
drones

Article

Revealing Archaeological Sites under Mediterranean Forest
Canopy Using LiDAR: El Viandar Castle (husum) in El Hoyo
(Belmez-Córdoba, Spain)

Antonio Monterroso-Checa * , Juan Carlos Moreno-Escribano , Massimo Gasparini ,
José Alejandro Conejo-Moreno and José Luis Domínguez-Jiménez

����������
�������

Citation: Monterroso-Checa, A.;

Moreno-Escribano, J.C.; Gasparini,

M.; Conejo-Moreno, J.A.;

Domínguez-Jiménez, J.L. Revealing

Archaeological Sites under

Mediterranean Forest Canopy Using

LiDAR: El Viandar Castle (husum) in

El Hoyo (Belmez-Córdoba, Spain).

Drones 2021, 5, 72. https://doi.org/

10.3390/drones5030072

Academic Editors: Pablo

Rodríguez-Gonzálvez, Fulvio

Rinaudo and Diego

González-Aguilera

Received: 15 July 2021

Accepted: 31 July 2021

Published: 3 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Patricia Unit for R&D in Cultural Heritage (HUM 882 Research Group), Universidad de Córdoba,
Campus de Rabanales, N-IVa, Km. 396, Edificio C1, 14014 Córdoba, Spain; aa2moesj@uco.es (J.C.M.-E.);
aa2gagam@uco.es (M.G.); alejandroconejomo@gmail.com (J.A.C.-M.); joseluisdj@uco.es (J.L.D.-J.)
* Correspondence: amonterroso@uco.es

Abstract: Light detection and Ranging (LiDAR) technology is a valuable tool for archaeological
prospection in areas covered by dense vegetation. Its capacity to penetrate dense forest environments
enables it to detect archaeological remains scattered over orographically complex areas. LiDAR-
derived digital terrain models (DTMs) have made an exceptional contribution towards identifying
topographic landscapes of archaeological interest. In this study, we focus on an area of intense
historic settlement from the Chalcolithic to the Middle Ages, which today is completely covered by
Mediterranean forest. Due to the dense canopy, and the fact that it is a protected area on private land,
it has never been analyzed. To reveal the settlement, we primarily used a series of LiDAR mapping
surveys to gather data and analyzed other open access remote sensing resources from the National
Geographic Institute of Spain (IGN). The IGN LiDAR data proved to be of particular interest. These
resources enabled us to detect an ancient fortress (El Viandar Castle) and its surrounding settlement.
LiDAR, in conjunction with other products, was fundamental in identifying the site. Equally, the
mapping surveys enabled us to analyze the limits and scope of the IGN airborne LiDAR and other
free access remote sensing products. Our background in this research demonstrates that low-cost
products applied to LiDAR research in archaeology have major limitations when it is necessary to
have a high level of spatial resolution in order to define the layout and the main components of an
archaeological site.

Keywords: heritage; archaeology; remote sensing; LiDAR; landscape

1. Introduction
1.1. El Viandar Castle

The Andalusian fortification (husum) of El Viandar is located in the village of El Hoyo
(in the district of Belmez, Córdoba, Spain) (Figure 1a,b). It is one of a group of fortified
settlements (hisn) built on high ground distributed throughout the main geographical land-
marks of the Guadiato Valley in Córdoba, Spain. These fortified settlements were designed
to control and protect the surrounding territory, forming a network of fortifications that
safeguarded the transport and communication links from Córdoba and the Guadalquivir
Valley all the way to the Guadiana Valley separating Spain from Portugal.

Moreover, El Viandar Castle is located close to a natural mountain pass that leads to
the heart of the Sierra de los Santos, the Sierra Norte area of Seville in the southwest, and
Córdoba in the southeast. It controlled the transport and communication links to one of
the richest areas of metalliferous deposits in Sierra Morena. It also defended and regulated
the use of the area’s abundant natural resources such as forestry and hunting, among other
coveted assets [1–3].

Drones 2021, 5, 72. https://doi.org/10.3390/drones5030072 https://www.mdpi.com/journal/drones

https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-3039-7745
https://orcid.org/0000-0002-8529-8971
https://orcid.org/0000-0001-6550-0514
https://doi.org/10.3390/drones5030072
https://doi.org/10.3390/drones5030072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/drones5030072
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones5030072?type=check_update&version=1


Drones 2021, 5, 72 2 of 17

Drones 2021, 5, x FOR PEER REVIEW 2 of 18 
 

 

the use of the area’s abundant natural resources such as forestry and hunting, among 
other coveted assets [1–3]. 

 
(a) 

 
(b) 

Figure 1. (a) Location of El Viandar Castle (husum) during the Al-Andalus medieval period in Spain © PNOA-Actual CC-
BY 4-0 scne.es. (b) Location of El Viandar Castle (husum). Sierra de los Santos is part of the Sierra Morena mountain range. 
© PNOA-Actual CC-BY 4-0 scne.es. 

Figure 1. (a) Location of El Viandar Castle (husum) during the Al-Andalus medieval period in Spain
© PNOA-Actual CC-BY 4-0 scne.es. (b) Location of El Viandar Castle (husum). Sierra de los Santos is
part of the Sierra Morena mountain range. © PNOA-Actual CC-BY 4-0 scne.es.

The geographic coordinates of El Viandar Castle are 38◦15′7.24′ ′ N–5◦17′29.08′ ′ W, in
the central zone of the foothills of the Sierra de los Santos on a hill called Alto del Castillo at
an altitude of 774 m. Although not the most pronounced elevation in the mountain range,
higher peaks include Cerro Maleto and Cerro de la Atalaya, Alto del Castillo presents the
most favorable characteristics for both the settlement and the castle. The location is also
ideal for controlling one of the most important historic ford crossings on the Guadiato
River, and connecting with other nearby hisn, such as Cerro de los Osos (Fuente Obejuna),
Tolote (Los Blázquez), and Zuheros in Sierra Palacios (Belmez) (Figure 2a–c).
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Figure 2. (a) El Viandar Castle (husum) and other medieval Islamic castles (hisn) in the Guadiato Valley © PNOA-Actual 
CC-BY 4-0 scne.es. (b) El Viandar Castle (husum) and surrounding villages. © PNOA-Actual CC-BY 4-0 scne.es. (c) Loca-
tion of El Viandar Castle (husum) under Mediterranean forest canopy. © PNOA-Actual CC-BY 4-0 scne.es. 
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great potential in the field of archaeology [7] (p. 1). The use of LiDAR is becoming increas-
ingly more frequent in archaeological research, with technical advances in the field [8–12]. 
This non-invasive method facilitates archaeological surveys of sites that would not have 
been possible by means of a geophysical survey or aerial photography [13] (p. 27). As an 
example, it is worth mentioning the LiDAR mapping of one of the world’s most spectac-
ular landmarks, Angkor Wat (Cambodia), that revealed the existence of roads, walls, and 
canals, giving rise to the analysis of an entire urban network [14] (p. 12,595–12,596) [15] 
(p. 22, 34) and serving as a basis for the approach of future research [16]. Similar surveys 
have been performed in Central and South America, as in the case of Kuelap (Perú), where 
a multifunctional complex was discovered next to a fortress [17,18] (p. 12). Moreover, the 
use of LiDAR in Mayan areas facilitated the analysis of the relationship between environ-
mental, cultural, and archaeological variables, which enabled researchers to deduce fac-
tors such as population density [19] (p. 17). 

There is currently a multitude of research being performed in Europe that uses Li-
DAR. For example, in Norway, LiDAR has been implemented (in some cases even work-
ing with the use of semi-automatic detection techniques, thanks to the use of CultSearcher 
software) in arctic and subarctic areas with excellent results; a total of 1186 pieces of ar-
chaeological evidence has been discovered so far [20] (p. 17). In the Istrian Peninsula, both 

Figure 2. (a) El Viandar Castle (husum) and other medieval Islamic castles (hisn) in the Guadiato Valley © PNOA-Actual
CC-BY 4-0 scne.es. (b) El Viandar Castle (husum) and surrounding villages. © PNOA-Actual CC-BY 4-0 scne.es. (c) Location
of El Viandar Castle (husum) under Mediterranean forest canopy. © PNOA-Actual CC-BY 4-0 scne.es.

More precisely, El Viandar Castle sits on the plateau, the highest part of the hill, taking
advantage of the rocky outcrops that populate the surrounding hills. The jagged rocks
were used as construction material and foundations for buildings. The remains of many of
those buildings can still be seen at the site today. In general, the stones are expertly cut,
and the masonry well-executed, apparently without using mortar.

The fortress has been dated to the Caliphate of Córdoba period (eighth to ninth century)
due to the skill and symmetry of the construction technique [4]. The material remains on the
surface show signs that construction might have continued until the fourteenth century.

Although the name and location of El Viandar husum is well-known, from both
archaeological remains and literary sources [5,6], a dense Mediterranean forest now hides
almost the entire site from view. The fortress itself, as mentioned above, can still be
analyzed as it is somewhat more devoid of vegetation. However, the settlement that was
located around the castle is completely hidden by impenetrable Mediterranean forest.

El Viandar is one of the many settlements of its kind in the historic area of northern
Córdoba that has never been analyzed. The thick Mediterranean forest impedes geophysical
surveys and extensive archaeological excavations. Moreover, the site is on private land
dedicated to grazing and hunting, which also hinders traditional archaeological activity.

To resolve these issues and ultimately reveal the complete remains of the fortress and
settlement, we designed archaeological mapping surveys using LiDAR remote sensing
technology. Using LiDAR in mountain environments that conceal archaeological remains
has recently achieved considerable success in scientific circles in the field of archaeology.
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The combination of the LiDAR survey with other types of data sources, such as cartographic
and toponymic studies, has proved to be fundamental in locating completely obscured
archaeological sites.

In this study, we first combined the aforementioned data to determine the location
and hypothetical organization of the fortified hilltop site. We then performed the LiDAR
mapping surveys, and lastly, we analyzed the photogrammetric, cartographic, and LiDAR
documentation held at the IGN of Spain. Naturally, we were particularly interested in the
first complete LiDAR mapping survey of Spain, whose results we analyzed and compared
to those of our own survey.

This enabled us to pinpoint the exact location of the El Viandar husum. Second, the
mapping surveys made it possible to recover almost the entire dimension of the site as well
as its internal organization. This provided us with excellent data with which to plan future
archaeological excavations that will enable us to discover the site’s specific chronological
and cultural sequence.

1.2. LiDAR, a Tool Tailored to the Inaccessibility of the Terrain

As a development of Geographic Information Technologies (GIT), LiDAR has shown
great potential in the field of archaeology [7] (p. 1). The use of LiDAR is becoming
increasingly more frequent in archaeological research, with technical advances in the
field [8–12]. This non-invasive method facilitates archaeological surveys of sites that would
not have been possible by means of a geophysical survey or aerial photography [13] (p. 27).
As an example, it is worth mentioning the LiDAR mapping of one of the world’s most
spectacular landmarks, Angkor Wat (Cambodia), that revealed the existence of roads, walls,
and canals, giving rise to the analysis of an entire urban network [14] (pp. 12595–12596) [15]
(pp. 22, 34) and serving as a basis for the approach of future research [16]. Similar surveys
have been performed in Central and South America, as in the case of Kuelap (Perú), where a
multifunctional complex was discovered next to a fortress [17,18] (p. 12). Moreover, the use
of LiDAR in Mayan areas facilitated the analysis of the relationship between environmental,
cultural, and archaeological variables, which enabled researchers to deduce factors such as
population density [19] (p. 17).

There is currently a multitude of research being performed in Europe that uses LiDAR.
For example, in Norway, LiDAR has been implemented (in some cases even working with
the use of semi-automatic detection techniques, thanks to the use of CultSearcher software)
in arctic and subarctic areas with excellent results; a total of 1186 pieces of archaeological
evidence has been discovered so far [20] (p. 17). In the Istrian Peninsula, both in Croatia and
Slovenia, hillforts dating from the Bronze and Iron Ages have been found [21] (p. 6) [22]
(pp. 4–12). Other examples are the LiDAR surveys performed in France in the Forest of
Tronçais and the Garonne Valley. In the former, by using this technology, the difficulties
posed by the forest canopy were overcome, leading to the discovery and verification of
a large amount of archaeological evidence, from a Gallo–Roman settlement to roads and
quarry faces, which has rewritten the area’s history [23] (pp. 14, 19). A similar study was
performed in Garonne, but with a major difference: instead of using a more expensive mode
of transport, LiDAR was carried by a drone, which increases its economic accessibility. In
the Forest of Agre, Gallo–Roman structures, a potential fortified medieval enclosure, and a
medieval church were found [24] (pp. 3–14). In Colophon, Anatolia (modern-day Turkey),
LiDAR was used to locate and map the wooded hills around the town, providing rich and
detailed data of the terrain [25] (pp. 316, 331). In Great Britain, LiDAR was used to support
the study of an area in Nottinghamshire occupied during the Upper Paleolithic [26]. And
lastly, it was used in Italy to identify micro-topologies relating to the urban fabric of a
medieval settlement in Monte Serico and to study the Forest of Incoronata (Apulia) [27],
the medieval fortified area of Torre di Cisterna (Melfi) [28], and the fortified settlements of
Montagna di Gildone (Molise) [29] (pp. 1–9).

In the case of Spain, the impact of LiDAR is linked to the open transfer of data
from IGN in 2015, which has published approximately 59 studies using LiDAR data from
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2011 to the present day. The research performed in the northwestern area of the Iberian
Peninsula, focusing on the study of megaliths and Roman structures, constitutes one of
the most important archives to date due to the volume of data gathered [30]. In Andalusia,
several studies have been performed, such as the discovery of the Roman amphitheater
of Torreparedones [31], the Roman Corduba to Emerita Road passing through Puente
Nuevo [32], the geomorphological analysis of Córdoba capital city [33], and the topographic
investigation to eliminate Sancti Petri, in Cádiz, as a Temple of Melqart [34].

2. Materials and Methods
2.1. Data and Software

To achieve the objective of this study, we generated two datasets from different surveys.
On the one hand, we used data from the National Aerial Orthophotography Project-LiDAR
(PNOA-LiDAR) held at the IGN, and on the other, we used our own data acquired and
generated by an unmanned aerial vehicle (UAV) with a built-in LiDAR sensor.

The PNOA-LiDAR dataset is freely available and can be obtained from the IGN
download service.

The geographic products acquired from IGN sources include:

• LiDAR first complete mapping of Spain (2008–2015);

◦ LAS point cloud;
◦ Density 0.5 points/m2;
◦ RMSE H 0.40: m; Planimetric accuracy: 0.30 m;
◦ Perpendicular field of vision (FoV): 50◦;
◦ Frequency 45 kHz; Maximum range 3000 m;

For our survey, the instrumentation for the UAV dataset is as follows:

• VANT DJI Matrice 600 Pro;
• Velodyne VLP-16/32 Lidar sensor and an Applanix AP-15 GNSS/INS system;
• Sony A6000 camera to capture RGB data;

The characteristics of the UAV dataset are:

• LAS point cloud;
• Density 50 points/m2;
• Perpendicular field of vision (FoV): 50◦;
• Flight altitude: 80 m;

Data management was performed using QGIS software together with the LAStools
point cloud management library. All analysis and auxiliary operations were performed
using QGIS. The initial data and the derived geographic products were organized and
visualized by means of a Geographic Information System (GIS) mapping system managed
using QGIS.

The datasets and derived geographic data are georeferenced in the ETRS89 projected
coordinate system in UTM zone 30. Orthometric height was used to measure altitude.

2.2. Methodology

The remote sensing analysis consisted of visualizing geographic features that may
present anomalies formed by the micro-topographic characteristics of terrain that present
unnatural geometric forms. Fundamentally, such anomalies are changes in slopes that are
evidence of human intervention in the landscape. The geometry of the anomalies detected
is regular and primarily consists of circumferential arcs, right angles, and circular, elliptical,
and rectangular polygons. To highlight the micro-topology of the terrain, we used slope
maps and shadow mapping, which enhance archaeological remote sensing.

The study is based on the data from two LAS point clouds used to generate DTMs
using LiDAR ground returns from open ground, classified within the “Class 2” category
according to the codes defined by the American Society for Photogrammetry and Remote
Sensing (ASPRS) for LAS data [35]. All the geographic data used for the remote sensing
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analysis comprised products derived from these input data, with the exception of auxiliary
geographic data from the IGN, such as orthophotographs and vector mapping. The input
data were converted into DTMs in raster format to enhance visualization.

The geographic data produced consisted of slope maps and three shadow maps
(Figures 3 and 4) for each dataset. The shadow maps were produced with identical
parameters, the purpose being to try to be objective as possible to ensure both datasets
had the same visualization characteristics, thus leaving no room for subjectivity in the
observation of the remote sensing data. The following parameters were chosen: vertical
exaggeration factor Z of 4; solar azimuth angle of 320◦; solar tilt angle of 80◦ (Figure 3a,b),
45◦ (Figure 3c,d), and 20◦ (Figure 3e,f), different solar tilt angles for each shadow map.
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A GIS was created using the geographic data to analyze the remote sensing mapping
(Figure 5a,b). Several remote sensing technicians have visualized the GIS created in search
of human geographic anomalies. Having several opinions mitigates human subjectivity
and eliminates those anomalies not unanimously accepted.
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In addition to the data produced, we also included the most recent orthophotographs
and any other data that might help to corroborate the anomalies detected. As a result, the
analysis contained abundant data, which facilitated an enhanced perception of the study
area (Figure 6).
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3. Results

Figure 6 shows the study area as a large mountainous region covered by Mediter-
ranean forest vegetation. The only human activity observed in the orthophotography are
crops and olive groves, with their respective boundaries in the south and west of the image.
The absence of large-scale constructions indicates that the anomalies detected do not belong
to contemporary constructions and could be archeological remains, which was verified by
an inspection of the site.

The different anomalies detected were divided into obvious anomalies that belonged
to structures that comprise El Viandar Castle (Figures 7 and 8) and anomalies that were
more difficult to interpret that might belong to the settlement or village that was located
around the castle.

The human factor in remote sensing analysis has a huge impact, given that the individ-
ualization of anomalies depends on the researcher’s ability to recognize and interpret data.
To mitigate the human factor and be as objective as possible, we focused most of the study
on the dataset of anomalies of the castle ruins, which enabled us to design protocolized
and secure analysis parameters. The second set of anomalies, relating to the settlement
around the castle, presented sufficiently clear evidence to warrant a future archeological
survey using geophysical methods for a more precise definition.

Analysis of the first anomaly dataset (Figure 8) provided us with very significant
archaeological data. On a smaller scale, details were observed in the UAV dataset that was
not visible in the PNOA-LiDAR dataset. The most characteristic feature is the entrance to
the walled enclosure of the castle (Figure 8, in red) to the southeast of the building. Outside
the castle, the road ends in a 27 × 26 m plain that might belong to a room attached to the
castle (Figure 8, in magenta). This anomaly is visible in the slope map (Figure 9).
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In both datasets, the walled enclosure seen surrounding other structures in its interior
was detected. The common structures detected are the keep (Figure 6, in green) and an
anomaly extending from north to south (Figure 6, in teal). In the UAV data, two circular
towers of approximately 8 m each were also detected (Figure 8, in orange).

The second dataset of anomalies (Figure 5; in yellow) are more complicated to iden-
tify. Some present a geometry that is not especially well defined by the micro-topology
(Figure 10b). Others present a clearly defined geometry and a spatial distribution close
to the castle (Figure 11b). Finally, there are also anomalies that evidence some kind of
structure relating to the settlement around the castle (Figure 12b). A formal approach using
other methodologies and techniques is needed to gather additional archaeological data to
better define the archaeological anomalies detected.
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Figure 10. Detail of the shadow map showing the quadrangular anomaly at a distance of ap-
proximately 60 m from the castle wall. These anomalies are imperceptible in (a) and correctly
visible in (b) (red arrows) ((a) Processed form Pnoa-Lidar Acquisitions ©LiDAR-PNOA 2017 CC-BY
4.0scne.es/(b) Processed from Uco-Feder 2018 1265775-F Research project acquisitions © UCO-FEDER
2018 1265775-F).
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Figure 11. Detail of the shadow map showing the rectangular anomaly attached to the castle walls.
These anomalies are imperceptible in (a) and correctly visible in (b) (red arrows) ((a) Processed form
Pnoa-Lidar Acquisitions ©LiDAR-PNOA 2017 CC-BY 4.0scne.es/(b) Processed from Uco-Feder 2018
1265775-F Research project acquisitions © UCO-FEDER 2018 1265775-F).
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Figure 12. Detail of the shadow map showing a series of anomalies at a distance of approximately
250 m from the castle walls. These anomalies are imperceptible in (a) and correctly visible in (b)
(red arrows) ((a) Processed form Pnoa-Lidar Acquisitions ©LiDAR-PNOA 2017 CC-BY 4.0scne.es/
(b) Processed from Uco-Feder 2018 1265775-F Research project acquisitions © UCO-FEDER 2018
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In Figures 10–12, it can be observed that the anomalies detected in the UAV dataset
have greater definition with respect to the PNOA-LiDAR data (Figure 12b). The importance
of using UAV-LiDAR to deepen the analysis of this type of anomaly cannot be stressed
enough. The anomalies might belong to residential areas given that they were relatively
easy to locate. However, other techniques might be able to enhance their definition.

4. Discussion

Low-cost products applied to LiDAR research in archaeology have major limitations
when it is necessary to have a high level of spatial resolution in order to define the layout
and the main components of an archaeological site. Public and free access products, as
is the case of IGN products, have helped to discover and preserve a huge number of
unrevealed archaeological sites. Without these acquisitions and data processing, we would
not have been able to carry out socialization heritage activities, researches, or excavations.
However, in the case of LiDAR, as we tried to demonstrate here, it is necessary to develop
an acquisition that rise up 50 p.m2 to define an archaeological site with accuracy. The
0.5 p.m2 of the IGN-PNOA acquisitions serve to discover or situate an archaeological
site; but it is very difficult to know the full organization of a site with the low spatial
resolutions of the Pnoa products. Low-cost applications have then their limitations. Only
funded research projects, or research teams owning a LidAR sensor, can achieve this level
of research.

Logically, LiDAR data with a higher density per m2 provides more detailed informa-
tion [36]. In the case of Spain, IGN data provide excellent archaeological information via
an approach that has shown to be very successful in recent years [31,32]. Internationally,
the potential of LiDAR technology as a useful tool in archaeological prospection has also
been highlighted [37]. In this study, on the whole, the surveys performed using LiDAR
tend to have a similar point density to the PNOA-LiDAR data (0.5 p/m2).

As regards El Viandar Castle, PNOA-LiDAR data helped to determine its exact lo-
cation, main structures, dimensions, areas, and three-dimensional coordinates (X,Y,H).
However, the data were not able to provide clear information about the structural defini-
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tion and, in particular, about the exact location and organization of the settlement around
the castle.

The fundamental conclusion of this study is evident: open-access products only
facilitate the first stage of archaeological prospection, which consists of detecting and
discovering new archaeological sites. Given the low spatial resolution such products
provide, this study shows that a second stage using LiDAR mapping surveys is needed
to determine the structure of sites with greater precision, which we achieved using the
LiDAR surveys we performed.

Identifying structures using LiDAR enabled us to distinguish the archaeological
structure of the castle in situ and ensure that the anomalies we analyzed were indeed
archaeological remains (Figure 13a,b). In fact, once the anomalies were confirmed, we
performed a cursory reconnaissance of the hilltop where the castle is located. We were able
to identify and verify exactly what type of structures we were dealing with. This provided
us with a more solid guarantee that our interpretation of the anomalies was correct. The
most important aspect is that we were able to confirm which structures are visible and
which are still buried, having traced them through the DTMs derived from the LiDAR
mapping surveys.
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However, our knowledge of the site’s entire geography is still incomplete. There
are parts of the castle and settlement that LiDAR, due to its very nature, has not been
able to reveal. Therefore, a third stage in the analysis focusing on a geophysical survey
would still be required at a later stage. LiDAR cannot detect structures that are buried
underground and do not present micro-topological elements; such features can only be
detected by geophysical surveys. Notwithstanding, it is important to note that LiDAR
can provide us with a very good idea of location and dimensions for future geophysical
surveys: something that was not possible before the introduction of LiDAR. The working
basis provided by this combined and predictive methodology is undoubtedly one of the
most important methodological conclusions from our surveys.

The last stage in this protocol of actions would obviously be the archaeological exca-
vation itself. The analysis of El Viandar Castle using LiDAR enabled us to identify areas of
special interest that warrant an archaeological excavation that could confirm chronological
and cultural questions. LiDAR enables archaeologists to pinpoint with precision exactly
where to dig.

In this case study, the high-density dataset acquired from PNOA-LiDAR provided
a large amount of geospatial data. This, together with our own surveys, enabled us to
obtain a more detailed geometry of the topographic surface of El Viandar Castle and its
surroundings by providing small-scale data of structures belonging to the castle. This
additional data will undoubtedly help in the decision-making and planning of future
interventions at the site.
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