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Abstract: Accurate and timely information on surface water quality and quantity is critical for
various applications, including irrigation agriculture. In-field water quality and quantity data
from unmanned aerial vehicle systems (UAVs) could be useful in closing spatial data gaps through
the generation of near-real-time, fine resolution, spatially explicit information required for water
resources accounting. This study assessed the progress, opportunities, and challenges in mapping
and modelling water quality and quantity using data from UAVs. To achieve this research objective,
a systematic review was adopted. The results show modest progress in the utility of UAVs, especially
in the global south. This could be attributed, in part, to high costs, a lack of relevant skills, and
the regulations associated with drone procurement and operational costs. The progress is further
compounded by a general lack of research focusing on UAV application in water resources monitoring
and assessment. More importantly, the lack of robust and reliable water quantity and quality
data needed to parameterise models remains challenging. However, there are opportunities to
advance scientific inquiry for water quality and quantity accounting by integrating UAV data and
machine learning.

Keywords: drones; green water; integrated water management strategies; remote sensing; small-
holder farms; water productivity

1. Introduction

Freshwater accounts for only 2.5% of the total amount of water on the earth’s surface,
and about 1.5% of that amount is accessible for biophysical processes [1]. Meanwhile,
freshwater is a fundamental input in agricultural production, numerous manufacturing
industries, and a basic need for domestic uses. Specifically, agriculture accounts globally for
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about 70% of the total freshwater usage, mostly through irrigation [2,3]. Intense competition
for water between different sectors will increase with an increase in the world population
increase from the current 7.8 billion to about 9.7 billion by 2050. Consequently, global
agricultural production is expected to increase by 60 to 70% [4], which will substantially
increase water demand.

In the global south, particularly Southern Africa, water resources are unevenly dis-
tributed, and this is compounded by climate variability (i.e., an unpredictable seasonality
of precipitation). The quality and quantity of available water affect all water users, in-
cluding crop irrigation. Based on the recent findings presented by Bronkhorst et al [5],
irrigation agriculture contributes to 25–30% of South Africa’s agricultural production, and
is responsible for up to 90% of high-value crops production and 25 to 49% of industrial
crop production; however, it uses 60% of freshwater resources [5,6]. Meanwhile, urban and
rural water use (including domestic use) consume 30% of available water resources. In
this regard, there is an urgent need to identify accurate and efficient methods for assessing
the quality and quantity of available surface water resources. The quantity and quality of
available water resources are conventionally determined from in situ measurements, which
in some cases can be time-consuming and costly [7]. In situ measurements do not always
provide adequate spatial representativeness, and information may not be readily available
to users such as farmers. In situ measurements may not always provide information
about the temporal variability of available water, which is necessary for managing crop
irrigation [7].

Earth observation and geospatial technologies have been widely proven to provide
synoptic, timely, and spatially explicit data of various aspects of the earth’s surface, includ-
ing the spatio–temporal variability of both the quality and quantity of available water [7].
The literature shows that clean water generally absorbs electromagnetic energy mostly
from the visible section (green) to the longer wavelengths in the infrared sections [8,9].
Subsequently, water has been detected and discriminated from other landcover types in
this regard. Furthermore, this attribute of clean water has facilitated the determination
of water quantity (surface volumes, spatial extent) and quality of surface water resources
based on earth observation data and geospatial approaches. Earth observation facilities
have been proven useful in accurately and efficiently characterising various attributes
of surface water resources. These include the moderate-resolution imaging spectrora-
diometer (MODIS) [10], Landsat [11], SPOT [12], and Worldview [13], Medium Resolution
Imaging Spectrometer (MERIS) [14], to mention a few. Work by Gholizadeh et al. [7]
comprehensively details parameters that have been widely used to estimate water quality
using remote sensing techniques. However, Gholizadeh et al. [7] extensively illustrate the
application of remote sensing techniques at regional and landscape scales. Additionally,
freely available satellite-borne earth observation facilities such as the Landsat and Sentinel
2 multispectral instrument remain inapplicable for local to farm-scale water resources
monitoring and management.

Unmanned aerial vehicle systems (UAVs), also known as drones, have emerged as
a potential alternative for mapping and monitoring the quality and quantity of water re-
sources at local scales. This is because drones are flexible, relatively cheaper in comparison
to in situ measurements and spaceborne remote sensing, and can be flown at low altitudes,
offering very high spatial resolution data, with high prospects of timely and accurately
characterising water quality and quantity for smallholder irrigation farms (Xiang et al.,
2019). Dissimilar to satellite and other air-borne sensors, UAVs could be used in monitoring
hazards (i.e., after landslides, floods, fires) [15] because they generate near-real-time, fine
resolution, spatially explicit information. Despite the usefulness of UAVs, their application
in agriculture, rural development, and, more importantly, water resources management,
remains limited. Although some studies have sought to assess the literature on the utility of
drones for a water resources assessment [7,16,17], the studies do not provide a systematic re-
view that focuses on characterising water quality and quantity in the context of smallholder
farming in the global south. To the best of our knowledge, the aforementioned studies did
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not conduct any bibliometric analysis to evaluate progress, gaps, and challenges faced by
the global south in utilising drone technologies for mapping and monitoring the quality
and quantity of surface water bodies. In this regard, this paper seeks to review and offer an
in-depth systematic assessment of literature on progress, challenges, and opportunities in
the utilisation of UAVs in mapping and monitoring surface water resources for improving
crop water production in smallholder farms in the global south.

2. Materials and Methods

This study sought to conduct a systematic literature review on assessing the quality
and quantity of water using UAVs. The review was structured into two sections. The first
section sought to establish the progress attained using drone technologies to map and
monitor open water bodies and identify existing gaps. The second section then outlined the
challenges and opportunities for applying drone technologies in mapping and monitoring
open water bodies for improving crop water production. To address these sections, the
literature search and analysis were conducted in three phases

2.1. Phase 1: Literature Search

The initial step of the literature search was to identify keywords, terms, and phrases
used in the actual search strings. The review’s objective was copied and pasted into Google
Scholar, and the top three articles—Gholizadeh et al. [7], Lally et al. [16], and Cancela
et al. [18]—were downloaded and reviewed for keywords, terms, and phrases. We identi-
fied the following keywords and their variants: “unmanned aerial vehicle(s)”, “drone(s)”,
“Remote sensing”, “GIS”, “crop water use” “irrigation”, “water productivity”, “water use
efficiency”, “water bodies”, “dam(s)”, “reservoir(s)” OR “river(s)”, water quality”, “water
quantity”, and “water volume”. The query strings used across the databases are presented
in Table 1. The searches were restricted to titles, abstracts, and keywords.

Table 1. Key search words used in this study.

Search Platform Search Criterion Total Number of Articles Number of Articles
Retained

SCOPUS

(TITLE-ABS-KEY ((“unmanned aerial vehicle” OR “drone*”
OR “Remote sensing*” OR “GIS” ) AND ( “crop water use” OR
“irrigate*” OR “water productivity” OR “water use efficiency” )

AND ( “water bodies*” OR “dam*” OR “reservoir*” OR
“River*” ) AND (“water quality” or “water quantity” or volume

or “water volume” or “water reflectance”))) and not
(TITLE-ABS-KEY(“groundwater” or “groundwater”)) AND

( LIMIT-TO ( DOCTYPE,”ar” ) )

136 70

Web of Science

TS= ((“unmanned aerial vehicle” OR “drone*” OR “Remote
sensing*” OR “GIS”) AND (“crop water use” OR “irrigate*” OR
“water productivity” OR “water use efficiency”) AND (“water

bodies*” OR “dam*” OR “reservoir*” OR “River*”) AND
(“water quality” or “water quantity” or volume or “water
volume” or “water reflectance”)) NOT (“groundwater” or

“ground water”))

108 52

Science Direct

((“unmanned aerial vehicle” OR “drone” OR “Remote sensing”
OR “GIS”) AND (“irrigation canal” OR “Dams) AND (“water

quality” OR volume or “water reflectance”) NOT
(“groundwater”))

73 32

Google Scholar
((“unmanned aerial vehicle” OR “drone” OR “Remote sensing”
OR “GIS”) AND (“irrigation canal” OR “Dams) AND (“water

quality” OR volume or “water reflectance”)
63 60

Articles considered before screening after removing duplicates 214

Articles on UAV applications in water 56
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SCOPUS, Web of Science, and Science Direct were utilised to establish literature based
on specified keywords. The literature search was framed based on the PRISMA statement
(Table 1). Since the current work was adding to what has already been established, the
literature search was not restricted to the above databases. We used Google Scholar to
identify and include articles that SCOPUS, Web of Science, and Science Direct had not
indexed. The search covered the period from 1980 to January 2021.

Initially, the literature searches from SCOPUS, Web of Science, and Science Direct
retrieved 136, 108, and 73 articles, respectively (Table 1, Figure 1). All retrieved literature
were compiled in EndNote in preparation for screening. Specifically, the bibliographic
information of the articles was used at this stage. The first screening procedure was the
removal of duplicates considering that the key search terms were similar. In the second step,
literature that were not written in English were excluded from the analysis. The following
step involved examining whether each article was based on detecting and/or predicting
surface water quantity or quality. Full-length articles of the selected abstracts were then
sought and downloaded. Subsequently, 214 articles were retained after the screening
procedure (Figure 1). A Microsoft Excel spreadsheet was then created to capture the details
of each study. The spreadsheet was then reduced to consider only the studies that had
specifically utilised drones in mapping and modelling the quality and quantity of surface
water bodies. Fifty-six articles were considered on the drones’ database (Table 1). The
developed database was later used for quantitative assessment of the captured information.

Figure 1. Selection of the studies considered in this review.

2.2. Phase 2: Data Extraction

The database created from the previous phase was used to identify and comprehen-
sively outline the existing progress, gaps, challenges, and opportunities in using drone
technologies to map and model the quality and quantity of surface water bodies. To ad-
dress these objectives of the study, the second phase extracted data from the identified
articles. Specifically, information on the year the study was conducted, the study site, type
of the surface water body, water quality parameter, sensor, vegetation indices, prediction
or classification algorithms, and optimal spectral variables derived were captured. The
categorical variables were then converted into numerical variables in preparation for data
analysis. Meanwhile, key bibliometric information was also extracted during this phase.
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The bibliometric data extracted included author names, country, year of publication, the
title of the article, name of the journal, and abstract. A few studies and grey literature that
were not captured by the review were included at this phase. Subsequently, this phase was
also regarded as evaluating the systematic review’s relevance and quality assessment stage.

2.3. Phase 3: Data Analysis

Identified literature and extracted data were subjected to quantitative and qualita-
tive analysis. For the quantitative analysis, basic statistical frequencies were conducted.
Furthermore, exploratory trend analysis was conducted in assessing progress on the util-
ity and applicability of satellite and drone-based sensors in mapping and modelling the
quality and quantity of surface water bodies. Bibliometric analysis was also conducted to
reveal trends of key terms in monitoring surface water bodies. Bibliometric analysis is a
quantitative method used to assess published articles and has become helpful in evaluating
peer-reviewed studies in a specific field of research [19,20]. The evolutionary trends were
inferred by statistically assessing the occurrence and co-occurrence of key terms used to
map and monitor surface water bodies using VOSviewer software [21]. The titles and
abstracts of articles in the final database (with 214 articles in Table 1), as well as the database
of articles that specifically used drones, derived datasets (with 56 articles in Table 1) were
used in the VOSviewer to investigate how concepts and topics have evolved in mapping
and monitoring the quality and quantity of surface water bodies. Considering that only the
occurrence, co-occurrence of key terms, and frequency distributions were computed, bias
assessment was not conducted. Meanwhile, the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses checklist (http://www.prisma-statement.org/, accessed on
19 July 2021) was used as a guideline to avoid biased reporting [22,23]. The peer review
system of the Drones MPDI Journal was also used in evaluating findings presented in
this study.

The review was then presented in two sections to address the research objectives. The
first section explored the progress attained, hitherto, in mapping and modelling the quality
and quantity of surface water bodies using remotely sensed data. This section presented
and detailed literature trends quantitatively evaluating the quality and quantity of surface
water bodies. Specifically, water quality and quantity parameters, earth observation sensors
(cameras), sensor platforms, algorithms, and optimal spectral variables that were used to
date were showcased throughout this phase. The final phase then outlined and discussed
the challenges, gaps, and opportunities existing in the context of knowledge creation in
mapping and modelling the quality and quantity of surface water bodies using drone-
derived remotely sensed data.

3. Results
3.1. Searched Literature Characteristics

In evaluating the evolution and topical concepts of mapping and monitoring the qual-
ity and quantity of open water bodies, results showed that the utilisation of drone-based
“remote sensing” “application” “case studies” trending mostly in “small reservoirs” of
“China” around 2017 (Figure 2). The period from 2018 to 2020 represents an intensification
in terms of the imagery analysis in the evaluation of water quality. This period was marked
by the application of hyperspectral drone cameras in mapping water quality (Figure 2).
Meanwhile, Figure 3 illustrates three topical clusters, green, blue, and red, in monitoring
water. The key terms from the blue cluster were “UAV’, ‘remote sensing’, (‘image’), ‘ap-
plication,’ ‘mapping’, ‘chlorophyll’, ‘concentration’, ‘low cost’, and ‘measurement’, which
directly imply the utility of UAVs as a low-cost remote sensing system associated with
mapping chlorophyll concentrations (Figure 3). The second-largest cluster linked to UAVs
was in red and had ‘reservoir’, ‘lake’, ‘dam’, ‘basin’, ‘area’, ‘volume’, ‘area’, ‘data’, and
Landsat. This articulates the major water quantity parameters, i.e., volume area, that were
widely characterised using Landsat data and ‘GIS ‘techniques. The third cluster in green
had ‘water quality’, ‘water’, ‘model’, ‘river’, ‘turbidity’, and ‘irrigation’ as the key terms in

http://www.prisma-statement.org/
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order of importance (Figure 3). This cluster presented the linkages between chlorophyll
and turbidity concentrations which were previously modelled using satellite-borne data
mainly in the context of evaluating the quality of crop irrigation water.

Figure 2. Direction and revolution of topical concepts in mapping and monitoring the quality and quantity of open water
bodies’ derived using data from abstracts and titles.

Figure 3. Topical concepts in mapping and monitoring the quality and quantity of open water bodies’
derived using data from abstracts and titles.

3.2. Progress in Modelling Water Quality and Quantity

Generally, progress is noted in detecting, mapping, and monitoring surface water
resources, using remotely sensed data (Figure 3). As in Gholizadeh, Melesse and Reddi [7],
the results of this study illustrated that most of the studies that utilised earth observation
data sought to characterise water quality more than water quantity (Figure 3). The widely
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researched water quality parameters included conductivity [24,25], pH [25,26], Cl− [24],
dissolved oxygen [27], total suspended solids (TSS) [28,29], chlorophyll [30–33], turbid-
ity [34–36], K+, ammonium nitrogen (NH4-N), sodium (Na+), BOD, magnesium (Mg),
total phosphorous, orthophosphate (PO4–P), temperature and total nitrogen, iron (Fe),
COD, zinc (Zn), calcium (Ca), manganese (Mn), salinity, copper (Cu), bicarbonate HCO3−,
sodium-absorbed ratio (SAR), coliform, cadmium (Cd), chromium (Cr), Ca2+, HCO3−, and
total hardness in order of frequency, as illustrated in Figure 4b. These parameters were
mostly characterised using satellite remotely sensed data.

Figure 4. Frequency of studies that mapped surface water resources per year based on (a) both satellite and drone-borne
sensors. (b) Drone-borne sensors.

The use of satellite remotely sensed data in mapping and modelling water quality
and quantity has of late received extensive attention. This is illustrated by the steady
increase in the number of studies that applied remote sensing techniques in mapping and
monitoring water quality and quantity (Figure 4a). Meanwhile, a significant number of
studies ventured into the utility of drones (Figure 4b). This study showed that works that
utilised UAVs in mapping and monitoring water quality and quantity appeared around
2013 (Figure 4b). The studies that evaluated the utility of drone-derived data for mapping
the quantity of water were significantly less than those that sought to assess the quality of
water. Specifically, only fourteen studies assessed the level of water, whereas thirty-seven
studies assessed water quality parameters based on drone remotely sensed data. However,
the majority of the aforementioned studies were conducted based on drone remotely sensed
data, principally mapped and monitored chlorophyll content [30,32,33,37,38] and turbidity
in lakes, ponds, and dams (Figure 5b) [34–36].

The quality of irrigation water that is generally considered acceptable should be
colourless, odourless, foamless with minimum turbidity, TDS below 1000 mg L−1 at
circumneutral pH, and a specific conductance below 1.5 mmhos/m [39–41]. COD, ZSD,
TP, conductivity, pH, TSS, DO, and turbidity are critical attributes of water that need to be
frequently monitored if high-quality crops and full potential harvests are to be attained.

For irrigation water, COD is a critical attribute that needs to be frequently monitored.
COD and biochemical oxygen demand (BOD) are appropriate indicators for organic matter
concentrations in irrigation water. When COD and BOD are high in irrigation water, much
of the oxygen in the water will be consumed during the decomposition of organic matters
resulting in an anaerobic condition [42]. In this process, soil oxides such as Fe3+, Mn5+

and SO4
2− will exhaust oxygen to reduce the oxidation–reduction potential. Subsequently,

the generated iron, manganese, sulphides, and organic acids may limit crop uptake and
the absorption of nutrients. This frequently results in stunted growth, poor quality, and
reduced harvests.
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Figure 5. Frequency of studies that considered a specific water quality parameter based on (a) all satellite and drone-borne
sensors. (b) Drone-borne sensors only.

ZDS is an indicator of turbidity and the total number of suspended particles in
irrigation water [39]. A high concentration of suspended particles tends to result in an
altered colour of the water and lower ZDS measurements. Higher concentrations of
suspended sediments result in the clogging of irrigation equipment such as sprinklers.
Therefore, high turbidity or TSS impedes irrigation by drippers and sprinklers [43].

In terms of the spatial distribution, the majority of studies that have hitherto ventured
into the utility of drones in mapping water quality parameters such as chlorophyll, turbidity,
DO, TSS, and pH were mostly conducted in China, the USA, Latin America, Europe, and
Australia (Figure 6). This could be attributed to the fact that the earliest drone technologies
began in Europe, the USA, and China between 1849 and 1916. Since then, the technology
has been spreading. However, very few studies have been conducted in the global south,
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especially in Africa. Subsequently, there is a need to consider and prioritise water quality
parameters such as chlorophyll, turbidity, DO, TSS, and pH when devising irrigation water
quality assessment techniques, especially in the global south.

Figure 6. Spatial distribution of UAV-based remote sensing studies in the context of open water bodies.

3.3. Types of Sensor Platforms

Some of the most widely used satellite platforms are the Landsat, Shuttle Radar topo-
graphic mission, MODIS, SPOT, and Sentinel 2 MSI (Figure 4b). Studies involving mapping
and monitoring the quality and quantity of surface water bodies based on satellite-borne
remotely sensed data have drastically increased. This could be attributed to the significant
increase in earth observation technologies. However, no studies were conducted using
both satellite and drone data simultaneously (Figure 3). As illustrated in the characterisa-
tion of literature, t-studies based on UAVs remotely sensed data only picked up in 2013
(Figures 2 and 6). The increase in the research effort and attention towards the utility of
UAVs in relation to satellite-borne data could be explained by that they offer near-real-time,
fine resolution, and remotely sensed data suitable for high-throughput quantification of
water quantity and quality at user-defined revisit frequencies.

Satellite platforms of freely available datasets such as Sentinel 2 and Landsat tend to
be limited by cloud cover and relatively coarser spatial and temporal resolutions, which
are difficult to implement at farm scales. The findings of this study also illustrated that 77%
of the studies in mapping surface water resources using drones were conducted based on
the multi-copter platform systems, and 23% were based on fixed-wing platforms (Table 1).
Interestingly, innovative octocopters and hovercrafts have also been harnessed for this
particular purpose [25,44]. The dominance of the multi-copter platforms in water resources
mapping could be because they are relatively cheaper than fixed-wing platforms [45,46].
Specifically, in their comparative study, Brito et al. (2019) noted that the superiority of the
multirotor platforms was established better in the context of two-dimensional mapping
surfaces, as is the case with mapping agricultural fields and surface water resources. Above
all, the multi-copter platforms were associated with a capability for vertical take-off and
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landing (VTOL). Most of the DJI multi-copters can VTOL [46]. This makes it easy to utilise
multi-copter drones in any environment. However, batteries are their major setback [46].
The weight of multi-copter drone batteries and their capacity limits their flight duration
significantly. Specifically, 35% of the studies noted in this study utilised the DJI multi-copter
series from the Chinese company, Shenzhen DJI Sciences and Technologies Ltd (Figure 7).
This was the most widely used platform based on the findings of this study. Generally, the
DJI Matrice and the Phantom series were the dominant DJI platforms noted in our study.
This could be attributed to the fact that the DJI Matrice platforms seem to be compatible
platforms that can be integrated with many types of sensors, as illustrated in Table 2, when
compared to other platforms.

Figure 7. Frequency and types of UAV platforms that were used in mapping water quality
and quantity.
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Table 2. Platforms and sensors that were used in mapping water quality.

UAV_Platform Platform Type UAV_Sensor No Bands No RGB Bands No RE Bands No NIR Bands

custom-built multirotor Quadcopter
quadcopter-UAV Quadcopter

Aeryon Scout™ (Aeryon
Labs Inc.) Quadcopter 3S™ 1

Aibot X6 Quadcopter NIKKOR AF-S 24–85 mm
f/3.5–4.5G ED VR 1

Aibot X6 Quadcopter Velodyne HDL-32E 1
Styrofoam delta Fixed-wing Sony NEX-5N_APS-C CMOS 1

Aeryon SkyRanger Quadcopter Aeryon HDZoom31 3 3
Aeryon SkyRanger Quadcopter HDZoom30 3 3

Aibot X6 Quadcopter Nikon D800 3 3
Align T-Rex 700E Helicopter Nikon D5100 3 3

DJI hexacopter Spreading
Wings S900 Quadcopter SONY RX-100, ARS 30X radar 3 3

DJI M 600 Pro Quadcopter K4 multi-spectrometer 3 3 1
DJI MAVIC 2 Quadcopter HD integrated, L1D-20c model 3 3
DJI Phantom Quadcopter GoPro Hero 3 3 3

DJI Phantom 3 Quadcopter Digital Camera 3 3
DJI Phantom 4 Quadcopter inBuilt 3 3
DJI Phantom 4 Quadcopter Sony IMX117 Exmor-R™, CMOS 3 3

DJI Phantom-4-pro Quadcopter 1”CMOS 3 3
DJI S 800 EVO Hexacopter Quadcopter Canon EOS 5DS R 3 3

Prairie Hawk™ Fixed-wing GoPro™ HERO3, 3 3
Prairie Hawk™ Fixed-wing Sony IMX117 Exmor-R™, CMOS 3 3

Quanum Nova Cheerson
CX-20 Quadcopter GoPro Hero 4 Black Edition, Feiyu

Mini 3D Pro 3 3

Quanum Nova Cheerson
CX-21 Quadcopter GoPro Hero 4 Black Edition, Feiyu

Mini 3D Pro 3 3

senseFly Fixed-wing Canon ELPH 110HS 3 3
SenseFly Swinglet CAM Fixed wing Canon ELPH 110HS 3 3

Skywalker X-5 Quadcopter Sony RX100 20 MP 3 3
ITALDRON HIGHONE

4HSEPRO Quadcopter SONY Alpha 7R, 3

senseFly eBee Fixed-wing MicaSense Parrot Sequoia 4 2 1
senseFly eBee Fixed wing Canon Powershot S110 4 2 1
senseFly eBee Fixed wing Canon Powershot S110 4 2 1

DJI Phantom 3 Professional Quadcopter Sentera 4 3
DJI Phantom 3 Professional Quadcopter Sentera 4 3

DJI Phantom 4 Quadcopter Sequoia 4 3 1 1
Parrot Bluegrass Fields Quadcopter Sequoia 4 3 1 1

Remo-M Fixed-wing Sequoia 4 3 1 1
senseFly eBee Fixed-wing Sequoia 4 3 1 1
senseFly eBee Fixed-wing Sequoia 4 3 1 1

ATI AgBOT sUAS Quadcopter MicaSense RedEdge 5 3 1
DJI Inspire 1 v2 Quadcopter MicaSense 5 3 1

DJI Inspire-2 Quadcopter MicaSense RedEdge-M 5 3 1 1
DJI M600 multirotor Quadcopter MicaSense RedEdge multispectral 5 3 1 1

Octocopter ATyges FV8 Octocopter MicaSense RedEdge-M 6 3 1 1
DJI Quadcopter MAIA WV 9 4 1

Aquacopter Bullfrog
quadcopter frame Quadcopter Ocean Optics >200 3 1

Bergen RC multi-copter Quadcopter Ocean Optics >200 3 1
DJI M600 Quadcopter Gaia Sky-mini >200 3 1

DJI Phantom 2 Vision Plus Quadcopter Ocean Optics STS-VIS >200 3 1
LT-150 Fixed wing AvaSpec-dual >200 3

DJI Matrice 600 Pro Quadcopter Headwall Nano-Hyperspec 270 3 1
DJI MATRICE M600 Pro Quadcopter Headwall Nano-Hyperspec 270 3 1
DJI MATRICE M600 Pro Quadcopter Headwall Nano-Hyperspec 270 3 1

DJI S 800 EVO Hexacopter Quadcopter Headwall Nano-Hyperspec 270 3 1

Meanwhile, fixed-wing drone platforms’ superiority was reported in mapping linear
features (i.e., rivers and roads) [45]. They were also associated with longer flight dura-
tions [46]. However, the disadvantage of the fixed-wing drones is that they require a
runway, making it challenging to operate them in any environment [46]. Despite these
differences, the current drive in the drone technology industry is to harness the VTOL of
multi-copters with a long flight time associated with fixed-wing platforms through creating
a hybrid VTOL fixed-wing UAV [46].

3.4. Sensors and Spectral Wavebands

In terms of the sensors, the results of this review showed that from the satellite-borne
sensors, Landsat, had been the widest-used sensors for characterising irrigation water
quality across the world (Figure 7). Specifically, Landsat 5 was the most widely used
sensor with 39 studies, followed by Landsat 8 Operational land Instrument (OLI) with
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18 studies and then Landsat 1 with only three studies. These findings were similar to those
of Gholizadeh, Melesse, and Reddi [7], who also echoed the dominance of Landsat data in
mapping and monitoring water quality. This could be attributed to the fact that Landsat is
the longest mission that has been consistently supplying remotely sensed data suitable for
a wide variety of applications, including water quality and quantity parameters, without
any charges. However, the moderate spatial resolution of Landsat datasets of a 30 m
ground sampling distance has limited its applications to regional and landscape scales.
Subsequently, there has been a gap at local scales since the available VHSR sensors such as
Worldview and QuickBird are associated with high costs.

The advent of drone technologies has seen the utility of sensors, such as Nikon
(NIKKOR AF-S 24–85 mm f/3.5–4.5G ED VR) and the Nikon D800 [47], GoPro Hero 4 Black
Edition [48], Feiyu Mini 3D Pro [48], Sony [44], and CMOS [49] to the multispectral sensors
such as the MicaSense, Parrot Sequoia [28,50–55] Sentera [38], MicaSense RedEdge multi-
spectral [29,56], and the hyperspectral sensors such as Headwall Photonics Inc (207 bands),
Ocean Optics STS-VIS (640 bands) [27], AvaSpec-dual Gaia (640 bands) [35,57], Sky-mini
Nano-Hyperspec [30], Canon EOS 5DS R, and Headwall Nano-Hyperspec (640 bands) for
local-scale water remote sensing applications (Table 2). However, as the spectral resolution
of drone sensors increases, the associated costs also increase linearly. From our results, it
can be observed that the most widely used sensors were the Cannon, Sony, MicaSense, and
the Nikon.

Nevertheless, most of the Cannon, Sony, and Nikon sensors acquire images only
in the visible section of the electromagnetic spectrum. They cover the red, green, and
blue (RGB) regions of the electromagnetic spectrum (Figure 8). The RGB sections of the
electromagnetic spectral alone do not offer sufficient data for extensive applications in areas
such as characterising water quality despite their relatively limited costs and very high
spatial resolutions in relation to other robust sensors. Meanwhile, the MicaSense series are
multispectral cameras that acquire data not only in the visible section, but also cover the red
edge and the near-infrared sections of the electromagnetic spectrum at a very high spatial
resolution. This makes these the most sought after in the context of characterising a wide
variety of applications ranging from the characterisation of vegetation traits to water levels
and quality [26,28,29,56]. For example, the MicaSense RedEdge multispectral sensor covers
the RGB and the RedEdge, NIR and the thermal infrared portions of the electromagnetic
spectrum at an optimal ground sampling distance beyond 4 cm depending on the flight
height. These spectral settings make this sensor comparable to the renowned Sentinel 2
multispectral instrument that also covers almost the same spectral regions, save for the
thermal infrared section. Based on the findings of this study, there is a growing interest
in the utility of hyperspectral sensors in mapping water quality and quantity. Specifically,
these hyperspectral sensors cover the spectrum range between 300 and 1000 nm of the
electromagnetic spectrum (Table 3). The major advantage of hyperspectral remotely sensed
data in water quality remote sensing is the sensitivity to small changes in water quality
parameters such as chlorophyll and TSS concentrations. Hyperspectral wavebands have a
narrow spectral resolution of about 1–3.5 nm, making them more sensitive in relation to
the multispectral drone cameras that are generally broader.

Table 3. Details of drone based hyperspectral sensors.

Spectrometer Wavelength Range Optical Resolution (nm) Signal to Noise Weight

Ocean Insight STS-VIS 350–800 1.5, 12.0, 3.0, 6.0 >1500 (at max signal) 60 g
AvaSpec-dual 360–1000 1 ~100–400 (VIS) 58 g
Gaia Sky-mini
Hyperspectral 400–1000 3.5nm 1.5 kg

NANO-HYPERSPEC 400–1000 2.5 1.2/0.5 (lb/kg)
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Figure 8. Satellite-borne sensors that were used in mapping surface water resources.

Table 3 illustrates a summary of the technical details of the hyperspectral sensors that
were used in mapping water quality and quantity using drones. These sensors typically
covered the visible to the NIR sections of the electromagnetic spectrum at very high spa-
tial resolutions. The visible and NIR infrared (VIS-NIR) sections of the electromagnetic
spectrum have been widely proven to be instrumental in assessing water quality. The
premise that could explain the high frequency in the utility of the RGB spectrum (illustrated
in Figure 8) was the relatively lesser costs associated with such three-band sensors. Fur-
thermore, as aforementioned, the ease associated with interpreting the spectral signature
of water in the visible and the near-infrared. However, there seems to be limited efforts
to evaluate other sections of the electromagnetic spectrum in relation to the VIS–NIR in
characterising water quality parameters. Based on the performance of hyperspectral data
in other areas of research [58,59], there is a need to test the robustness and capability of the
narrow spectral channels in detecting various water quality parameters.

3.5. The Role of Drone Data Derived Vegetation Indices and Machine Algorithms in Remote
Sensing Water Quality and Quantity

Numerous vegetation indices were derived from drone remotely sensed data for
characterising surface water quality and quantity. The most widely used sections of the
electromagnetic spectrum in detecting water quality parameters were the visible section
(blue and green) and the NIR wavebands. In this regard, vegetation indices such as the
red and near-infrared (NIR), Surface Algal Bloom Index (SABI) [60], two-band algorithm
(2BDA) [26], NDVI, and Green NDV [33], as well as band combinations and differencing
such as (R+NIR/G) were used mostly in characterising chlorophyll content as well as TSS.
As was suggested in many studies, the combination of sensitive spectral variables with
robust and efficient algorithms produce accurate models. This study noted that algorithms
such as linear regression (LR), image differencing, matching pixel-by-pixel (mpp), artificial
neural networks (ANN), and the Manning–Strickler and adaptive cosine estimator were
utilised in characterising mostly water quality parameters (Figure 9). The mpp based
algorithms were also detected during the bibliometric analysis illustrated in Figure 3 (red
cluster). Despite being a parametric estimator, LR was the most widely used algorithm
because it is simple to implement [61] across various statistical platforms ranging from
Microsoft Excel to R statistics. Since LR is a parametric statistic, it requires the data to
suit specific assumptions such as normality that are often a challenge to attain. In this
regard, there is a need for more efforts in assessing the utility of robust machine learning
algorithms such as stochastic gradient boosting, random forest, and the ANN in mapping
water quality based on drone remotely sensed data (Figure 10).
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Figure 9. Spectral resolutions of drone sensors illustrated in Table 1.

Figure 10. Algorithms used to detect and map water quality and quantity using drone remotely
sensed data.
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4. Discussion
4.1. Evolution of Drone Technology Applications in Remote Sensing Water Quality and Quantity

Results in this study showed that the application of drones dates back to the late
1940s. Initially, drones were developed on the offensive as cheap and less risky military
airborne fighting machines. With modernisation and the ease of prohibitive regulations,
drones became a significant source of spatial data. Specifically, between 2012 and 2014, the
United States of America eased the regulations that restricted UAVs for other purposes.
Subsequently, the entire global village began to venture into utilising drones in earth
observation. It was also observed that studies on the utility of UAVs in mapping and
monitoring water quality and quantity are significantly increasing (Figure 4b) [16]. This
could be explained by the advancement in drone and sensor technologies as well as the
easing of restrictive regulations associated with drone technologies.

Meanwhile, results showed that more efforts from the community of practice were
widely exerted towards mapping water quality in relation to water quantity. Specifically,
only fourteen studies assessed the level of water, whereas thirty-seven studies assessed water
quality parameters based on drone remotely sensed data [44,47–49,62–72]. A few examples
of studies that mapped water levels included Ridolfi and Manciola [63] who used a method
that was based on the Ground Control Points (GCPs) to detect water levels, where water level
values were measured using drone-derived data. Meanwhile, Adongo et al. [64] assessed the
utility of undertaking bathymetric surveys combined with geographic information systems
(GIS) functionalities in remotely determining the reservoir volume of nine irrigation dams
in three northern regions of Ghana. On the other hand, the majority of water quality-related
studies that were conducted based on drone remotely sensed data, principally mapped and
monitored the chlorophyll content [30,32,33,37,38] and turbidity in lakes, ponds and dams
(Figure 5b) [34–36]. This trend was also revealed through the bibliometric analysis illustrated
in Figure 3. Other water quality parameters that were of interest include the chemical
oxygen demand (COD) [26,35,73], Secchi disk depth (ZSD) [26,34,74], total nitrogen [35],
total phosphorous [35,73], conductivity [24–26,73], water quality index [73], pH [27,75], total
suspended solids (TSS) [28,29,76], dissolved Oxygen (DO) [75,77], and turbidity [35,48], in
order of importance illustrated by their frequency in the literature.

4.2. Challenges in the Application of Drone Technologies with Special Reference to the Global South

The major challenge associated with many regions is the statutory regulations that gov-
ern the operation of UAVs [77–79]. In many countries, there are still stringent restrictions
regarding where and how UAVs are supposed to be operated [16]. In some countries of the
global south, the take-off mass, the maximum altitude of flight, and the operational areas of
drones tend to be regulated [16]. For instance, the South African Civil Aviation Authority
(SACAA) stipulates that remotely piloted aircraft or toy aircraft should not be operated at
50 m or closer to any person or group of persons. It states that remotely piloted aircraft or
toy aircraft must not be operated at an altitude higher than 45.72 m (150 ft) from the ground
unless approved by the Director of Civil Aviation of the SACAA. Remotely piloted aircraft
or toy aircraft weighing more than 7 kg should be operated only if approved by the SACAA
(http://www.caa.co.za/pages/rpas/remotely%20piloted%20aircraft%20systems.aspx, ac-
cessed on 19 July 2021). The size of the UAV which is often associated with its batteries,
engine efficiency, load, and type of UAV (fixed-wing or multi-rotor) tends to determine the
length of time it can spend on a single flight plan and the size of the area it can cover [46,79].
In this regard, the regulation on the mass of UAV at taking off tends to indirectly restrict the
areal extent that can be covered as well as the size of the camera to be mounted for research
purposes, amongst other uses [16,68]. Specifically, due to the weight restrictions, many of
the sensor types that are frequently used tend to be lightweight, small-size, and general
consumer grades with limited spectral resolutions [15]. Moreover, SACAA states that
Remotely Piloted Aircraft Systems (RPAs) shall not be operated beyond the visual-line-of-
sight (BVLOS). Insufficient flight autonomy to cover large areas [50] limits the areal extent
that can be covered by drones to a farm or field scale. Meanwhile, a supporting regulation

http://www.caa.co.za/pages/rpas/remotely%20piloted%20aircraft%20systems.aspx
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and operationalisation of BVLOS drone technology applications will facilitate coverage of
greater areas on a single mission. Covering a greater area on a single mission improves the
cost-effectiveness in the acquisition of VHR imagery. This will increase the prospects of
drone applications in covering large dams and lakes in mapping and monitoring water
quality and quantity. Further advancements and improvements towards the automation
of drone operations will sanction routine monitoring and mapping applications. This
study shows that single and three-band cameras are the most widely used sensors in
characterising water quality parameters (Table 1 and Figure 6).

The SACAA stipulates a need for a pilot license to operate UAVs for commercial pur-
poses in South Africa. However, the Eighth Amendment of the Civil Aviation Regulations,
2011, which came into operation on 1 July 2015, contains Part 101 on Remotely Piloted
Aircraft Systems, states that

“2.3 . . . the SACAA acknowledges that many entrepreneurs interested in obtaining a
Remotely Piloted Aircraft Systems Operator Certificate (ROC) to provide aerial services,
for example, real estate photography, academia etc. are not aviation professionals. As
such, they have limited aviation backgrounds, and a lack knowledge about existing flight
and airspace regulations. To protect the safety of the public and for these individuals
to become viable UAS operators, they need to be aware of the requirements and the
process. UAS operators, in turn, must be informed on the current regulations, policies
and procedures to develop safe business practices in a similar fashion to professional

“manned” aviation companies” (source: http://www.caa.co.za/RPAS%20AICs/AIC%20
007-2015.pdf , accessed on 19 July 2021).

Meanwhile, the process of acquiring a licence costs about USD1500–2000. On the other
hand, the prices of drone platforms and cameras remain high and beyond the reach of many
researchers. Drone platforms with the capability of mounting various cameras generally
vary between USD1000 and 10,000, inclusive of the sensor; hence, they are not accessible for
research purposes in most Southern African countries. Only the affordable small platforms
restricted in terms of sensors type (spectral and spatial resolution), flight height, and
flight time are easily accessible and widely used for recreational purposes. This current
review highlights the current state of affairs (opportunities and challenges) associated with
research using cutting-edge drone technologies, especially to some of the countries in the
global south. Although highlighting limitations such as the lack of funding, laboratories,
and human capacity, this study sought to expose the plausible opportunities associated
with these technologies. In this regard, this work will invoke ways in which researchers
in countries of the global south can be aware of the prospects of UAV technologies and
seek collaborations with countries of the global north. For instance, UNICEF, Virginia
Polytechnic Institute, and State University, commonly known as Virginia Tech, joined the
Government of Malawi in establishing The African Drone and Data Academy (ADDA)
(https://www.unicef.org/malawi/african-drone-and-data-academy-malawi, accessed
on 19 July 2021). The ADDA aimed to be a centre of excellence for dually equipping
young people in Malawi and the African region with necessary 21st-century skills, while
strengthening the drone ecosystem for a more effective humanitarian and development
response in Southern Africa.

Mapping water volume using drone remotely sensed data is also one of the major
challenges in the global south and across all continents. In mapping such complex channel
bathymetric characteristics, there is a need for robust sensor systems that could penetrate
water in detecting the water body’s volume. Active sensors could be suitable for this
procedure in conjunction with robust machine learning algorithms.

4.3. Research Gaps and Opportunities

The following gaps were identified from the results of this study in the context of
irrigation water quantity and quality monitoring based on drone remotely sensed data:

• There are a limited number of studies that have sought to evaluate the utility of drone
remotely sensed data in the global south;

http://www.caa.co.za/RPAS%20AICs/AIC%20007-2015.pdf
http://www.caa.co.za/RPAS%20AICs/AIC%20007-2015.pdf
https://www.unicef.org/malawi/african-drone-and-data-academy-malawi
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• The assessment of water quality using multispectral and hyperspectral drone sensors
has not attracted much attention from the research community;

• There are very few studies that have assessed the utility of robust nonparametric
machine learning algorithms for water;

• Few studies have sought to evaluate and exploit the possible synergies between drone
and satellite bone datasets, especially since the launch of Sentinel 2 MSI, which is
freely available;

• Limited research attention has been given towards mapping water quality and quan-
tity in open water reservoirs supplying smallholder farms;

• Furthermore, as noted in the literature (Lally et al., 2019; Koparan et al., 2018a), there
is still a gap in the real-time use of drone-mounted monitoring probes in testing and
monitoring water quality parameters.

4.4. Way Forward: Closing the Gaps in the Utilisation of Drone Technology in Mapping Water
Quality and Quantity

Research efforts need to be promoted to evaluate UAVs’ utility in monitoring irriga-
tion water quality and quantity, especially in the global south’s smallholder farms that are
susceptible to climate variability shocks and unpredictable rains. As the fourth industrial
revolution is progressing, UAVs are emerging as an innovative source of near-real-time
spatial data for mapping and monitoring surface water resources to improve the agricul-
tural sector productivity. Drone data have high prospects of providing well-calibrated,
time-efficient, and spatially explicit data models on water quantity and quality. In this
regard, the application of multispectral sensors in characterising surface water levels and
water quality needs to be conducted if a sustainable utilisation of water resources and water
security is to be achieved in the light of the rapidly growing population and its associated
water demands. Since the current focus in the agricultural sector is towards reducing the
amount of irrigation water while increasing agricultural productivity, timely and accurate
fine spatial resolution data derived using drones such as the DJI series in concert with mul-
tispectral sensors such as the Mica sense and hyperspectral sensors such as the Headwall
Nano-Hyperspec could be useful in detecting and mapping the spatio–temporal variability
of available irrigation water quality and volume at field levels. Field-level near real-time
fine resolution, spatially explicit information on water quality, and quantity models are
useful in informing smallholder farmers in the field and policymakers away from the fields
about water leakages occurring at the grassroots level. Near-real-time fine resolution and
information on water quality and quantity will help farmers plan their irrigation sched-
ules, resulting in limited water leakages and losses while improving productivity. This is
very critical in reducing further strains on the already stressed-out water resources. This
evidence-based, timely information on the available water resources is critical for farmers
to suit their irrigation water management strategies based on in-field spatial variability
and seasonal changes in water quantity and quality. Subsequently, formulating robust and
effective local-to-regional frameworks and policies to facilitate sustainable utilisation and
water management are more likely to be achieved.

5. Conclusions

The objective of this study was to conduct a systematic review, assess progress, oppor-
tunities, and challenges for using drone-derived remotely sensed data to map and model
water quality and quantity. The utility of UAVs globally in mapping and monitoring the
amount of surface water and its quality at a farm scale is still in its infancy. This is partly
due to high costs, a lack of personnel with the requisite skills, and the stringent regulations
of securing and operating drones. Nevertheless, drones are cutting-edge technology with
high prospects of providing spatially explicit, timely, robust, and reliable surface water
resources accounting. There is a need to swiftly embrace this technology to minimize water
leakages for improving on-farm irrigation strategies, and draw local, regional, and national
strategies and policies focusing on the sustainable utilisation of water to reduce the strain
on the already stressed water resources. There is room for research on a wide range of
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aspects on the quality and quantity of irrigation water in situ, which require research efforts
and integration with other upcoming innovative technologies such as artificial intelligence
and deep learning computer advances.
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