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Abstract: Autonomous navigation of micro aerial vehicles in unknown environments not only
requires exploring their time-varying surroundings, but also ensuring the complete safety of flights at
all times. The current research addresses estimation of the potential exploration value neglect of safety
issues, especially in situations with a cluttered environment and no prior knowledge. To address
this issue, we propose a vision object-oriented autonomous navigation method for environment
exploration, which develops a B-spline function-based local trajectory re-planning algorithm by
extracting spatial-structure information and selecting temporary target points. The proposed method
is evaluated in a variety of cluttered environments, such as forests, building areas, and mines. The
experimental results show that the proposed autonomous navigation system can effectively complete
the global trajectory, during which an appropriate safe distance could always be maintained from
multiple obstacles in the environment.

Keywords: vision-based navigation; path planning; sampling; B-spline

1. Introduction

Due to their good flexibility, strong maneuverability, easy operation, and unique
viewpoint, micro aerial vehicles (MAVs) are widely used in aerial photography, search-
and-rescue missions [1], delivery of goods, and mine exploration [2], etc. The autonomous
navigation systems of drones can replace humans to complete some tasks that are dan-
gerous or impractical for humans. The research on autonomous navigation systems can
effectively reduce the complexity of tasks and improve the efficiency of their execution.
It has attracted widespread attention in recent years. For example, in search-and-rescue
missions, an autonomous navigation system can autonomously control the MAV to avoid
obstacles in real time and provide image information with a unique perspective for res-
cue operations.

Typically, an autonomous navigation system consists of four parts: perception, map-
ping, planning and control, in which the planning provides a real-time, safe, collision-free
trajectory for MAVs that meets dynamic constraints. At the present, the research of plan-
ning based on target searches in unknown environments mainly deals with two problems:
the first is obstacle avoidance, while the second is solving the problem of getting stuck
at local minima. This poses a special problem in unexplored or partially unexplored en-
vironments, where only locally optimal or reactive planners will frequently fail to find a
path [3]. Different from the known environment, an autonomous navigation system in
partially known or unknown environments will model the environment through sensors
step by step. Since the environmental information is gradually obtained, there is a high
risk of possible collision in the trajectory at the current and next moments. Therefore, the
planning policy should not only gradually complete the task through exploration, but also
have the capability of guaranteeing the safety of the MAV in unknown surroundings.
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However, current algorithms cannot fully meet this requirement. The proposed
scheme simplifies the environment into a model with sparse and evenly distributed obsta-
cles and makes optimistic assumptions about it [4]. This method cannot make immediate
adjustments in the presence of large, irregular obstacles, although it is indispensable in a
real environment. The author proposes that the trajectory follows obstacles and always
maintains a safety range [5] when MAVs face complex environments. Although this
method guarantees sufficient safety, planning is restricted. It is not only unfavorable to
the execution of the task, but also makes planning get stuck at local minima, and can even
fail to find a path. Another type of approach does not focus on obstacles, but ensures
safety from the perspective of local re-planning. Some scholars combine the strategy of
exploration and re-planning, which has shown good results. However, the global trajectory
is mechanically spliced between the previous and next trajectories, and so lacks flexibil-
ity. This leads to discontinuities in the trajectory direction, which greatly increases the
possibility of drone collisions.

Based on the rich information from the vision sensor, in this work we propose a model
for extracting spatial-structural information, which can guide drones well to maintain a
suitable safe distance with obstacles in space. With it, we develop an exploration strategy
with a B-spline-based local trajectory optimization by selecting intermediate goal points
to ensure a sufficiently smooth global trajectory. Additionally, we quantitatively compare
our autonomous navigation system with the Ewok system [6] by simulating a variety of
different environments for the system to operate in, including three specific scenarios: a
dense forest, building and mine. Experiments show that our planning algorithm can not
only achieve a better connection between the two trajectories, but also maintain a high
success rate in a variety of complex environments.

2. Related Work

At the present, there are many studies on path planning strategies in unknown
environments, which can be divided into three categories: motion primitive-based ap-
proaches,trajectory optimization approaches and sampling-based approaches.

Motion primitive-based approaches discretize the state space of the drone into a
variety of motion primitives and then search for the corresponding operation in the motion
primitive library according to the current state of the drone. The approach makes an
immediate decision based on the sensor data without building a persistent map [7–9]. This
method has the advantages of a fast response and a good effect on moving objects, but it
can only run in a scenario with low obstacle density, and it easy for it to get stuck in the
local optimal position in a complex obstacle environment.

Trajectory optimization approaches rely on a minimized objective function to achieve a
collision-free and smooth trajectory through multiple iterations of optimization. CHOP [10]
and CTTOP [11] both use a two-part objective function with a smoothness and collision cost.
The difference is that the former uses a series of discrete points to express the trajectory
and the latter uses polynomial segments instead. A more recent advent in trajectory
optimization expresses the trajectory by B-spline and performs gradient descent with
positions of discrete waypoints as parameters [6]. A trajectory optimization-based planner
requires an initial trajectory. If the initial trajectory passes through a large obstacle, the
ability of this optimizer will be very limited, and the trajectory cannot be guaranteed to be
collision-free. Therefore, it is not suitable for large-scale path planning.

The closest to our proposed approach are search-based approaches. Traditional meth-
ods, such as RRT [12] and RRBT [13], obtain samples from graphs by random sampling,
collision detection, expansion of the RRT tree, and repeated iterations. Finally, a non-
smooth path from the start point to the end point is constructed. This method initially
needs to search in the global map, so an a priori map is necessary. In order to adapt to the
unknown environment, scholars have proposed a strategy of exploration, which does not
focus on collision avoidance, but tries to discover the unexplored space. The proposed
receding horizon Next-Best-View Planner (NBVP) was proposed by Bircher in [14], which
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counted the number of unknown occupied cells in the field of view of the sensor as the
potential exploration value of this sample point and established the RRT tree. Each time,
the MAV only executed the branch that could obtain the highest profit. Anna [15] uses
the storage characteristics of an Octomap to extract the frontier instead of the complex
calculation of the traditional method and incorporates the idea of exploration gain based
on the sampling method, which achieved a good effect in the exploration map. Another
work saves the explored historical information of NBVP so as to achieve a high sampling
efficiency [16]. In an unknown environment, due to the limited perception range of the
sensor, the contribution of RRT to planning is limited, requiring a lot of calculations to
maintain the RRT tree. Oleynikova et al. [3] extend the method of NBVP and replace the
method of RRT tree with the strategy of intermediate goal, by proposing a local trajec-
tory optimization method represented trajectory based on a polynomial. Although the
exploration strategy of intermediate goal is very effective in guiding drones to explore in
unknown environments, the local plan optimizer expressing the trajectory in a polynomial
obtained the global trajectory with insufficient smoothness and many inflection points,
especially in the connection point between two segments trajectories. The proposed al-
gorithm in this paper extends the exploration strategy of intermediate goal, but replaces
random sampling by extracting samples from the special spatial-structure information; in
particular, the proposed algorithm expresses the trajectory based on B-spline that has better
locality for connecting two segments trajectories and achieves sufficient smoothness of the
global trajectory.

3. System Framework

In order to make the autonomous navigation system adapt to different application
scenarios, we assume a task scenario in which a drone needs to explore from the source
point (xs, ys, zs) to the goal point (xg, yg, zg). There is a space V ∈ R3 without prior
information, where the obstacles are densely distributed and unevenly distributed. The
drone is equipped with an autonomous navigation system and vision sensor. The vision
sensor can obtain an RGB image and depth image in the field of view of the drone at
the current position, but the effective range of depth information is limited, as shown in
Figure 1.

Figure 1. MAV mission execution scenario. Source point (blue) is the drone take-off position, while
goal point (red) is the goal position. Obstacles (brown) of various shapes are unevenly distributed in
the space. The effective depth distance of the vision sensor can only reach d. In particular, v1, v2,
v3, and v4 (red point) are the viewpoints extracted from the image, which are filtered to obtain the
Inter–goal point (green). Under the guidance of Inter–goal, the local planning optimizer obtains the
trajectory (green line).
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The autonomous navigation system is mainly composed of four parts, perception,
mapping, planning and control; in this work, we focus on the part of planning. Since
there is no prior environmental information, MAVs need to continuously model environ-
mental information through vision sensors, called perception. Vision-based autonomous
navigation systems generally obtain visual information from a vision camera that can be
an RGB-D camera, monocular or stereo. Visual simultaneous localization and mapping
(V-SLAM) technology is often used to provide the drone’s pose and map, which is mainly
divided into two parts: localization and mapping. Since our research is mainly focused
on the planning part, we provide drone poses through high-precision IMU and obtain the
grid map through ray-cast operations [6,17], which is a typical mapping algorithm. At the
same time, we propose a special spatial-structure information extraction model, which
will input the two-dimensional image and output a special spatial-structure information ξ.
Planning plans a collision-free path and satisfies a series of constraints trajectory for MAV.
In this part, we have improved the sampling method to enhance the applicability of the
autonomous navigation system in the actual environment. The intermediate goal selected
by our planning algorithm is more instructive and safer. Local planning optimizer can
adjust flexibly in real-time, when the drone faces unmodeled, large and irregular obstacles.
Control receives control information from planning to guide drone flight, as shown in
Figure 2.

Visual Sensor

IMU Sensor

Spatial-structure 

extraction model

ESDF 

Goal-find 

Planning

collision check

Local Planning 

Optimizer  

Inter-goal

Success

Success

Failure

FailureController

Circular_buffer

Figure 2. Autonomous navigation system. The spatial-structure extraction model obtains image
data from the visual-sensor, and sends it to goal-find planning. Goal-find planning quantifies the
exploration and safety values of each viewpoint, selects the best inter-goal and detects collision. Then,
local planning optimizer relies on inter-goal guidance to plan the trajectory.

4. Methods

Our path planning method is an extension of intermediate goal strategy [3], which
belongs to the sampling method. Intermediate goal strategy compares a large number of
randomly sampled points to obtain a position with a greater exploration value. However,
the sample points obtained by random sampling contain limited spatial information,
which cannot well express the relationship between the drone and the objects in space.
It is difficult for such an intermediate goal point to ensure the safety of the drone in
an unknown environment. To deal with these problems, we propose a spatial-structure
extraction model, which will process the two-dimensional image and output special spatial-
structure information. The special information can be expressed as a ray or a viewpoint
in R3, which are limited in number and contain information about the distribution of
objects in space. Then, we improve the original value evaluation function by adding a
safety evaluation factor, balance the value of exploration and safety with a weight factor,
and adjust the number of candidate intermediate goal points in an environment-adaptive
manner. Last but not least, we propose setting the intermediate goal for the initialization
parameter of the local planning optimizer, which expresses the trajectory in B-spline. In
order to facilitate the evaluation of the value of exploration and safety, we use the circular
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buffer, a kind of occupancy grid map, to store the environmental information obtained by
the sensor, as shown in Figure 3.

Spatial-structure 
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Circular_Buffer
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Local Planning 

Optimizer  
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Safety value estimate 
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Occupy grid 

information  
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gradient
update
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Figure 3. The relationship between the modules. The exploration-safety value estimation model
obtains the sample point from the spatial-structure extraction model and queries the surrounding
environment information in the circular buffer. The local planning optimizer takes inter–goal as
intermediate goal point and optimizes trajectory with collision costs under the support of ESDF.

4.1. Map Representation

Building a grid map is a very common strategy used to facilitate collision detection in
planning. Environmental information is projected onto the grid map through the sensor.
Objects in space are represented in the grid in an occupied state. One grid also includes
occupied and unknown states. Usenko compares a kind of 3D circular buffer [6] and the
Octomap [18]. The three-dimensional Circular Buffer is a kind of grid map that defines
a variable o f f set and a continuous array with a size of 2 N. The o f f set is given by the
drone position, and array stores the state of each voxel in the corresponding space with
the o f f set as the center. The circular buffer maintains a higher rate and higher quality for
point cloud insertion and occupancy information query, which can speed up the estimation
of exploration value and safety value. So, we set the three-dimensional circular buffer as a
storage method for local environment information.

Array =
{
(nx, ny, nz)| − N < nx, ny, nz < N

}
(1) nx

ny
nz

 =

 1
Res

 x
y
z

−
 ox

oy
oz


Round

(2)

where O f f set(ox, oy, oz) is constantly updated by the drone position. In particular, (nx, ny,
nz) is the index in the Array corresponding to the spatial coordinate (x, y, z).

We proposed a spatial-structure information extraction model, in which this special
information expresses a direction relationship between the position of the MAV and the
geometric center of the object or hole in MAV’s field of view. We define ξ as the special
structure information, which represents multiple rays from the position of the drone to
its viewpoints. The direction of the ray is the geometric center of one object or one hole
formed by multiple objects.

ξ(i) =
{
(view(i), s)|view(i), s ∈ R3, i = 1, 2, . . . , n

}
(3)
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4.2. Spatial-Structure Information Extraction

The ray-cast method [6] can efficiently insert the point cloud data of the visual sensor
into the circular buffer and update the occupancy probability of each voxel. However, the
detection distance range of the vision sensor is limited, so only the point cloud information
within the detection range is beneficial to the circular buffer. We design a spatial-structure
information extraction model based on image segmentation technology to extract environ-
mental information. The method can extract information outside of the valid depth range
of the visual sensor from the image. It is not a traditional one-to-one mapping of voxels in
space and does not require the support of depth information of vision sensor. Instead, it
uses the overall characteristic of a single object in space presented in the image data to map
the spatial structure of the object from the outline.

The spatial-structure extraction algorithm is divided into three steps: cutting image,
extracting center-point, and converting reference system. Cutting image is the core of the
spatial-structure information extraction algorithm. We define a single image Fig, and a
single Block, which represents a collection of pixels with the same characteristic in the image.
We segmented the image based on the graph-based image segmentation algorithm [19],
which abstracts the pixels in the image into vertices and edges in the graph theory, and
divides the graph into multiple regions C by the clustering method. The algorithm gives
three parameters, Sigma, k, and Min to, respectively, control the size, color sensitivity and
minimum block of the segmented image.

Fig = {pu,v|0 ≤ u < row, 0 ≤ v < column} (4)

Block = {pu,v|pu,v ∈ Fig ∩ pu,v ∈ C} (5)

After cutting, Block corresponds to all the pixels contained in the regional C in the
graph, which incorporates different objects or gaps formed by the extrusion of multiple
objects. In the extracting center-point part, we calculated the smallest circumscribed circle
of each Block and extracted the center points (u, v). Since (u, v) is only extracted from the
RGB image, the depth information is lost. In order to facilitate the calculation, we fixed
zc = C as a constant, which is more appropriate to use the effective detection range of the
vision sensor. One 3D viewpoint view(x, y, z) will be obtained in the drone world reference
by converting the reference system. The conversion is shown in Equations (6) and (7). xc =

(u−cx)∗z
f x

yc =
(v−cy)∗z

f y

∣∣∣∣∣∣
zc=C

(6)

[x, y, z, 1]ᵀ = T·[xc, yc, zc, 1]ᵀ (7)

where cx, cy, f x, and f y are four camera internal parameters and T is the transform matrix.
From above, we obtain some viewpoints view(x, y, z = c) with spatial-structure

information from the drone’s field of view. It is used to represent a ray ξ, which starts from
Dp and points to the view that is the geometrical center of an object or an gap, as shown in
Equation (8). The spatial-structure information extraction is shown in Algorithm 1.

ξ(i) =
{
(view(i), Dp)|view(i), Dp ∈ R3, i = 1, 2, . . . , n

}
. (8)

where Dp is the drone’s position, and view is the viewpoint obtained from cutting fig. The
number of viewpoints is n.
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Algorithm 1 Extracting Spatial-structure Information.

Input: F( fi,j) = f ig, s = (sigma, k, min), k = (cx, cy, f x, f y)
Output: view

1: S{vi|i = 1, 2, . . . , M} ← graphBaseSegmetation(F, sigma, k, min)
2: T ← getDroneTrans f ormMatrix
3: for i = 1 : 1 : M do
4: center[u, v]← mean(ci)
5: xc =

(u−cx)∗z
f x |z=C

6: yc =
(v−cy)∗z

f y |z=C

7: vc = (xc, yc, zc)
8: v← converRe f erenceWorld(T, vc)
9: view(i)← add(v)

10: end for

4.3. Intermediate Goal

We combined the special spatial-structure information ξ to improve the intermediate
goal strategy [3]. Since the special spatial-structure information always points to the
geometric center of the object or the gap, it can find an optimal intermediate goal point
very effectively and control the number of candidate seeds through the parameters of the
spatial-structure information extraction model.

The planning algorithm [3,14,20] sets the potential exploration value as a cost function
in order to escape from the local optimal solution when selecting the next intermediate goal
points. After analysis, the method that simply sets the exploration value as an indicator
can easily lead drones into dangerous scenarios. Combining the proposed spatial-structure
information ξ, we divide the cost function Dv into two parts. One part is the exploration
obtained by counting the number of grids in an unknown state in the circular buffer map.
The other part is safety obtained by counting the number of grids in an unoccupied state
in the circular buffer map. We balance the two indicators of exploration and safety by
different weight parameters.

ex(Dp, ξ) = {v|v ∈ f rustum(Dp, ξ) ∩ v ∈ unknow(v)} (9)

sa(Dp, ξ) = {v|v ∈ f rustum(Dp, ξ) ∩ v ∈ f ree(v)} (10)

Dv = λssa(Dp, ξ) + λeex(Dp, ξ) (11)

where λs and λe are the weighting parameter to balance the two values of exploration and
safety in the cost function Dv. In particular, Dp is the drone’s position, while ξ represents
the special spatial-structure information.

Vision sensors have a fixed view field FOV, which limits the observation range of
a single frame of image in the horizontal plane. The strategy of intermediate goal just
obtains the candidate seeds by the camera’s view field at a certain range. The adaptive
control of the number of viewpoints expands the drone’s view field. The method is used to
adaptively control the number of viewpoints through the environment and store them in
the inter-goal buffer. The intermediate goal algorithm is shown in Algorithm 2.

We set a threshold for the cost function Dv. Viewpoints that exceeded the threshold
were all saved in the inter-goal buffer, while the others were discarded. This threshold is
dynamically updated in each iteration. The advantage of self-adaptation is that the number
of viewpoints can be adjusted in real time according to the environmental conditions, and
the Dv value of viewpoint can be kept stable.

NextTHR = α·THR +
β

2
·(DvBu f f er[num− 1] + DvBu f f er[num]) (12)

α + β = 1 (13)
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where DvBu f f er is the set of Dv values for each viewpoint, and num is the number of
viewpoints expected to be retained. α and β are two respective weight parameters. The
larger the α, the more stable the number of viewpoints and the less flexibility.

Algorithm 2 Obtain Intermediate Goal.

Input: goal = (xg, yg, zg), Dp = (xd, yd, zd), N, S = {vi|i = 1, 2, . . . , M}
Output: InterGoalBu f f er

for i = 1 : 1 : M do
2: [yaw, pich]← yawPichExtracte(Dp, Vi, Goal)

Dvalue = α·yaw + β·pich
4: Vpoint(i)← add((vi, Dvalue))

end for
6: Vpoint← sort(Vpoint)

ξ = (Dp, Vpoint)
8: N = max(length(ξ), N)

for i = 1 : 1 : N do
10: [ex, sa]← countNumberO f Grid(ξ(i))

Lvalue = wEx ∗ ex + wSa ∗ sa
12: InterGoalBu f f er(i)← add((ξ(i), Lvalue))

end for
14: InterGoalBu f f er ← sort(InterGoalBu f f er)

4.4. Flight Status Switch

We obtained the intermediate goal ξ by cost function, which contains a specific di-
rection from the drone position in R3. In order to provide a three-dimensional point for
local planning to optimize the local trajectory, we added a radius r to ξ and set three types
of radius lengths to divide the flight state into three types. The longer the radius r, the
smaller the number of intermediate goals. However it is difficult to find a feasible solution
in the environment with dense obstacles. As a result, it is easy for planning to fall into a
local optimal solution. On the other side, the shorter the radius r, the more intermediate
goals, and the more time it takes to iterate an intermediate goal. However, in the gradual
short-distance exploration, more feasible solutions can be searched to ensure that the MAV
reaches the final goal.

The first flight state is called the Forward state, which is designed to pass through
the scene with sparse obstacles. The flight step length r is set to be as long as possible
to avoid the complexity caused by frequent switching of intermediate goal. The second
state is called the exploratory state, designed to pass through dense obstacles, in which the
planning algorithm will frequently fail to find a path. The step length r is set to be shorter
in order to explore the environment and eliminate visual blind spots step by step. The third
state is designed to control the direction of the MAV’s view field. The flight state switch
algorithm is shown in Algorithm 3.

In order to avoid detours and ensure the MAV advances to the goal, we set the state to
keep the MAV’s yaw angle as far as possible to the goal direction and propose a simplified
method to estimate the deviation between the intermediate goal and the goal in the yaw
angle and pitch angle directions, as shown in Figure 4. The reward function Lv is used and
defined as follows.

Lv = wYaw·yvsg + wPich·pvsg (14)

yvsg = acos
(xi − xs, yi − ys)(xg − xs, yg − ys)√

(xi − xs)
2 + (yi − ys)

2
√(

xg − xs
)2

+
(
yg − ys

)2
(15)

yvsg = acos
(yi − ys, zi − zs)(yg − ys, zg − zs)√

(yi − ys)
2 + (zi − zs)

2
√(

yg − ys
)2

+
(
zg − zs

)2
(16)
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where yvsg is the angle formed by the intermediate goal point ξr = (xξ , yξ , zξ), the drone
position point Dp(xs, ys, zs), and the goal point goal(xg, yg, zg) on the horizontal plane.
pvsg is the angle formed by ξr, Dp and goal on the vertical plane. wYaw and wPich are
weights parameters.

O
x

y
z

Level

Vertical

Dp(xd,yd,zd)

Goal(xg, yg, zg)

Intergoal(xi, yi, zi)

yvsg

pvsg

Goal_lev(xg,yg,zd)

Goal_ver

(xd,yg,zg)

Intergoal_ver(xd,yi,zi)

Intergoal_lev

(xi,yi,zd) L_Indp

L_godp

V_Indp

v_godp

Figure 4. Pitch and yaw angle deviation model. Dp point is the drone position, Intergoal point is
the intermediate goal, and Goal point is the goal. yvsg is the angle between line LIndp (red line) and
Lgodp (brown line), while pvsg is the angle between line VIndp (blue line) and Vgodp (green line).

4.5. Local Planning Optimization

The local planning optimization algorithm takes the global path as the initial trajectory
input [20,21] or initializes a straight line from the starting point to the goal point as the
input [3,6,11,14]. Then, it penalizes the deviation from the initial trajectory in the cost
function to ensure that the local path planning is around the initial trajectory. Although the
method greatly ensures that the local trajectory follows the initial trajectory, it also limits
the optimization range of the local trajectory, lacks flexibility, and cannot effectively deal
with the emergency goal point change. We use b-spline to express the trajectory, other than
the traditional mode of taking initialization trajectory as input. The intermediate goal point
is directly used as a part of the objective function of the local planning. We divided the
penalty function of trajectory optimization into three parts: the first part is the intermediate
goal cost function that penalizes the trajectory deviating from the intermediate goal, the
second part is the collision cost, and the third part is the trajectory smooth cost function.

Etotal = Eg + Ec + Es (17)

Eg = λg(p(tep)− ξr)
2 (18)

Ec = λc

∫ tmax

tmin
sg(d(p(t))− τ)(d(p(t))− τ)2||p′(t)||dt (19)

Es = λs

4

∑
i=2

∫ tmax

tmin
(p(i)(t))2 + sg(p(i)(t)− pmax)e(p(i)(t))2−(pi

max)
2−1dt (20)

sg =
1
2
(sgn(x) + 1) (21)

where p(t) is the drone position at time t. ξr is the intermediate goal point intercepted from
the ray of radius r. d(p(t)) is the distance function from the drone position to the obstacle,
which is directly obtained by ESDF. Es is the penalty integral over square derivatives of
the trajectory to smooth the trajectory. It set an exponential function to limit the maximum
speed and maximum acceleration, which was proposed by Usenko in [6]. sgn(x) is a
symbolic function. λg, λc and λs are three weight parameters.
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Algorithm 3 Status Swich.

Input: goal = (xg, yg, zg), d = (d f , de, dc), ε
Output: State

State⇐ Forward
Dp← updateDonePostion

3: while Dp 6=goal do
InterGoal ⇐ InterGoalBu f f er[0]
switch (State)

6: case Forward:
p← cutPointInLine(InterGoal, d f )
path(t)← LocalPlanning(Dp, goal, p)

9: if CheckPathBlock(path) = φ then
State⇐ Exploration
InterGoalBu f f er ← Delet(InterGoal)

12: end if
if CheckViewRange(path) > ε then

State⇐ ForceContral
15: end if

case Exploration:
p = cutPointInLine(InterGoal, de)

18: path(t)← LocalPlanning(p)
if CheckPathBlock(path) 6=φ then

State⇐ ForceContral
21: end if

case ForceContral:
p = cutPointInLine(InterGoal, dc)

24: path(t)← LocalPlanning(p)
if CheckViewRange(path) < ε then

State⇐ Forward
27: end if

if CheckPathBlock(path) 6=φ then
State⇐ Exploration

30: end if
end switch

end while

The papers [22,23] found that B-spline has sufficient local characteristics. When the
local control point changes, the new trajectory can be expressed as q(t).

q(t) =
j−1

∑
i=0

pi Ni,k(t) + (v + pi)Ni,k(t) +
n

∑
i=j+1

pi Ni,k(t)

= p(t) + vNi,k(t)

(22)

The new curve q(t) is the sum of the original curve p(t) and a translation vector
vNi,k(t),which is non-zero on the interval [ti, ti+k+1). Hence, moving a control point only
affects the shape of a section of the given curve. It can be seen from Equation (22) that when
the intermediate goal points are alternated or urgently replaced, only the optimized local
trajectory in the trajectory will change, and the optimized local trajectory will be retained.
The flight control of the drone is not affected. It not only improves the flexibility of path
planning, but also greatly guarantees the safety of MAV flight.
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5. Experimental Results

In this section, we present experimental results obtained using the proposed ap-
proach. We combined the drone simulation platform Rotors simulator [24] and the ROS
software platform to build a drone autonomous navigation system simulation platform.
We provided six kinds of simulation maps to test the performance of the planning algo-
rithm and autonomous navigation system. The Rotors simulator provides a simulated
RGB-D camera, which provides RGB and depth images similar to the real camera at
20 FPS, and the effective range of the depth image is set to 4.8 m, which is based on a general
RGB-D camera as a reference standard. ROS is a well-known distributed operating system,
which provides task scheduling for tasks in the form of nodes. The spatial-information
extraction model we proposed is encapsulated as a Graph Cut node in the ROS system
and runs at a frequency of 4 Hz, which continuously provides seeds for the intermediate
goal. Planning is also packaged in the form of an Intermediate Goal Planning node in
ROS and runs at a frequency of 2 Hz. Additionally, dt is set to extract control points at
0.5 s for optimization. Six simulation maps include three typical application scenarios:
forests, urban building areas, and underground mines. Some holes are designed in the
urban building area to test the ability of planning to penetrate and avoid obstacles.

5.1. Spatial-Structure Information Extraction

In the experiment, we set parameters sigma = 0.5, k = 2000, Min = 2000 to the
graph-based image segmentation algorithm and checked the effect of spatial-structure
information extraction method. Some of these images are obtained from the software
Gazebo, simulating the actual environment, and the other part is obtained from the real
environment. The image’s resolution is 640 × 480. The result is shown in Figure 5. It
can be seen that the center point extracted by the image in the simulation environment is
very effective, and it can basically match the center of the object and the gap in the image.
Due to the complex environment, the cut block became irregular, but different objects and
gap centers can still be extracted. This verifies the applicability of our model to the actual
environment.

5.2. Across the Gap

In order to estimate the performance of the spatial structure extraction model, we
used a pavilion with four holes as a test scene. The goal position was set at (6.0, 0.0, 1.0),
and the drone started from a distance of about 6 m from it. The directions are 0°, 15°,
30°, and 45°. The result is shown in Figure 6. It shows that the first intermediate goal is
directly positioned to the geometric center of the hole at 0°, 15° and 30°. Then, the drone is
guided to safely fly to the goal point. At the 45° position, the drone did not find the best
intermediate goal under the initial search, but the geometric center of the hole was still
located during the flight, so as to guide the drone to reach the goal position safely.

(a) simulation (b) simulation (c) simulation

Figure 5. Cont.
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(d) forest (e) indoor (f) indoor

Figure 5. Segmented image. (a–c) are the images obtained in the simulation environment. (d–f) are
the real environment images. The original image data are below, and the segmented blocks are on
the top. The ellipse in the image is the smallest circumscribed ellipse of the block (red line). The
viewpoint points to the geometric center of the object or the gap (red point).

(a) 0 degrees (b) 15 degrees

(c) 30 degrees (d) 45 degrees

Figure 6. Planning A through the pavilion with four holes from different angles. (a–d) are 0 degrees,
15 degrees, 30 degrees and 45 degrees. Dp point is the drone position, inter-goal point is the
intermediate goal, goal point is the goal. Pavilion and circular buffer map are marked.
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5.3. Local Planning Optimization

We used a variety of simulation scenarios to test the performance of our local planning
optimizer. Part of the trajectory is shown in Figure 7. In the process of testing, the current
intermediate goal is blocked by obstacles, which negatively affects local planning, but a new
intermediate goal is selected quickly to guide local planning. Trajectory avoids obstacles
smoothly and the original path will not be affected. Compared with the polynomial
trajectory expression proposed in [3], the time cost and smoothness are greatly improved.
The smooth trajectory can greatly ensure the safety of MAV flight and effectively shorten
the flight trajectory.

(a) Iterate Before (b) Iterate After (c) Global Trajectory

Figure 7. The floor (red grid) and obstacles (yellow grid) within circular buffer are shown, and the
intermediate goal, source and goal are marked in (a–c). In (c), n1–n8 are all intermediate goal points.
The global trajectory (blue line) is generated by the control points of B-spline (bule points).

5.4. System Simulation

In order to evaluate different aspects of our autonomous navigation system, we com-
pare our system and Ewok [6] in different scenarios, and record the time cost, distance cost,
and success ratio, respectively. Both our method and Ewok take the path planning of a fixed
source point and goal point as the basic task. Ewok optimizes the global trajectory between
the source point and the goal point to obtain a collision-free trajectory and also expresses
the trajectory in B-spline. Our method combines the expression trajectory based on B-spline
with the intermediate goal strategy and uses the intermediate goal to guide the local path
optimizer to reach the goal point. Map No.1 is a forest with 15 × 15 × 5 m3, in which the
brown cylinder represents the tree trunk and the gray represents the ground surface. Maps
No.2, No.3 and No.4 add relatively large obstacles and irregular obstacles on the basis of
map No.1 to build a scene that may cause the MAV to fall into a local optimal solution. The
source point is set as (−10.0, 10.0, 1.0). The goal point is set as (10.0,−10.0, 1.0). Map No.5
simulates the environment of the building area with 10 × 10 × 5 m3, and No.6 simulates
the scene of an underground mine with 10 × 10 × 5 m3. Map No.7 is a large-scale map
with 50 × 50 × 5 m3, which is equipped with houses, vehicles, gas stations, etc. It is
used to comprehensively test the performance of the algorithm in dealing with complex
environments, as show in Figure 8. Each map is tested 25 times, and the data were obtained
after averaging. The results of the simulations are shown in Tables 1 and 2.
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Figure 8. Large-scale simulation map and trajectory. In the simulation scene panel (left side), Source
and Goal are marked (yellow asterisk). In the information display panel (right side), Source and Goal
are marked (white balls).

Table 1. Simulation data record.

Evaluation Metric Map 1 Map 2 Map 3 Map 4

Path length [m] 28.284 28.284 28.284 28.284
Ewok time [s] 25.470 25.668 28.995 /
Our method time [s] 32.130 36.581 39.410 36.209
Ewok trajectory length [m] 28.401 32.197 33.457 /
Our method trajectory length [m] 43.830 51.220 56.469 51.343
Ewok success ratio 100% 24% 8% /
Our method success ratio 100% 88% 88% 92%

Table 2. Simulation data record.

Evaluation Metric Map 5 Map 6 Map 7

Path length [m] 16.0 25.0 51.0
Our method time [s] 26.676 29.273 64.6065
Our method trajectory length [m] 35.178 38.914 81.9164
Our method success ratio 84% 84% 64%

The results show that Ewok reached the goal with a 100% success rate, its trajectory
maintained smoothness and was collision-free, and it performed perfectly in terms of time
and distance in map No.1. However, EWOK’s success rate is greatly reduced when faced
with large and irregular obstacles in maps No.2, No.3 and No.4. In its successful cases,
the MAV frequently approaches the obstacle surface during the flight, leading to difficulty
in ensuring the safety of drones. On the contrary, our algorithm can still maintain a high
success rate in complex scenarios, while maintaining a suitable distance between multiple
obstacles, which greatly guarantees the safety of the drone.

In maps No.5, No.6 and No.7, the MAV can only pass through the door to reach
the goal due to the occlusion of the wall. EWOK cannot obtain a feasible path through
re-planning optimization, but our intermediate goal strategy plays an important role.
The position of the door can be found with the help of spatial-structure information and
switching flight status. When the drone falls into a local optimal problem, our planning
algorithm can quickly pull the drone out of the local optimal solution area. It can be seen
that in a space with a more regular structure, the intermediate goal is more accurate, and
the drone is safer.



Drones 2021, 5, 107 15 of 16

6. Conclusions

This paper presents a set of vision-based autonomous navigation systems, which
can still provide a collision-free and real-time trajectory in an environment with densely
distributed obstacles, as well as with a previously unknown map. We use the basic idea of
graph-based image segmentation to construct a spatial extraction model, combined with
the exploration-inspired sampling method. We improved the optimization performance
by adding the control point of B-Spline with an intermediate goal. The simulation results
verified that our system can still show excellent performance in the face of complex and
changeable scenarios in contrast to Ewok.
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