
drones

Article

Area-Wide Prediction of Vertebrate and Invertebrate Hole
Density and Depth across a Climate Gradient in Chile Based on
UAV and Machine Learning

Paulina Grigusova 1,*, Annegret Larsen 2, Sebastian Achilles 1, Alexander Klug 1, Robin Fischer 1, Diana Kraus 3,
Kirstin Übernickel 4 , Leandro Paulino 5 , Patricio Pliscoff 6,7,8 , Roland Brandl 9, Nina Farwig 3

and Jörg Bendix 1

����������
�������

Citation: Grigusova, P.; Larsen, A.;

Achilles, S.; Klug, A.; Fischer, R.;

Kraus, D.; Übernickel, K.; Paulino, L.;

Pliscoff, P.; Brandl, R.; et al.

Area-Wide Prediction of Vertebrate

and Invertebrate Hole Density and

Depth across a Climate Gradient in

Chile Based on UAV and Machine

Learning. Drones 2021, 5, 86. https://

doi.org/10.3390/drones5030086

Academic Editors: Higinio

González Jorge and Luis

Miguel González de Santos

Received: 20 July 2021

Accepted: 25 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory for Climatology and Remote Sensing, Department of Geography, University of Marburg,
35037 Marburg, Germany; achilles@geo.uni-marburg.de (S.A.); kluga@students.uni-marburg.de (A.K.);
fischer.robin92@gmail.com (R.F.); bendix@geo.uni-marburg.de (J.B.)

2 Soil Geography and Landscape, Department of Environmental Sciences, Wageningen University & Research,
6700 AA Wageningen, The Netherlands; annegret.larsen@wur.nl

3 Conservation Ecology, Department of Biology, University of Marburg, 35032 Marburg, Germany;
diana.kraus@biologie.uni-marburg.de (D.K.); nina.farwig@biologie.uni-marburg.de (N.F.)

4 Earth System Dynamics, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany;
kirstin.uebernickel@uni-tuebingen.de

5 Facultad de Agronomía, Universitad de Concepción, Chillán 3780000, Chile; lpaulino@udec.cl
6 Facultad de Historia, Geografía y Ciencia Política, Instituto de Geografía, Pontificia Universidad Católica de

Chile, Santiago 7820436, Chile; pliscoff@uc.cl
7 Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile,

Santiago 8331150, Chile
8 Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile,

Santiago 8331150, Chile
9 Animal Ecology, Department of Biology, University of Marburg, 35032 Marburg, Germany;

brandlr@biologie.uni-marburg.de
* Correspondence: grigusova.paulina@staff.uni-marburg.de

Abstract: Burrowing animals are important ecosystem engineers affecting soil properties, as their
burrowing activity leads to the redistribution of nutrients and soil carbon sequestration. The mag-
nitude of these effects depends on the spatial density and depth of such burrows, but a method
to derive this type of spatially explicit data is still lacking. In this study, we test the potential of
using consumer-oriented UAV RGB imagery to determine the density and depth of holes created by
burrowing animals at four study sites along a climate gradient in Chile, by combining UAV data with
empirical field plot observations and machine learning techniques. To enhance the limited spectral
information in RGB imagery, we derived spatial layers representing vegetation type and height and
used landscape textures and diversity to predict hole parameters. Across-site models for hole density
generally performed better than those for depth, where the best-performing model was for the
invertebrate hole density (R2 = 0.62). The best models at individual study sites were obtained for hole
density in the arid climate zone (R2 = 0.75 and 0.68 for invertebrates and vertebrates, respectively).
Hole depth models only showed good to fair performance. Regarding predictor importance, the
models heavily relied on vegetation height, texture metrics, and diversity indices.

Keywords: UAV; machine learning; burrowing animals; climate gradient; Chile; vegetation patterns;
heterogeneity

1. Introduction

Terrestrial burrowing vertebrates and invertebrates are important ecosystem engi-
neers. Through their burrowing activity, they increase soil porosity and permeability, thus
affecting the infiltration and erosion rates [1–5]. The construction of underground burrows
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leads to the redistribution and concentration of nutrients [6–8]. Their burrowing positively
influences soil carbon storage [9,10] and decreases the ratio of stable and unstable carbon-
ate aggregates in the soil [11]. The mixing of soil shifts the soil horizons and drives soil
production and pedogenesis on a long-term basis [12–14]. To understand the abundance of
burrowing animals, their burrowing behavior and their potential distribution patterns is
thus of importance.

The habitat preferences of burrowing animals in regard to the vegetation distribution
were shown to be species dependent [10,15–18] The distribution of single burrowing animal
species was associated with cacti [19], herbs [20], perennial grass or dense shrubs [21,22],
skeleton [23] or increased landscape heterogeneity [24]. Due to the important role of
burrowing animals as ecosystem engineers and the contradictory habitat preferences of
burrowing animals, a spatial analysis showing the dependence of the burrowing intensity
on vegetation patterns across the species and climate zones is needed. For this, a suitable
approach for the area-wide prediction of burrowing intensity, which can be expressed by the
density and depth of holes created by all present burrowing animals, must be developed.

As taking in situ hole density and depth measurements is labor-intensive, remote
sensing can serve as a more practical approach, as it provides opportunities for effective
area-wide spatial estimates. Previous studies have used UAVs to directly map the burrows
and mounds created by burrowing animals. However, these studies were conducted in ar-
eas where the burrows could be directly recognized in images, were limited to vertebrates,
and focused on single species. The burrows were then mapped using image segmen-
tation [25] or classification approaches [17,26–28]. The detection success predominantly
depended on the vegetation density and height. Even within grassland areas with low
vegetation cover, significantly more burrows were counted in ground-truth surveys than
were detected in UAV-obtained orthomosaic images [27]. If burrows were not visible in the
images because they were partly or completely overlaid by vegetation, previous authors
did not estimate the density and depth of burrows, but only defined areas with or without
burrows. In these cases, MaxEnt models [29] based on predictors from vegetation [30]
or Digital Surface Models (DSMs) generated from UAV images [31] have been applied.
However, beyond hole detection, none of the previous studies has estimated the area-wide
density and depth of holes created by all vertebrate and invertebrate burrowing animals,
regardless of the vegetation coverage and taxa, or tested their approach in several climate
zones. As demonstrated in this study, a combination of ecological in situ measurements,
geospatial information, and application of machine learning techniques offers possibili-
ties for the prediction of the area-wide hole density and depth, even in areas with dense
vegetation coverage.

UAVs offer here a suitable solution to identify environmental parameters which might
be linked to the animal burrowing intensity. UAV-estimated vegetation height and volume
have previously been used as predictors to delineate vertebrate habitats [32]. Similarly,
land-use and the distribution of single vegetation types have been derived from UAV
images and were associated with animal distribution [33,34] or used as predictors for the
estimation of population sizes [35]. In cases where the landscape structure is of major
importance, texture metrics and diversity indices have been shown to be suitable predictors
for area-wide predictions of species richness in diverse ecosystems [36–39]. The texture
metrics obtained from high-resolution UAV images notably improved the estimation of
habitat structures [40,41].

For this study, we developed, applied, and tested machine learning approaches based
on consumer-oriented UAV RGB (Red–Green–Blue spectral range) imagery, in order to
predict the density and depth of holes created by all present burrowing vertebrates and
invertebrates. We tested several predictor sets and included 3D landscape structures, their
textures, land-cover fractions, and diversity as predictors, in addition to spectral bands,
topography, and climate, which can only be obtained by UAVs at such high resolution.
We analyzed the model performance and identified the most important predictors, and
the performance of models trained for the vertebrate and invertebrate hole density and
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depth was determined across a climate gradient and at individual climate sites. Finally, we
present the area-wide prediction of hole density and depth along the climate gradient.

2. Materials and Methods

We hypothesize that the animal burrowing intensity is dependent on vegetation
patterns and can be spatially predicted by UAV-obtained data. We measured the density
and depth of holes within plots created by local communities of vertebrate and invertebrate
burrowing animals across four study sites in Chile. We first tested if there is a high
correlation between in situ vegetation patterns and our targeted variables by setting up
linear models and using data from ground vegetation survey as predictors. We then
collected high-resolution UAV imagery of the study sites and trained machine learning
models to predict the density and depth of holes (Figure 1). We used climate, topography,
spectral bands, vegetation indices, land-cover fractions and diversity indices derived from
land-cover classification, vegetation height, texture metrics derived from vegetation height,
and texture metrics derived from spectral bands as predictors in our models. Then, we
fitted one random forest (RF) model for the whole study area and one RF model per study
site, and estimated the most important predictors. To test the impact of various predictor
sets on the model performance, we separately tested models using different predictor sets
consisting of several predictors describing similar environmental parameters. We present
the predicted hole density and depth across the four study sites and their association with
the estimated land-cover and vegetation height diversity.
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Figure 1. Workflow. Pre-processing comprises the acquisition and preparation of in situ and remote
sensing data. Model input describes the calculated predictors and response data. Predictor selection
describes the estimation of the predictors used in the final models. Hyperparameter tuning describes
the tuned parameters and validation techniques. DSM = digital surface model; ntree = optimal
number of trees after each split; mtry = optimal number of predictors randomly selected at each split.
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2.1. Study Area

Our study was performed along a climate and vegetation gradient in Chile, comprising
four study sites in the Chilean Coastal Cordillera: Pan de Azúcar (PdA) National Park (NP),
Santa Gracia (SG), La Campana (LC) NP, and Nahuelbuta (NA) NP (Figure 2). PdA NP is
located in the arid zone in a fog-laden environment in the southern part of the Atacama
Desert, with almost no precipitation. The vegetation cover is less than 5% and dominated
by small desert shrubs, several types of cacti and biocrusts [42]. SG is a natural reserve
located in the semi-arid zone near La Serena, which is dominated by goat grazing. The
vegetation consists of shrubs and cacti, covering up to 40% of the study area. LC NP is
part of the Mediterranean-type climatezone in the Valparaiso Region and is also affected
by cattle. The study site is dominated by an evergreen sclerophyllous forest with endemic
palms. The canopy reaches a height of up to 9 m, and the understory consists of deciduous
shrubs and herbs. NA is located in the humid-temperate zone and characterized by a dense
evergreen Araucaria forest comprising broadleaved trees with heights of up to 14 m. The
ground is covered by bamboo, shrubs, and herbs [43,44]. There are at least 45 vertebrate and
345 invertebrate species in Chile which exhibit burrowing behavior [45]. The most common
vertebrate burrowing animals are in PdA carnivores (Lycalopex culpaeus, Lycalopex griseus);
marsupials (Didelphis marsupialis, Didelphis albiventris) and rodents (Phyllotis xanthopygus,
Phyllotis limatus, Abrothrix andinus) [46,47]; in SG marsupials (Thylamys elegans) and rodents
(Phyllotis darwini, Abrothrix olivaceus, Octodon degus, Abrocoma bennetti, Rattus rattus) [19]; in
LC and NA rodents (Octodon degus, Rattus norvegicus and Phyllotis darwini) and carnivores
(Lycalopex griseus) [48]. The most commoninvertebrate burrowing animals are in PdA
Curculionida and Tenebrionidae [49]; in SG Araucomyrmex goetschi, Brachymyrmex giardia and
Solenopsis gayi [50]; in LC Arthroconus elongates and Nycterinus rugicep [49]; and in NA
Staphylinidae, Curculionidae and Cerambycidae [51].
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Figure 2. Study area and study sites. Green dots indicate the positions of plots. The green lines outline the UAV orthophotos:
(a) Position of the study sites along the climate gradient. PdA = Pan de Azúcar, SG = Santa Gracia, LC = La Campana,
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calculated from WorldView-2 satellite imagery with applied hillshade.
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2.2. In Situ Data

The response data were collected during a field campaign from September to Novem-
ber 2019 in 13–20 10 m × 10 m plots dispersed randomly on one north-facing and one
south-facing hillside per study site (68 plots in total, Figure 1). The distance between
the plots was at least 20 m. Within each plot, we counted the number of holes created
by burrowing animals and measured the diameter and depth (tunnel length until first
obstacle) of each hole (Table S1, Figure S7). We assumed that holes with a diameter equal
to or greater than 2.5 cm were created by vertebrates and that holes with a diameter less
than 2.5 cm were created by invertebrates [45]. We created four response data sets: Density
of vertebrate holes, density of invertebrate holes, depth of vertebrate holes, and depth of
invertebrate holes.

Additionally, we mapped the ground land cover within each plot. We estimated the
abundance, coverage, size (diameter and height) and position of all vegetation individuals
and skeleton. We classified the mapped vegetation into herbs, shrubs, cacti and trees. We
mapped only the skeleton with a diameter of 0.20 m and above. For trees, we measured
the diameter of the stem and the height to the top of the crown. The height of vegetation
individuals below 2.5 m was measured. Ten plots included at least one individual with a
height of above 2.5 m. In this case, we guessed the height of the individual. The coverage
of each class was estimated by multiplying the average cover by the number of individuals
for each class. The vegetation cover was the sum of the calculated cover of each class.
Additionally, we calculated the average vegetation height of each class and of all vegetation.

The climate data were measured in project-specific climate stations, located either
directly on the studied hillsides or within a 1 km distance [42,52]. The average air tempera-
ture [◦C], average soil temperature [◦C], and cumulative precipitation [mm] for the year
2019 were calculated for each site.

2.3. Linear Regression Models

We first tested if the response data sets can be predicted by the in situ measured
vegetation patterns. We calculated 24 predictors from the land cover data estimated in
plots. We used the soil, vegetation and skeleton coverage, average vegetation height as well
as the coverage, height, diameter and abundance of individuals for each class as predictors.
Additionally, we calculated the heterogeneity of each plot, by estimating the variance of
measured vegetation height, abundance, size and coverage between the classes. Lastly, we
included the site as a predictor, to be able to examine the predictor strength on the response
variable per site.

We first applied a backward stepwise elimination to remove the redundant predictors
and then fitted linear mixed effect regression models [53]. We validated the models by
implemented Leave-One-Out cross validation [54].

2.4. UAV Data

The UAV flights were conducted during the same field campaign from September
to November 2019. We obtained UAV images of one north-facing and one south-facing
hillside per study site, which included the 68 plots (Figure 3). We used a 3D Robotics
SOLO quadrocopter equipped with a GoPRO Hero 4 Black RGB camera. Eight flights were
conducted for each hillside (total of 64 flights). The flight plans were created using the
Mission Planner version 1.3.700 software [55]. Flight altitude was set at 20 m above the
drone starting and landing points, and the flights were conducted downward from this
point. The width and length of the overflown areas were set with respect to the hillside
inclination and canopy level, in order to ensure that the maximum drone altitude above
the ground did not exceed 40 m. Two flights were performed with opposite flying angles
over every area, in order to ensure full coverage and to create a 3D model of the landscape
afterwards. The flying speed was 5 m/s, the overlap was set to 90%, and the site overlap
was at least 70%. The camera angle was 10◦, and a photo was taken every 0.74 s during the
mission. The photos were geo-tagged using CAM messages from the data-flash protocol.
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The images were then used to create an orthophoto and a Digital Surface Model (DSM) of
each hillside. The processing was carried out using the Agisoft Metashape Professional
version 1.5.5.9097 software. The photos were aligned using a generic pre-selection method,
and a point cloud was created. The DSM was calculated from the point cloud, and the
orthophotos were built from the aligned photos. The ground sampling distance of the DSM
and orthophotos varied between 1.76 and 3.7 cm. The orthophotos were resampled to a
uniform ground sampling distance of 3.7 cm, in order to allow for a comparison of model
performance between the study sites (Table S2).

Drones 2021, 5, x FOR PEER REVIEW 6 of 20 
 

inclination and canopy level, in order to ensure that the maximum drone altitude above 
the ground did not exceed 40 m. Two flights were performed with opposite flying angles 
over every area, in order to ensure full coverage and to create a 3D model of the landscape 
afterwards. The flying speed was 5 m/s, the overlap was set to 90%, and the site overlap 
was at least 70%. The camera angle was 10°, and a photo was taken every 0.74 s during 
the mission. The photos were geo-tagged using CAM messages from the data-flash pro-
tocol. The images were then used to create an orthophoto and a Digital Surface Model 
(DSM) of each hillside. The processing was carried out using the Agisoft Metashape Pro-
fessional version 1.5.5.9097 software. The photos were aligned using a generic pre-selec-
tion method, and a point cloud was created. The DSM was calculated from the point 
cloud, and the orthophotos were built from the aligned photos. The ground sampling dis-
tance of the DSM and orthophotos varied between 1.76 and 3.7 cm. The orthophotos were 
resampled to a uniform ground sampling distance of 3.7 cm, in order to allow for a com-
parison of model performance between the study sites (Table S2). 

 
Figure 3. Performance of the models trained for the whole study area. The red line is the linear 
regression line. The green shadow is the confidence interval. MAE = mean absolute error: (a) Verte-
brate hole density/10 m × 10 m; (b) invertebrate hole density/10 m × 10 m; (c) vertebrate hole depth 
[cm]/10 m × 10 m; and (d) invertebrate hole depth [cm]/10 m × 10 m. Significance level: p *** ≤ 0.001; 
p ** ≤ 0.01; p * ≤ 0.05.  

  

Figure 3. Performance of the models trained for the whole study area. The red line is the lin-
ear regression line. The green shadow is the confidence interval. MAE = mean absolute error:
(a) Vertebrate hole density/10 m × 10 m; (b) invertebrate hole density/10 m × 10 m; (c) vertebrate
hole depth [cm]/10 m × 10 m; and (d) invertebrate hole depth [cm]/10 m × 10 m. Significance level:
p *** ≤ 0.001; p ** ≤ 0.01; p * ≤ 0.05.

2.5. Calculation of the Predictors

We used several predictor sets in the models to determine spatial hole densities
and depths (Table 1). The predictor sets included climate, topography, spectral bands,
vegetation indices, land-cover, vegetation height, texture metrics (calculated from two
vegetation indices, spectral bands and vegetation height), and diversity indices calculated
from land-cover classification.
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Table 1. List of the calculated predictors.

Predictor Set Number of Predictors Description

Climate 3
Mean annual air temperature [◦C]
Mean annual soil temperature [◦C]

Mean annual precipitation [mm]

Topography 3
Elevation [m.a.s.l]
Inclination [◦] [56]

Aspect [◦] [56]

Spectral bands 3
Red band

Green band
Blue band

Vegetation indices 7

Red–green–blue vegetation index (RGBVI) [57],
green-leaf-index (GLI) [58], visible

atmospherically resistant index (VARI) [59],
normalized green–red difference index
(NGRDI) [60], vegetation dryness index
(VDI) [61], excess green vegetation index

(EXG) [62], and green chromatic coordinate
(GCC) [63]

Land-cover fractions
per 10 m × 10 m 7 Soil, skeleton, herbs, shrubs, cacti, trees,

all vegetation

Average vegetation height
per 10 m × 10 m 5 Herbs, shrubs, cacti, trees, all vegetation

Texture metrics calculated from the spectral
bands + vegetation indices + vegetation height
with a surrounding of 10 m × 10 m or 108 ×

108 pixels [64]

21 + 14 + 7 Variance, entropy, homogeneity, second
moment, correlation, dissimilarity, contrast

Diversity indices (calculated from land-cover
classification using a moving window of 108 ×

108 pixels) [65]
7

Shannon’s Diversity [66], Pielou’s
Evenness [67], the Berger–Parker Index [68],

Rao’s quadratic
entropy [69], Cumulative Residual
Entropy [70], Hill’s numbers [71],

Rényi’s Index

The ‘red’ (R), ‘green’ (G), and ‘blue’ (B) spectral bands were extracted from orthopho-
tos. The following vegetation indices were calculated using the relative data extracted
directly from GoPro: The red–green–blue vegetation index (RGBVI) [57], green-leaf-index
(GLI) [58], visible atmospherically resistant index (VARI) [59], normalized green-red dif-
ference index (NGRDI) [60], vegetation dryness index (VDI) [61], excess green vegetation
index (EXG) [62], and green chromatic coordinate (GCC) [63]. These indices were selected
due to their various vegetation detection abilities under diverse environmental conditions,
which are possibly related to the disturbances caused by burrowing animals [57–63].

The land-cover fractions were obtained through land-cover classification. The basis
for calculating the fractions of land-cover per 10 m × 10 m pixels was the land-cover
classification at 3.7 ground sampling distance. One pixel-based supervised classification per
study site was conducted using Random Forest Classification from the R ‘caret’ package [72].
The RF algorithm is based on building several uncorrelated decision trees during training,
then merging them together and providing an output, which is calculated as the mean
predicted value of the individual trees [73]. We used the DSM, RGB bands, and vegetation
indices as predictors. We specified six main classes and divided them into sub-classes. The
main classes were soil, skeleton, herbs, shrubs, cacti, and trees. The sub-classes varied
between sites (Table S3). In PdA, soil was sub-divided into soil largely covered by soil
crusts, weathered granite soil, and saprolite soil, while cacti were sub-divided into classes
of the genera Copiapoa and Eulychnia. In SG, the soil was sub-divided into two sub-classes,
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and cacti were classified into the genus Eulychnia and other genera. In NA, skeleton was
classified into rocks (equal to or less than 25.5 cm in diameter) and boulders (greater than
25.5 cm in diameter), while trees were sub-divided into the genera Araucaria and others.
No trees were classified in PdA, and no cacti in LC and NA. Training areas for the land-
cover classification were visually identified in the orthophotos. Approximately 200 pixels
per land-cover class per site were tagged, in order to create the training/testing data set.
This data set was randomly split into 70% training and 30% testing data. The land-cover
classification model was trained using the 70% training data and validated using 30%
test pixels. Classification performance was estimated by Cohen’s Kappa and Sensitivity.
Sensitivity was calculated separately for each land-cover class. The performance of the
land-cover models varied along the climate gradient (in PdA: κ = 0.81; in SG: κ = 0.72;
in LC: κ = 0.81; in NA: κ = 0.76). The highest sensitivity was observed for the classes
soil, cacti, and trees (Table S4), which were correctly classified in more than 80% of cases.
In SG, all soil pixels were classified accordingly. The sensitivity was lower for the class
skeleton, which was often misclassified as soil. Cacti were misclassified as shrubs or herbs
in roughly 10% of all cases, but the model almost always correctly differentiated between
the various types of cacti. The predictability of the shrubs and herbs classes varied. Overall,
the sensitivity of both was 70%. However, in NA, the model misclassified 40% of herbs
as shrubs; meanwhile, in SG, 75% of shrubs were classified as herbs. The study sites
were then classified using the trained models. The resolution of the classification output
layer was downscaled to 10 m, and the soil fraction, herb fraction, shrub fraction, tree
fraction, cacti fraction, and skeleton fraction were calculated as the percent coverage per
pixel. Additionally, the vegetation fraction was calculated as the percent coverage of any
vegetation type per pixel.

The elevation predictor was obtained by calculating the digital elevation model (DEM)
using the DSM and the land-cover classification. A masked DSM layer was created by
removing all pixels classified as any class other than soil or skeleton in the corresponding
land-cover classification. The remaining pixels were used to fit a thin plate spline (TPS)
model, by applying the TPS regression algorithm from the ‘fields’ R package [74]. The
distribution of pixels used for the regression fit was uniform across the elevation gradient
on hillsides in PdA, SG, and LC. However, in NA, most of the pixels at lower altitudes
were masked. The TPS models were trained separately for each site. The smoothing
parameter was chosen using generalized cross-validation. The mean absolute error (MAE)
of the regression model was the lowest in NA (MAE = 0.05), SG (MAE = 0.08), and PdA
(MAE = 0.11), and the highest in LC (MAE = 0.41). The DEM was created by applying the
fitted TPS models for the interpolation of the masked DSM using the function ‘interpolate’
from the R ‘raster’ package [75]. The inclination and aspect predictors were calculated
from the DEM [56]. The number of neighbors was 8.

The vegetation height predictor was calculated by subtracting the DEM from the DSM.
The height was additionally calculated for each vegetation type (herbs, shrubs, trees, and
cacti) separately. For this, the corresponding difference values classified as the respective
vegetation type in the land-cover classification were used, while all other values were set
to zero.

As burrowing animals are expected to increase landscape heterogeneity [76,77], we
calculated several texture metrics and diversity indices. The texture metrics were calcu-
lated from the spectral bands, two vegetation indices, and the vegetation height predictor,
and were derived from gray-level co-occurrence matrices using the ‘glcm’ R-package [78].
We used a moving window of 108 × 108 pixels, which is equal to 10 m × 10 m, corre-
sponding to the size of the plots. The texture metrics applied were ‘variance’, ‘entropy’,
‘homogeneity’, ‘second moment’, ‘correlation’, ‘dissimilarity’, and ‘contrast’ [64] (Table S7).
These metrics determine the heterogeneity of habitats [79,80], particularly in relation to
vegetation structure [81]. The texture metrics mean, variance, and correlation were least
correlated with each other. There was a higher positive correlation between the entropy,
dissimilarity, and contrast metrics, which were negatively correlated with homogeneity
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and second moment [82]. We calculated several diversity indices from the land-cover
classifications using the ‘rasterDiv’ package [65]; namely, Shannon’s Diversity [66], Pielou’s
Evenness [67], the Berger–Parker Index [68], Cumulative Residual Entropy [70], Rao’s
quadratic entropy [69], Hill’s number [71], and Rényi’s index [83]. The window size was
also 10 m × 10 m (or 108 × 108 pixels), corresponding to the size of the plots. These indices
were selected due to their various representations of diversity (in our case, the land-cover
class diversity), which is expected to be largely affected by burrowing animals [24,84].

A cumulative error developed during the calculation of the predictors. The DEM layers
were created with an R2 = 0.95. The land cover classifications had an average R2 = 0.80.
The vegetation height layers thus have a cumulative error of R2 = 0.95 × 0.80 = 0.76. The
diversity predictors have R2 = 0.76 (when derived from vegetation height) till R2 = 0.80
(when derived from land cover classification).

2.6. Model Setup

To obtain the best-fit models for the whole study area for each response data set,
we first selected the predictors, then tuned the hyperparameters and, finally, trained
the models.

To select the predictors, we first calculated Pearson’s correlation between all predictors
and removed all redundant predictors with an absolute correlation of ≥0.75. Using the
remaining predictors with an absolute correlation of <0.75, we applied a recursive feature
elimination algorithm (RFE). The RFE first trains a model and estimates the importance of
the predictors. Then, the RFE iteratively removes predictors with the least importance and
trains the models using the remaining predictors. The outcome of the RFE is the number
and composition of predictors that were used in the best-performing model, based on
the specified model performance metrics [72]. Within the RFE, we used an RF selection
function and validated the models by performing repeated 5-fold cross-validation. We
selected the predictors used in the model through use of the lowest root-mean-square
error (RMSE).

After the RFE, hyperparameter tuning was conducted. We used the ‘tuneRF’ function,
which enables the training of several RF models with varying hyperparameter values, and
then examined the performance of the models. The tuning consisted of selecting the optimal
number of trees after each split (ntree) and the optimal number of predictors randomly
selected at each split (mtry) [72]. We gradually tested ‘ntree’ with values between 50 and
1000 (in steps of 50) and selected the ‘ntree’ value leading to the highest model performance.
We selected the ideal ‘mtry’ by selecting the model with the lowest Out-of-bag Error (OOB
Error). We started at mtry = 1 and increased it stepwise by 1, and continued as long as the
OOB Error decreased by at least 1e-5 [64].

Additionally, we trained models for each response data set separately for each study
site. We followed the same predictor selection and parameter tuning workflow. To test the
impact of individual predictor sets on model performance, we trained models using only
spectral bands, vegetation indices, topography, climate, texture metrics, diversity indices,
land-cover fractions, and vegetation height predictors.

The models were validated by independent data (data not used for the model training).
We implemented a Leave-One-Out cross validation. During this validation, the model step-
wise uses one instance of the dataset for testing and the remaining instances for training.
This validation method was used due to limited number of plots [54].

We used the models trained for the whole study area for the prediction. As the plots
had a size of 10 m × 10 m, we aggregated the predictors to a spatial resolution of 10 m. We
predicted the vertebrate and invertebrate hole density and depth on all eight hillsides and
present 32 maps.



Drones 2021, 5, 86 10 of 20

3. Results
3.1. Model Performance

The linear mixed effect regression models trained using in situ measured vegetation
patterns achieved high accuracy. The best results were obtained for vertebrate hole depth
(R2 = 0.84, p < 0.001) and vertebrate hole density (R2 = 0.83, p < 0.001). The models for
the invertebrate hole density (R2 = 0.76, p < 0.001) and hole depth (R2 = 0.64, p < 0.001)
achieved good performance.

The random forest models trained using vegetation patterns obtained by UAV achieved
varying performances. Of the models trained for the whole study area, the highest per-
formance was achieved by the invertebrate hole density prediction model (R2 = 0.62,
p < 0.001, MAE = 4.05), followed by the invertebrate hole depth model (R2 = 0.44, p < 0.001,
MAE = 0.3). The model for the vertebrate hole density had a similar performance (R2 = 0.43,
p < 0.01, MAE = 3.79). The model for the vertebrate hole depth performed worse than the
other three models (R2 = 0.22, p < 0.05, MAE = 2.23; Figure 3, Table 2).

Table 2. Performance of models trained for individual study sites and for the whole study area (all study sites). ‘mtry’ is the
optimal number of predictors randomly selected at each split. PdA = Pan de Azúcar, SG = Santa Gracia, LC = La Campana,
NA = Nahuelbuta.; p *** ≤ 0.001; p ** ≤ 0.01; p * ≤ 0.05.

Unit Animals Study Site Number of Selected
Predictors Mtry R2

Hole density

Vertebrates

All 23 5 0.43 **
PdA 2 1 0.75 ***
SG 5 1 0.04
LC 2 1 0.11
NA 2 1 0.46 ***

Invertebrates

All 13 3 0.62 ***
PdA 10 3 0.68 ***
SG 20 6 0.15
LC 26 8 0.10
NA 6 2 0.29 *

Hole depth

Vertebrates

All 5 2 0.22 *
PdA 7 2 0.01
SG 33 11 0.01
LC 8 2 0.66 ***
NA 4 1 0.36 **

Invertebrates

All 3 1 0.44 ***
PdA 34 11 0.07
SG 15 5 0.19
LC 30 10 0.01
NA 6 2 0.31 *

The performance of the significant models trained for the study sites varied strongly
(from R2 = 0.29 to R2 = 0.75). The best results were obtained in the models trained for PdA,
in terms of vertebrate hole density (R2 = 0.75, p < 0.001, MAE = 1.29) and invertebrate hole
density (R2 = 0.68, p < 0.001, MAE = 4.5). In SG, none of the models reached an R2 above
0.30; while, in LC, only the model for the vertebrate hole depth reached an R2 exceeding
0.30 (R2 = 0.66, p < 0.001, MAE = 0.81). In NA, all models showed a significant relationship
between the predicted and measured data. The highest performance was achieved by the
model for the prediction of vertebrate hole density (R2 = 0.46, p < 0.01; Table 2.

The performance of the models trained separately with each of the predictor sets
ranged from R2 = 0.05 to R2 = 0.32. For all response variables, the best results were achieved
with the following predictor sets: Vegetation height (for the invertebrate hole depth),
diversity indices (for the vertebrate hole depth), land-cover fractions (for the invertebrate
hole density), and texture metrics (for the vertebrate hole density); see Table S5.
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The models underestimate the hole density and depth for plots with higher hole
density and deeper holes and overestimate the hole density and depth for the plots with
lower hole density and less deep holes.

3.2. Predictor Selection and Importance

The significant predictors describing in situ measured vegetation patterns which
were selected during backward feature selection and used in the linear regression models
varied between the models (Tables S6–S9). For the hole density, site SG was not selected
as significant while for hole depth, all sites were significant. The significant predictors
for the vertebrate hole density were vegetation cover, skeleton cover and diameter of
shrubs. The significant predictors for the invertebrate hole density were cacti height, cacti
abundance and the vegetation cover in PdA. The significant predictors for vertebrate hole
depth were vegetation cover and the cover of the single classes as well as heterogeneity.
Lastly, the significant predictors for invertebrate hole depth were heterogeneity, shrub
height and diameter.

Following predictors calculated from the UAV-data and used in random forest models
were selected. Of 76 predictors, 40 were highly correlated with each other and were
removed before further analysis. The retained indices were all land-cover fractions, most of
the diversity indices, texture metrics, and vegetation height predictors, all spectral bands
and topographic indices, one vegetation index, and one climate predictor. The number of
selected predictors and their composition varied from 2 to 34 for the different responses
(Figure S1, Table 2). The RFE conducted using data from the whole study area retained
between 3 and 23 predictors (Table 2). For the individual study sites, the number of chosen
predictors varied between 2 and 34.

For the vertebrate hole density, the most important predictors were the texture metric
dissimilarity calculated from the vegetation height; the texture metrics-based contrast,
variance, and second moment calculated from the blue or red band; and several land-cover
fractions and diversity indices (Figure 4). For the invertebrate hole density, the Berger–
Parker diversity index was the most important, followed by the land-cover fractions rocks,
soil, and shrubs (Figure 4). In terms of vertebrate hole depth, the aspect and tree fraction,
and the variance and dissimilarity calculated from the vegetation height were important
(Figure 4). For the invertebrate hole depth, the contrast texture metrics calculated from the
red band and cacti height were the most important (Figure 4).

For the individual study sites, the selected predictors varied. In PdA, the texture
metrics calculated from the vegetation height and the NGRDI were the most important for
the vertebrate and invertebrate hole density. In LC, for the vertebrate hole depth, the soil
and tree fraction and inclination were the most important. In NA, the correlation texture
metric calculated from the green band was the most important for the invertebrate hole
density and depth.
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Figure 4. Predictor importance in the models fitted for the whole study area and the individual study
sites. Only statistically significant models are shown. The importance of all predictors estimated
by RFE was normalized from 0 to 1 separately for each model. The predictors not selected by the
RFE were assigned a value of 0. PdA = Pan de Azúcar, SG = Santa Gracia, LC = La Campana,
NA = Nahuelbuta, VARI = visible atmospherically resistant index [59], NGRDI = normalized green–
red difference index [60].

3.3. Prediction

We used the models trained for the whole study area for the prediction. The predicted
hole density and depth varied across sites and hillsides (Figures 5 and S2–S6). The highest
vertebrate hole density was predicted in SG, with an average of 6.1 holes per 10 m × 10 m,
followed by LC with 5.3 holes per 10 m × 10 m. The average vertebrate hole density was
3 holes per 10 m × 10 m in PdA and 4.1 holes per 10 m × 10 m in NA. In SG, on average,
1.5 more holes per 10 m × 10 m were predicted on south-facing than north-facing hillsides.
In LC, five more holes, on average, were predicted on the north-facing than south-facing
hillsides. There was no difference between the hillsides in PdA and NA. The highest
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invertebrate hole density was predicted in PdA (13 holes per 10 m × 10 m), followed
by SG and LC (ca. 10 holes per 10 m × 10 m), and the lowest density was predicted in
NA (4.1 holes per 10 m × 10 m). A higher density was predicted on north-facing than
south-facing hillsides in PdA and LC (up to five more holes per 10 m × 10 m), while a
lower hole density was predicted on north-facing than south-facing hillsides in SG (up to
three fewer holes per 10 m × 10 m).
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Figure 5. Predicted hole density per 10 m × 10 m across north-facing hillsides using models trained
for the whole study area: (a) Vertebrate hole density in LC; (b) vertebrate hole density in PdA;
(c) invertebrate hole density in LC; and (d) invertebrate hole density in PdA.

The distribution of holes and their depth was not uniform along the hillsides and
depended on vegetation patterns and inclination of the hillside (Figures S3–S6). The
dependencies varied between the sites. In general, higher density of vertebrate holes was
predicted in areas with lower density of invertebrate holes. The density and depth of the
holes increased with decreasing hillside inclination and slope.

More vertebrate holes were predicted within the hillside rills. The vertebrate hole
density was rather positively associated with the shrub, herb and cacti cover in all climate
zones and negatively with the tree cover in the humid-temperate climate zone. It was
positively associated with vegetation height in all climate zones except for the humid-
temperate zone. The density of invertebrate holes was higher in areas with less vegetation
cover and more skeleton within all sites. It was also negatively associated with vegetation
height in all climate zones.

The depth of the holes was positively associated with vegetation cover and vegetation
height in the arid and semi-arid zone and negatively in the Mediterranean-type and humid-
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temperate zone. The depth of all holes in arid and semi-arid climate zone was higher
in areas with a higher density of vertebrate holes. Deeper holes were predicted near
shrubs and herbs. In the Mediterranean-type and humid-temperate climate zone, the
depth of vertebrate holes is higher in areas with higher density of vertebrate holes and vice
versa. Deeper vertebrate holes were here predicted near herbs, deeper invertebrate holes
near skeleton.

4. Discussion

We analyzed the potential use of UAV data for the area-wide prediction of the density
and depth of holes created by vertebrates and invertebrates in several climate zones. The
results demonstrated the importance of including texture metrics, land-cover fractions,
land-cover diversity indices, and vegetation height in models. Most of our models achieved
a good to moderate performance.

4.1. Model Performance

In comparison to models not predicting the density of burrows but only the presence
or absence of burrows and mounds [29], the occurrence of burrowing animals [85], or their
species richness [86], our models performed lower. This might be due to the burrowing
patterns being dependent on the behavior of individual animals. Animal behavior cannot
be predicted by strict physical processes, and is not necessarily the same under similar
habitat conditions. On the contrary, it depends on a large variety of factors, such as small-
scale soil and vegetation conditions, [87], intra-species competition, or even the well-being
of every individual [88].

The models trained using plots from all 4 sites (Figure 3) underestimate higher hole
density and deeper hole depth. These errors more likely occurred due to response data
variability and possible range of predictor values describing environmental parameters.
The predictor values described the vegetation patterns per 10 m. This might lead to a lower
accuracy especially in the semi-arid and Mediterranean-type climate with homogenous
vegetation patterns within the site. The models could not distinguish small-scale changes
and aptitudes in hole density and depth in dependence on these parameters and thus
the model predicts very similar values for these sites. Another reason might be the data
variability. Due to random resampling of the data during the training, the models might
capture the changing hole density and depth tendencies between the sites but not the
magnitudes within the sites. This explanation is supported by the higher accuracy of
models trained separately for the arid and humid-temperate sites, in comparison to models
trained for the whole study area and for the semi-arid and Mediterranean-type climate
zone (Table 2).

The lower model accuracy can furthermore be caused by error propagation, as the
models trained using same predictors estimated in situ achieved higher accuracy. The
uncertainties accumulated during the calculation of predictors vegetation cover and vege-
tation height might cause lower model accuracy. However, the models trained separately
for the arid zone PdA, in which the UAVs captured the ground vegetation in comparison
to Mediterranean-type and humid-temperate areas where the ground vegetation is covered
by tree canopy, did still achieve the highest accuracy.

The models trained for invertebrates outperformed those trained for vertebrates. The
reason for this may be due to the differences in habitat preferences between vertebrates and
invertebrates. In the case of vertebrates, limitations of remote sensing-based predictors have
been attributed to the unpredictability of vertebrate behavior and the number of suitable,
yet unoccupied areas [89]. Furthermore, the applicability of remote sensing predictors
depends on the vertebrate trophic level, as the distribution of herbivore species is more
likely to correlate with various vegetation characteristics, while predator and generalist
habitat characteristics are not associated with variables directly measurable by remote
sensing [89,90]. In contrast, the distribution of all soil-living invertebrates has been shown
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to be highly associated with vegetation diversity and soil properties, which directly affect
vegetation distribution [18].

The models for predicting hole density outperformed those for hole depth. The worst
result was obtained when predicting vertebrate hole depth. For invertebrates, the measured
hole depth presumably determines the maximum depth that they have reached, whereas
vertebrate burrows are more complex [91]. As we measured only the depth of the hole
leading to the burrow, and not the complexity of the underground burrow, this may explain
the poorer model performance.

Among the models trained for each of the study sites, the models for the arid PdA and
humid-temperate NA performed better than those for LC and SG. In the arid climate zone,
a strong link between burrowing and vegetation distribution can be expected, as the habitat
choice has been shown to be associated with water and nutrient supply, due to limited
resources [47]. No such clear relationship can be applied to semi-arid and Mediterranean-
type climate zones, where the distribution of burrowing animals has been found to be
both positively [19] and negatively [20,92] associated with vegetation distribution. Thus, it
is not surprising that the models for study sites performed better where a clear positive
relationship between vegetation distribution and burrowing animals can be expected.

4.2. Predictor Importance

The predictor importance varied between the models. The texture metrics were
more important in the models for the whole study area, while land-cover fractions were
more important in the models trained for individual sites. Our results indicate that the
level of spatial heterogeneity determines the difference in burrowing patterns between
sites. At the same time, small-scale differences within sites were dependent on specific
vegetation distribution and vegetation types. Previous studies have shown a strong link
between biodiversity and spectral heterogeneity [93–96]. Although we did not predict
the biodiversity of burrowing animals, the burrowing patterns were shown to be species-
dependent [6].

Predictors selected for the hole density were mostly the texture metrics calculated
from the NGRDI and VARI. These indices have been shown to correlate with plant biomass
and the vegetation fraction, and were able to detect small-scale patterns of biomass vari-
ability [57,59]. Burrowing animals have an impact on the vegetation coverage [97–100];
however, the specific impacts seem to vary between species, with some species mainly
being affecting the distribution of cacti [19], thorn shrubs [16], or herbs [101]. Therefore, it is
no surprise that the indices describing variation in vegetation biomass [57,59], and not sim-
ple land-cover fractions, were identified as the most important predictors. Our results are
furthermore in line with studies using satellite images which have identified indices related
to vegetation density as being significant for the prediction of animal abundance [102,103].

The diversity indices and texture metrics calculated from the vegetation height and
vegetation indices were especially important predictors for vertebrate hole density and
depth. The texture metrics entropy and dissimilarity and the diversity indices Shannon’s
and Rao’s quadratic entropy were selected, which are all associated with a heterogeneous
landscape [66,69]. Previous studies using heterogeneity and texture metrics in their models
have identified them as significant for the prediction of the habitats of burrowing verte-
brates [85]. An association between landscape heterogeneity and the distribution of animals
has been shown in a number of ecological studies considering the long-term impacts of
burrowing animals [76,77]. Burrowing vertebrates, in particular, have been found to create
dense vegetation patches due to the concentration of resources near burrows [18,24,25].

For invertebrates, the texture metrics homogeneity and correlation were identified as
the most important predictors. In comparison to our results, a previous study [38] found
the diversity of invertebrate species to be associated with the texture entropy calculated
from the NDVI and ARI. The habitat complexity has also been shown to be positively
associated with invertebrate diversity and abundance [104], possibly as the distribution of
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roots and stems creates suitable microhabitats [105]. Thus, the findings of previous studies
support our results.

5. Conclusions

In this study, we demonstrated the potential of using UAV data to predict the den-
sity and depth of holes created by burrowing animals. Our models achieved moderate
performance. Models trained for the study area outperformed models trained separately
for the single study sites, except for the arid climate zone. Models for the invertebrates
outperformed models for the vertebrates and models for the hole density outperformed
models for the hole depth. The results furthermore show the importance of inclusion
of vertical and horizontal landscape structures into the models, as the models mostly
relied on the diversity indices, vegetation height and texture metrics calculated from the
vegetation height.

The results furthermore showed the dependence of burrowing intensity on vegetation
patterns. Vertebrate hole density and depth was rather positively associated with vegetation
cover and height (especially of shrubs and herbs) in all except in the humid-temperate
climate zone. Invertebrate hole density was negatively associated with the vegetation cover
in all climate zones and with vegetation height in the Mediterranean-type climate zone.
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the vertebrate hole density, Table S7: Significant variables selected by the linear mixed model for
the invertebrate hole density, Table S8: Significant variables selected by the linear mixed model for
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