color checker patches values allowed the calibration of all the images following the
thin-plate spline interpolation function [27] in the RGB space values following a defined
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procedure developed in MATLAB [27] (MathWorks Inc., Natick, MA, USA). This method
helps to minimize the effects of the illuminants, camera characteristics and settings measur-
ing the ColorChecker‘s RGB coordinates within the acquired images and warping them
(transformed) into the known reference coordinates of the ColorChecker.

After image acquisition, the orthophotos were reconstructed using the software “3DF
Zephyr” (Zephir 3DFLow 2018, Verona, Italy) [28] according to the following steps: project
creation; camera orientation and sparse point cloud generation at high accuracy (100%
resolution with no resize); dense point cloud generation; mesh extraction; textured mesh
generation; export outcome files (Digital Surface Model—DSM and Digital Terrain Model—
DTM) and the orthophoto.

2.4. Leaf Area Estimation

On the original orthorectified UAV image of the whole orchard, a 650 × 650 px
bounding box was manually centred on each olive tree of the region considered and the
corresponding image extracted. As a result, 74 images (650 × 650 px each) were obtained
corresponding to the 74 olive trees considered. For each olive tree, the leaf area was
estimated by classifying the pixels of the corresponding 650 × 650 px image and counting
the ones belonging to the class ‘’leaves”. This was done using a kNN supervised learning
algorithm adopted to classify the pixels in five classes (“Trunk”, “Leaves”, “Ground”,
“Other trees”, “Else”). The kNN algorithm was trained on a dataset built by manually
extracting 500 patches (10 × 10 px)—100 for each class—from the original orthorectified
UAV image of the whole orchard. The Java tool used for the kNN training was k-PE—
kNN Patches Extraction software [29] with k = 7. The normalized leaf area was obtained
by counting pixels belonging to the “Leaves” class and dividing by the total area of the
650 × 650 bounding box (4225 px2). The output of the kNN classification filter is a black
and white image in which the white pixels are those belonging to the “Leaves” class.

2.5. Canopy Radius Estimation

An original method for the automated canopy radius estimation from the segmented
650 × 650 px kNN image has been implemented. First, the image is read as a matrix
M650 × 650 whose elements are 1 for white pixels (leaves), 0 for black pixels (trunk), and 0.5
for gray pixels (rest). At the beginning the center of the canopy’s approximate circumference
is C = (325;325) (placed at the centre of the image), and the provisional canopy radius is
r = 0. Afterwards, at each step of the algorithm, the provisional radius r is incremented by
1 (up to 325 which corresponds to Rmax) and the matrix elements in the neighbourhood of
C are analysed. If matrix elements equal to 1 are found, the coordinates of C are updated
as follows:

Cx =
(pxmax − pxmin)

2
(1)

Cy =
(pymax − pymin)

2
(2)

where pxmax(min) represents the largest (smallest) column index of the matrix element whose
value is 1 and pymax(min) the largest (smallest) row index of the matrix element whose value
is 1. As a result, at each step, the centre C moves all around the picture and r increases. The
algorithm converges when no new 1 matrix elements are found, and the canopy radius R is
obtained as:

R =
cL

x + cL
y

2
. (3)

In Equation (3) cL
x and cL

y the coordinate of C in the last iteration. The Matlab code is
reported in Appendix A.

2.6. Olive and EVOO Production Estimation

For each olive tree in the four regions the total olives produced were weighed. These
regions were chosen following a proximity criterion (Section 2.2). At harvest (carried out
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from 7 to 27 November), the olives were weighed inside the mill. The total weight per
cultivar and the corresponding average yields are reported in Table 2.

Table 2. Total regional weight (Kg) and average yield per cultivar.

Region 1 (kg) Region 2 (kg) Region 3 (kg) Region 4 (kg) Average Yield (lt/hw)

Carboncella 691.5 627.0 1021.5 827.5 17.2
Leccino 284.5 258.5 29.0 132.5 20
Frantoio 0.0 11.5 0.0 62.5 17.8

Total 976.0 897.0 1050.5 1022.5

The total weight was recorded for the three cultivars harvested equalled 3167.5 kg
for Carboncella, 74 kg for Frantoio and 704.5 kg for Leccino, for a total weight of 3946 kg.
The productivity of each region was analysed using a two-classes k-means unsupervised
classification algorithm, which outputs two subsets characterized by high and low produc-
tivity. Thus, the productivity values were plotted against the predicted canopy radius R of
Formula (3). For each region only four samples were used: two samples belonging to the
low-productivity subset and having smallest values of R/Rmax and two samples belonging
to the high-productivity subset and having largest values of R/Rmax. On these four samples
a linear regression model was applied considering as independent variable x = R/Rmax and
y = log10(p/P0 + 1) as dependent one.

log10(p/P0 + 1) = a ∗ ( R
Rmax

) + b (4)

In Equation (4) p is the estimated production in kg, R/Rmax is the canopy radius
normalized to half of the image size, a and b are fitting parameters and P0 = 1 kg is a
dimensional constant. The factor 1 is necessary for the argument of the logarithm being
zero when p = 0. The total production estimates for every single region were obtained by
summing up the predicted values of p.

The EVOO production estimate was obtained by multiplying the predicted production
in Kg of the single plant by the relative average yield.

3. Results
3.1. Loading and Unloading Subsets

The four regions showed a clear distinction between highly productive and low
productive plants, demonstrating the tendency of olive trees to have loading and unloading
years of production [26].

Figure 2 shows the plant production (Figure 2 top) and the EVOO production (Figure 2
down) of the four regions of the orchard (Yellow, Green, Blue and Red) considered. It is
possible to observe that in all productivity histograms (Figure 2 top) there is a clear gap
between the high productivity region and low productivity region of the plot. As a result, for
every single region considered, the data can be grouped into two distinct subsets separated by
a boundary. The precise location of this boundary was calculated with the K-means clustering
algorithm (see below) and is located at about 45 kg in the olive production histogram. The
corresponding boundary for the oil production histogram was obtained considering the
average yield reported in Table 3 and has a value of approximately eight litres.

Table 3. Regression coefficients of Equation (5).

Region 1 Region 2 Region 3 Region 4

m 0.42 0.45 0.36 0.45
q 0.01 −0.04 −0.01 −0.03

Coefficient of
determination R2 0.87 0.80 0.93 0.78
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Figure 2. Top -from left to right- olive productivity histogram for the four regions of the orchard
(yellow, green, blue and red). Bottom, from left to right, oil productivity histogram for the four regions
of the orchard (yellow, green, blue and red). The dashed lines represent the boundaries between the
loading year and unloading year region of the plot, calculated with the k-means algorithm.

3.2. Leaf Area and Canopy Radius Estimate from kNN Image Segmentation

In order to predict the total production of a region of the orchard, it is necessary to
correlate it with a measurable quantity. The reasonable measurable parameters considered
are the leaf area and the canopy radius. Indeed, one expects “on average” larger plants to
produce more olives. The basis of this assumption is that the density of olives (olive weight
divided by the canopy volume) is spherically symmetric and it does not decrease faster
than (R/Rmax)−3. Given the age of the orchard and its agronomic conditions, the above
assumption seems to be reasonable and was verified a posteriori (see Figures 4 and 5). The
use of modern technology, particularly UAV orthophotos, allows good estimation of plant
characteristics such as the normalized difference vegetation index (NDVI), leaf area, and
canopy volume [14]. In particular, the canopy radius could be even manually identified on
the orthophoto and measured compared to the picture size. The canopy radius and the leaf
area estimates were simultaneously obtained adopting the automated method described in
Section 2 (see also Appendix A).

Figure 3 shows the picture of an olive tree extracted from the UAV orthophoto
(Figure 3a), segmented with the kNN algorithm (Figure 3b) and its canopy circumference
(Figure 3c) given the canopy radius extracted with the algorithm described in Section 2.

Drones 2021, 5, x FOR PEER REVIEW 9 of 16 
 

leaf area, and canopy volume [14]. In particular, the canopy radius could be even manu-

ally identified on the orthophoto and measured compared to the picture size. The canopy 

radius and the leaf area estimates were simultaneously obtained adopting the automated 

method described in Section 2 (see also Appendix A). 

Figure 3 shows the picture of an olive tree extracted from the UAV orthophoto (Fig-

ure 3a), segmented with the kNN algorithm (Figure 3b) and its canopy circumference (Fig-

ure 3c) given the canopy radius extracted with the algorithm described in Section 2. 

   
(a) (b) (c) 

Figure 3. (a) Image of the olive tree before image segmentation; (b) Image segmented with kNN 

supervised learning algorithm; (c) Calculated canopy circumference having radius R. The patches 

assigned to the class “leaves” by the kNN algorithm are marked in red. 

To give an estimate of the olive regional productivity both the leaf area and the can-

opy radius assessed from the UAV orthophoto reconstruction can be used. However, for 

all the four regions considered it was found that the normalized leaf area is quadratically 

correlated with the canopy radius. In particular, the regression equation holds, where 

NLA stands for normalized leaf area and x = R/Rmax was already defined above. The re-

gression coefficients m and q are reported in Table 3 for the four regions analysed. 

𝑁𝐿𝐴 = 𝑚𝑥2 + 𝑞 (5) 

Table 3. Regression coefficients of Equation (5). 

 Region 1 Region 2 Region 3 Region 4 

m  0.42 0.45 0.36 0.45 

q  0.01 −0.04 −0.01 −0.03 

Coefficient of determination R2 0.87 0.80 0.93 0.78 

Given these results, in principle it is irrelevant which variable is chosen for describing 

the system (leaf area or x = R/Rmax). However, the overall kNN pixel classifier accuracy is 

71.3% and pixel misclassification can occur. Conversely, very few pixels are needed to 

draw the canopy circumference. As a result, although leaf area estimation for the individ-

ual tree may be inaccurate, the canopy boundary is detected very well and consequently 

the normalized canopy radius was considered an independent variable. Moreover, the 

canopy radius can be directly measured in-field and can be used both as an external test 

for the model and as an input for the production estimate protocol.  

Note that the estimated leaf area was not reported since it was not used for estimating 

the olive production. The main result of Equation (5) is indeed that the leaf area is propor-

tional to the square of the canopy radius. This justifies the use of the canopy radius (which 

is easier to measure with respect to the leaf area) for estimating the olive production. 

First of all, for each region among the three chosen as training for the model, the 

productivity as a function of the normalized canopy radius was plotted in a logarithmic 

scale (Figure 4) and the data were analysed by means of a k-means clustering algorithm. 

Figure 3. (a) Image of the olive tree before image segmentation; (b) Image segmented with kNN
supervised learning algorithm; (c) Calculated canopy circumference having radius R. The patches
assigned to the class “leaves” by the kNN algorithm are marked in red.

To give an estimate of the olive regional productivity both the leaf area and the canopy
radius assessed from the UAV orthophoto reconstruction can be used. However, for all
the four regions considered it was found that the normalized leaf area is quadratically
correlated with the canopy radius. In particular, the regression equation holds, where NLA
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stands for normalized leaf area and x = R/Rmax was already defined above. The regression
coefficients m and q are reported in Table 3 for the four regions analysed.

NLA = mx2 + q (5)

Given these results, in principle it is irrelevant which variable is chosen for describing
the system (leaf area or x = R/Rmax). However, the overall kNN pixel classifier accuracy is
71.3% and pixel misclassification can occur. Conversely, very few pixels are needed to draw
the canopy circumference. As a result, although leaf area estimation for the individual
tree may be inaccurate, the canopy boundary is detected very well and consequently the
normalized canopy radius was considered an independent variable. Moreover, the canopy
radius can be directly measured in-field and can be used both as an external test for the
model and as an input for the production estimate protocol.

Note that the estimated leaf area was not reported since it was not used for estimating
the olive production. The main result of Equation (5) is indeed that the leaf area is propor-
tional to the square of the canopy radius. This justifies the use of the canopy radius (which
is easier to measure with respect to the leaf area) for estimating the olive production.

First of all, for each region among the three chosen as training for the model, the
productivity as a function of the normalized canopy radius was plotted in a logarithmic
scale (Figure 4) and the data were analysed by means of a k-means clustering algorithm. In
this way, it is possible to separate the highly productive plants (loading) from the unloading
one (see Section 3.1). When plotted in logarithmic scale, all the three regions show a gap
between the two subsets located at around log10(p/P0 + 1) = 1.65 which corresponds to
p = 45 kg in agreement with the results of Section 3.1. The following procedure was then
applied to the three regions of the training set. Among the low productive plants two
plants with the smallest R/Rmax were considered, and among the highly productive plants
two plants with the largest canopy radius were considered. These four samples are marked
as green squares in Figure 4 and were used to build the regression model defined by
Equation (4). In Table 4 the fitting parameters, the determination coefficients and the
production estimates are reported for the three regions considered as training.
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Figure 4. Regional productivity in logarithmic scale as a function of the normalized canopy radius
for the three regions considered as training for the model. The data were divided into two subsets by
a k-means clustering algorithm (blue and red circles). Four points (green squares) were chosen to
perform a linear regression—see Equation (4)—(black line).

Table 4. Results of the production estimate procedure for the three regions of the training set obtained
through the regression Equation (4).

Region 1 Region 2 Region 3

a (see Equation (4)) 0.7931 1.3836 0.6662
b (see Equation (4)) 1.2388 0.7065 1.2651

Coefficient of
determination R2 0.6220 0.9787 0.8007

Predicted weight (kg) 976.7 922.4 936.1
Measured weight (kg) 976.0 897.0 1050.5
% error on the weight 1.0 2.8 −11.5
Predicted EVOO (lt) 174.2 165.4 161.8

Meaure EVOO 175.8 161.6 181.5
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For the three regions considered as training, the estimated productivity for the olive
weight resides in an interval (−11.5%, +2.8%) and that for the EVOO resides in an interval
(−11.5%, +2.3%). At this point the fourth region was used as a validation test for the
regression (Figure 5). In this way it is possible to give a sort of confidence interval of the
estimates obtained.
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Figure 5. Productivity in logarithmic scale as a function of the normalized canopy radius of Region 4
(red circles). The productivity estimates (both for the olive weight and for the EVOO) were obtained
using the regression models of training Region 1 (yellow line), Region 2 (green line) and Region 3
(blue line). The parameters of the fitting lines are reported in Table 4.

The productivity and EVOO estimates for Region 4 obtained using the regression
coefficients of the other three regions are reported in Table 5.

Table 5. Production and EVOO estimates obtained using the regression coefficients of the three regions considered as training.

Predicted Weight (kg) % Error on the Weight Predicted EVOO (IT) EVOO Error%

Region 1 1208.9 16.7 214.7 17.6
Region 2 984.7 −3.8 174.7 −3.0
Region 3 1032.7 0.99 180.0 1.9

The estimated productivity for both the olive weight resides in an interval (−3.8%,
16.7%), slightly smaller than that for the EVOO which resides in an interval (−3%, 17.6%).

4. Discussion and Conclusions

The purpose of the article is the evaluation of the olives and EVOO production through
the canopy radius extracted from orthophoto acquired by a UAV. The flight was performed
in May since in the period between May and June there is the maximum flowering of olive
trees and the beginning of the growth of the fruits. Therefore, it has been demonstrated that
flowering is a good period for making an accurate early estimate of the production [25,26].
Indeed, the chosen period coincides with the flowering phase and is the earliest period
to be able to estimate crop productivity. In future research we would like to replicate the
same approach by considering different periods, from flowering onwards, to see which
period can best approximate the production estimate.

Light drone applications [15,30] are increasing their importance due to reduced bud-
gets and the possibility of flying with a reduced need for bureaucratic permissions. The use
of UAVs for crop phenotyping of plants is rapidly growing [31] because of the difficulty
involved and the precision limit of manual crop analysis [20,32,33].

Yield production in olive trees was studied as a function of row spacing [e] and canopy
volume [d]. However, ref. [32] is a preliminary study and only 16 samples were considered.
Yield production estimates seem to be more efficient in herbaceous crops.

Nevavouri et al. [31], used a convolutional neural network (CNN) based on NDV and
RGB data acquired from UAVs to predict wheat and barley yield. Results indicate that the
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best performing model can predict within-field yield with an average absolute error of
484 kg/ha (MAPE: 8.8%) based only on RGB images in the early stages of growth (<25%
of total thermal time). The model for RGB images in later growth stages returned higher
error values (MAE: 680 kg/ha; MAPE: 12.6%). Another study involving the estimation
and analysis of above-ground biomass (AGB) of the wheat crop using a consumer-grade
red-green-blue (RGB) camera mounted on a drone is that of Panday et al. [34]. AGB and
wheat yield were estimated by linear regression models through plant height obtained
from crop area models from images captured by the drone-mounted camera. The plant
height estimated from the drone images had an error between 5% and 11.9% compared to
the direct field measurement.

Future work could lead to the streamlining of the processing operation in order to
produce a practical application ready to use. Nevertheless, the process can be streamlined
and automated for easy operation and data analysis. This work represents one step among
several currently being used that are shifting agricultural management from precision
farming towards digital farming [30–33].

Figure 2 shows a histogram of the plant production. It is possible to observe a clear gap
between the high productivity (loading year) region and low productivity (unloading year) for
each region of the plot. As reported by Ramos-Román [25], the olive tree is a climatic-sensitive
tree taxon conditioned by the present aridification tendency in the Mediterranean climate
areas. Indeed, it is a common experience that olive tree production tends to oscillate from year
to year, leaving the overall productivity of the orchard almost constant in time [26]. Generally,
some varieties of olive trees provide alternation of a productive year (loading) followed by
a year of discharge (unloading). This could be caused by certain climatic conditions and
agronomic techniques, such as pruning, fertilization and irrigation [34]. This feature also is
also reflected in olive oil production. Figure 2 shows that the population of the two subsets
varies among the four regions. In particular, the unbalanced ratio between loading and
unloading years among the three regions considered as training does not affect the overall
performance. This demonstrated the validity of the proposed model. Frauds regarding
food distribution is a great problem in modern society. Extra virgin olive oil is one of the
products with a higher percentage of sophisticated imitations. One way to fight against EVOO
sophistications is to guarantee the continuity from producer to consumer. A correct production
estimate, also for table olives, could be useful for the planning of industrial processes which
the drupes undergo after harvesting (e.g., debittering). In this respect it is important that the
declared production reasonably corresponds to the real one.

In this paper an effective and scalable method for giving an accurate estimate of
the production of olive orchards has been proposed. The method shown here takes as
input UAV pictures of the orchard and the real production of a few plants of the orchard.
The UAV orthophoto is then cropped around the olive trees and segmented with a kNN
algorithm. At this point, a counting algorithm automatically extracts the normalized leaf
area, the canopy radius and the canopy center. Applying a k-means classification to the
graph of the production measured in kilograms as a function of R, two distinct zones
emerged, associated with the year of loading (high production) and the year of unloading
(low production), respectively. The total production estimated by the aforementioned
regression model deviates from the real one by less than 12% in training and less than
18% in test. This makes the estimation of total production according to the canopy radius
assessed by orthophotos robust and reliable, and makes it possible to draw up an anti-fraud
protocol about the declared production, knowing the number of plants and their extension.
The proposed methodology could help farmers in tracking the production amount per
field zone, identifying eventual problems or aiding in defining a production and marketing
strategy in advance. Future works, also thanks to the unsupervised nature of the K-means
clustering machine learning algorithm, could interestingly point to a streamlining of the
acquisition and analysis protocols on one side and the testing of a drone equipped with a
higher resolution sensor to increase the performances on the other. Once the acquisition
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and analysis flow has been strengthened, the whole system could be applied as a practical
anti-fraud protocol on the basis of the declared production towards sample farms.
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Appendix A

Matlab code for obtaining the canopy radius, canopy center and leaf area from images
segmented with an image segmentation algorithm (in this case kNN).

clear all;
close all;
clc
DINPUT = ‘Directory\where\the\segmented\pictures\are\’; %DIR di input
files = dir([DINPUT ‘*.png’]);
L = length(files);
Rmax = zeros(L,1);
for k = 1:L, % cicle over the files
fname = files(k).name;
B = im2double(imread([DINPUT fname])); % input segmented image size(B) = [650,650];
IMGR = repmat(B,[1,1,3]); % make an RGB from segmented image
ny = size(B,1); % n rows
nx = size(B,2); % n columns
C1 = round(nx/2); % initial coordinates
C2 = round(ny/2); % of the Center.
R = min(C1,C2); % Radius
%%% making B binary %%%
reshape(B,size(B,1)*size(B,2),1);
for i = 1:size(B,1)*size(B,2)
if (B(i) < 1)
B(i) = 0;
else
B(i) = 1;
end
end
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%%% initialize variables %%%
nump = zeros(1,round(R));
JMAX = C2;
IMAX = C1;
Imin = IMAX;
Jmin = JMAX;
%%%
for r = 1:1:R
kk = 0;
reshape(B,size(B,1),size(B,2));
for i = 1:1:nx %column index
for j = 1:1:ny %row index
if(((j-C2)ˆ2 + (i-C1)ˆ2) < rˆ2 && B(j,i) > 0.5)
kk = kk + 1; %counts how many leaves
%%% AVOIDS DOUBLE COUNTING!!! %%%
B(j,i) = 0.3; %%%MARK THIS POINT%%%
%%% !!!!!IMPORTANT!!!! %%%
if (i > IMAX)
IMAX = i;
end
if (j > JMAX)
JMAX = j;
end
if (i < Imin)
Imin = i;
end
if (j < Jmin)
Jmin = j;
end
end
end %i
end %j
nump(r) = kk;% between r−1 and r there are kk leaves!!!
end% r
data(k,1) = sum(nump)/nx/ny; % leaf area automatically comes out!
C1 = ((IMAX-Imin)/2);
C2 = ((JMAX-Jmin)/2);
R = (C1 + C2)/2;
C1 = floor(C1 + Imin);
C2 = floor(C2 + Jmin);
Rmax(k) = R;
fprintf(‘Leaf area =%d Canopy radius =%d ‘, data(k,1),2*Rmax(k)/nx);
fprintf(‘Canopy center = [%d %d]\n’,C2,C1);
%%% Just for plot %%%
for i = 1:1:nx
for j = 1:1:ny
if (((j-C2)ˆ2 + (i-C1)ˆ2) < (R + 2)ˆ2 && ((j-C2)ˆ2 + (i-C1)ˆ2) > (R−2)ˆ2 )
IMGR(j,i,:) = [0,255,0];
end
end
end
IMGR(C2-2:C2 + 2,C1-2:C1 + 2,1) = ones(5,5);
IMGR(C2-2:C2 + 2,C1-2:C1 + 2,2) = zeros(5,5);
IMGR(C2-2:C2 + 2,C1-2:C1 + 2,3) = zeros(5,5);
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imshow(imresize(IMGR,[300,300]));
pause;
%%%
end
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