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Abstract: Small unmanned aircraft systems (sUASs) have emerged as promising platforms for the 

purpose of crash scene reconstruction through structure-from-motion (SfM) photogrammetry. 

However, auto crashes tend to occur under adverse weather conditions that usually pose increased 

risks of sUAS operation in the sky. Wind is a typical environmental factor that can cause adverse 

weather, and sUAS responses to various wind conditions have been understudied in the past. To 

bridge this gap, commercial and open source sUAS flight simulation software is employed in this 

study to analyze the impacts of wind speed, direction, and turbulence on the ability of sUAS to track 

the pre-planned path and endurance of the flight mission. This simulation uses typical flight capa-

bilities of quadcopter sUAS platforms that have been increasingly used for traffic incident manage-

ment. Incremental increases in wind speed, direction, and turbulence are conducted. Average 3D 

error, standard deviation, battery use, and flight time are used as statistical metrics to characterize 

the wind impacts on flight stability and endurance. Both statistical and visual analytics are per-

formed. Simulation results suggest operating the simulated quadcopter type when wind speed is 

less than 11 m/s under light to moderate turbulence levels for optimal flight performance in crash 

scene reconstruction missions, measured in terms of positional accuracy, required flight time, and 

battery use. Major lessons learned for real-world quadcopter sUAS flight design in windy condi-

tions for crash scene mapping are also documented. 

Keywords: small unmanned aircraft systems; photogrammetry; structure-from-motion;  

wind impact; turbulence; crash scene reconstruction; traffic incident management 

 

1. Introduction 

A motor vehicle crash can cause considerable economic loss, serious bodily injuries 

and loss of human life. Crash scene investigation and reconstruction are considered cru-

cial being part of the major concerns in traffic incident management (TIM) [1]. Traditional 

coordinate and triangulation methods have long been adopted by investigators at a crash 

scene. They use mechanical measurement tools such as tape measures and roller wheels 

to acquire baseline measurements and delineate crash scene diagrams [2]. While relatively 

low cost, these methods have limited efficiency to document measurements and pose 

safety risks to investigators due to possible exposure to traffic. In order to automate accu-

rate documentation of distance and angle measurements, total stations have started to 

play a key role at crash scenes since the early 1990s [3]. The ability to collect digital data 

off the roadway eases investigators’ exposure risk to traffic and reduces entire surveying 

time. Close-range photogrammetry, which emerged around the same time in accident in-

vestigation, is able to recover accurate two-dimensional (2D) and three-dimensional (3D) 
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measurements and diagrams by taking overlapping photographs from different view-

points around crash scenes [4]. Over the past two decades, the potential of terrestrial laser 

scanning (TLS) has been validated in various crash scene scenarios [5–7]. Enormous scene 

details can be scanned and captured in a relatively short period of time. However, the 

costs of TLS equipment are usually high, and multiple scan locations may be needed to 

minimize scan occlusions in scenes where terrain and crash are complex. 

With rapid advances in microelectronics, radio communication, miniaturized imag-

ing lenses and positioning modules, small unmanned aircraft systems (sUASs) have pio-

neered a series of TIM applications, such as traffic monitoring, flow analysis, crash detec-

tion and response, and situational awareness [8–10]. Advantages of using sUAS platforms 

for TIM include: (1) allowing for customization of onboard sensing systems and observing 

parameters, (2) offering adequate flexibility in data collection above the scene to be inves-

tigated, (3) reducing the exposure of investigators to the dangers of traffic in the roadway, 

and (4) providing detailed 2D and/or 3D measurement documentation and imagery for 

post-crash scene investigation conducted in the office. Nowadays, the potential of multi-

rotor sUASs being low-cost and robust crash scene recovery platforms has been mani-

fested via structure-from-motion (SfM) photogrammetry. SfM converts overlapped image 

sequences taken by a consumer-grade digital camera into 2D orthorectified image prod-

ucts and reconstructed 3D scenes (dense 3D point cloud data and textured 3D meshes). 

SfM photogrammetry with an octocopter platform was reported to save up to 90% of data 

collection time compared with traditional coordinate method [11]. Measurements ob-

tained from the point cloud were in accordance with sketches drawn by the investigators, 

and centimeter-level differences were found in the entire scene. Above the accident scene, 

orthophotos can be generated using a sequence of individual photos converted from the 

4 K-resolution video taken by the quadcopter camera [12]. The results demonstrated a 

horizontal accuracy of 5–8 cm in scene documentation compared with a real time kine-

matic (RTK) global navigation satellite system (GNSS) survey.  

While growing attention has been paid to SfM photogrammetric surveys with sUAS 

platforms in crash scene investigation and recovery, it is important to realize that nearly 

21% of the crashes are weather-related every year in the United States [13] and performing 

flight missions under hazardous weather conditions remains a difficult task due to safety 

and data quality concerns. For example, wind is a frequent natural phenomenon, but high 

winds tend to increase the risks of freight truck crashes on the roadway [14,15]. In such a 

scenario, before an sUAS is dispatched to conduct the crash scene reconstruction mission, 

it is essential to ensure that the wind speed does not exceed the aircraft’s operation limit 

specified by the vendor. Some sUASs are less susceptible to the wind disturbance, but 

their battery life and flight time is reduced as wind speeds increase [16,17]. High wind 

speed can also negatively affect the SfM photogrammetry and derived mapping products 

due to disturbed waypoint targeting and image orientation. Wind direction and turbu-

lence are also important variables to consider as they affect the flight path geometry, en-

ergy consumption and overall flight safety [18–21]. 

Some studies have documented preliminary findings on the variations of sUAS flight 

stability due to wind forces. Wang conducted an in-house simulation to assess the wind 

impacts on sUAS flight stability at low altitudes [22]. The differences in flight speed and 

attitude were summarized when various types of wind were examined. Siqueira mathe-

matically created a wind model and evaluated its effects on sUAS trajectory tracking by 

looking into 2D/3D error and control activities [23]. The results suggested rapid trajectory 

tracking degradation as a response to the increased magnitude of wind dynamics.  

Initial research efforts have been made in recent years to use open-source mission 

planning tools such as Mission Planner to conduct sUAS simulation runs in windy condi-

tions [24]. However, comprehensively characterizing sUAS responses to various wind 

conditions has been understudied but is considered crucial before planning flight opera-

tions for crash scene reconstruction. While there are multiple types of suboptimal weather 

conditions that raise safety and data quality concerns for flying sUASs, the main aim of 
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this study is to set wind as an exclusive factor to parameterize its impacts on flight per-

formance of a representative quadcopter sUAS platform type via realistic flight simula-

tions using a standard gridded flight design for SfM image acquisition. Simulation results 

are applied to document and generalize lessons learned for platform-independent quad-

copter sUAS flight design under windy conditions for crash scene mapping. A series of 

quadcopter simulations with incremental increases in wind speed, direction, and turbu-

lence are performed to model suboptimal weather conditions. Positional error, battery 

use, and flight time are used as statistical metrics to characterize the wind impacts on 

flight performance.  

2. Materials and Methods 

2.1. Test Environment Setup 

As the most popular open-source autopilot software suite adopted by a variety of 

autonomous vehicles, ArduPilot was employed as the underlying simulation framework 

in this study [25–27]. ArduPilot enables modeling a wide range of unmanned vehicle char-

acteristics with regard to mission planning, remote control, communication and naviga-

tion. To realistically characterize wind impacts on sUAS behavior in a simulated environ-

ment, the software-in-the-loop (SITL) simulator was run on a host computer without risk-

ing an actual aircraft platform. ArduPilot on SITL can compile source code based on a 

sophisticated sUAS flight dynamics model and perform code execution in software envi-

ronment for development and testing purposes. In such a simulation framework, ArduPi-

lot supports the MAVLink protocol for real-time telemetry between the simulated sUAS 

and the ground control station (GCS) such as Mission Planner. Mission Planner as an 

open-source GCS includes major flight planning functions similar to that in commercial 

software packages such as Pix4Dcapture and Map Pilot Pro. In this work, Mission Planner 

along with ArduPilot on SITL was used for flight simulation, which enabled: (1) editing 

various parameters regarding changes in environment type, sensor failure and vehicle 

platform, (2) simulating an sUAS as a virtual flight control unit (FCU) to conduct pre-

defined simulation runs on a computer without any special hardware, and (3) storing and 

downloading the log files of a mission for post-flight analysis.  

In the United States, quadcopter sUAS platforms have been widely chosen and in-

creasingly used for TIM and crash scene reconstruction by law enforcement agencies 

[9,28–32]. Compared with other frame types, such as hexacopters and octocopters, quad-

copters can be designed and developed relatively cheap and small in size for carrying 

positioning and non-metric camera payloads to perform SfM photogrammetric tasks. This 

study, therefore, selected a quadcopter frame type to run realistic simulations in ArduPi-

lot SITL to characterize wind impacts on flight performance for crash scene reconstruc-

tion. This quadcopter frame type has been employed by some commercial platforms in-

cluding 3DR Solo and Parrot Bebop 2 [33,34]. It is possible to edit a list of behavior con-

trolling parameters through the MAVLink protocol. A complete set of such parameters is 

available in [35]. 

A rectangular area at the Texas A&M Flight Test Station Airport in Bryan, Texas, 

USA, was identified to define the boundary of the simulated crash scene. The rectangular 

area was 105 × 70 m and centered over an airfield intersection at 30°38′16.50″ N, 

96°28′54.70″ W. In this work, a DJI Mavic 2 Pro camera model was selected in Mission 

Planner due to its current popularity in use by law enforcement and transportation agen-

cies for crash scene mapping [28–30]. In this study, two flight paths were planned in sim-

ulation as follows: 

I. A single flight height of 80 m above ground level (AGL) was determined, targeting a 

ground sample distance (GSD) of 2.0 cm/px to enable capturing crash scene details. 

The flight mission intended to achieve 80% frontal and 80% side overlap to facilitate 

creation of adequate SfM photogrammetric mapping products [36,37], resulting in 48 
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photo locations taken along four flight lines in the East-West course (i.e., flight direc-

tion) with 12 photo locations along each (Figure 1). The flight plan included the sUAS 

stopping at each waypoint location to capture an image before moving to the next 

waypoint. The spacing between adjacent waypoints was 12.5 m and the spacing be-

tween flight lines was 18.8 m.  

II. Simulations ran at dual altitudes of 80 m and 10 m AGL. In this flight path, the sim-

ulated quadcopter first completed an entire set of actions at 80 m AGL as defined in 

flight path I, then it descended and continued the mission at 10 m AGL (Figure 2). At 

this lower altitude, the flight courses were kept the same, and 80% frontal and 80% 

side overlap settings remained. At 10 m AGL, an additional 48 photos were acquired 

along four flight lines that were scaled down. At 10 m AGL, the spacing between 

waypoints was 2.5 m and the spacing between flight lines was 3.7 m. 

It is worth noting that in an SfM photogrammetric survey mission, the flight height 

relates closely to the length of a mission and waypoint locations given specific overlap 

and camera model settings. However, the flight height is independent to simulated wind 

effects to be defined in Section 2.2. In other words, the choice of flight height is generic in 

this study and another flight altitude will not vary wind impacts compared with that of 

80 m or 10 m AGL. 

Mission Planner placed the simulated aircraft at the home position near the mission 

scene. The SITL ran a simulated FCU within the virtual aircraft and the planned actions 

were then uploaded into the aircraft via the simulated GCS link the same way it would be 

done in a real flight with an actual aircraft. The interface then allowed setting environ-

mental factors for each simulation run such as wind speed, direction, and turbulence. In 

this article, these three wind parameters were the primary variables to study the sUAS 

responses. 

 

Figure 1. Overview of flight lines and waypoints of the simulated crash scene within Mission Planner. 



Drones 2021, 5, 67 5 of 26 
 

 

Figure 2. Flight path for dual altitudes of 80 m and 10 m AGL. The simulated flight started the 

mission at 80 m AGL and then descended to continue the mission at 10 m AGL. The red arrows 

indicate flight courses. 80% frontal and 80% side overlap settings remained at both 80 m and 10 m 

AGL. There were 48 images taken at each AGL level. 

2.2. Creation of Simulation Runs 

2.2.1. Wind Speed 

For single-altitude flight path at 80 m AGL (Figure 1), five values were evaluated 

with regard to wind speed, which were 0 m/s, 3.5 m/s, 7.0 m/s, 10.5 m/s, and 14 m/s. The 

value of 14 m/s was chosen as the upper bound because after this level, the respective 

quadcopter frame selected in Mission Planner’s SITL would not be able to maintain its 

position and started to drift off of the simulated crash scene. For dual-altitude flight path 

(Figure 2), wind speeds of 10.5 m/s and 3.5 m/s were employed at 80 m and 10 m AGL, 

respectively. 

2.2.2. Wind Direction 

Wind direction is defined as the direction from which the wind is coming with re-

spect to North in a clockwise fashion. For example, 0° represents North wind blowing 

from North to South and 90° represents East wind blowing from East to West. As de-

scribed in Figures 1 and 2, the flight lines were oriented in the East-West direction, there-

fore, without loss of generality, simulating wind directions in the first quadrant (i.e., from 

0° to 90°) was sufficient to depict distinct aircraft-wind angular relationships. This angular 

relationship is defined as α angle, which refers to the included angle from wind direction 

to flight course moving in a clockwise motion. In this work, the wind directions of 0°, 

22.5°, 45°, 67.5°, and 90° were chosen for single-altitude flight path at 80 m AGL (Figure 

1), the wind directions of 0°, 45°, and 90° were chosen for dual-altitude flight path at 80 m 

and 10 m AGL (Figure 2). The α angle and its relation to the wind direction and flight 

course are summarized in Table 1. In the case of wind direction of 90°, wind blew in or 

against the direction of aircraft travel, yielding pure tailwind or headwind, respectively. 

A 0° wind direction generated pure crosswind scenarios where the wind blew perpendic-

ular to the flight path. All the other wind directions were able to decompose the force into 

both crosswind and headwind/tailwind components, and the corresponding α angles are 

illustrated in Figure 3. 
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Table 1. α angle and its relation to the wind direction and flight course. 

 Angle Wind Direction (°) Flight Course 

0° (Headwind) 90° E 

180° (Tailwind) 90° W 

90° (Crosswind) 0° E 

270° (Crosswind) 0° W 

67.5° 22.5° E 

247.5° 22.5° W 

45° 45° E 

225° 45° W 

22.5° 67.5° E 

202.5° 67.5° W 

 

N

E

0° 

90° 

22.5° 
NNE

W270° 

α
 

N

E

0° 

90° 

22.5° 
NNE

W270° α
 

N

E

NE

0° 

90° 

45° 

W270° 
α
 

 
(a) (b) (c) 

N

E

NE

0° 

90° 

45° 

W270° 
α
 

N

E

0° 

90° 

67.5° ENE

W270° α
 

N

E

0° 

90° 

67.5°ENE

W270° 
α
 

 
(d) (e) (f) 

Figure 3. Examples of α angles when an aircraft does not fly in headwind, tailwind or crosswind. (a) α = 67.5° when wind 

direction is 22.5° and flight course is East. (b) α = 247.5° when wind direction is 22.5° and flight course is West. (c) α = 45° 

when wind direction is 45° and flight course is East. (d) α = 225° when wind direction is 45° and flight course is West. (e) 

α = 22.5° when wind direction is 67.5° and flight course is East. (f) α = 202.5° when wind direction is 67.5° and flight course 

is West. 

2.2.3. Turbulence 

Turbulence takes place by adding 3D random vectors and magnitudes to the existing 

wind conditions. According to the National Weather Service, turbulence for operating air-

craft is classified as [38]: 

 Light (less than 7.2 m/s, and less than 5.7 m/s vertically), 

 Moderate (7.2–12.3 m/s, and 5.7–11.3 m/s vertically), 

 Severe (greater than 12.3 m/s, and 11.3–14.9 m/s vertically), and 

 Extreme (greater than 12.3 m/s, and greater than 14.9 m/s vertically). 

Within ArduPilot on SITL, turbulence is modeled as a combination of high pass and 

low pass filters in both horizontal and vertical directions satisfying the following condi-

tions [39] 

��
� = 0.98 ��

��� + 10 ∙ (1 − 0.98)���� (1)

��
� = 0.98 ��

��� + 10 ∙ (1 − 0.98)���� (2)
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where �� and �� represent horizontal and vertical turbulences in the unit of m/s, respec-

tively, � and � − 1 denote current and previous time instances, �� is a random number 

following a �(0, 1) Gaussian distribution, and �� is a turbulence index value set to 0, 5, 

10, or 20 in this work. As the turbulence index increased, the turbulence magnitude in-

creased. More specifically, a turbulence index of five (i.e., �� = 5 in Equations (1) and (2)) 

involved randomized horizontal and vertical air speed fluctuations as great as 5 m/s. Like-

wise, turbulence indices of 10 and 20 (i.e., �� = 10 and 20 in Equations (1) and (2)) involved 

randomized horizontal and vertical air fluctuations as great as 10 m/s and 20 m/s, respec-

tively. For single-altitude flight path at 80 m AGL as shown in Figure 1, light (i.e., turbu-

lence indices of 0 and 5), moderate (i.e., turbulence index of 10), and extreme (i.e., turbu-

lence index of 20) turbulence conditions were simulated. It was not necessary to simulate 

severe turbulence because the only difference between severe and extreme turbulences 

was the vertical turbulence component. For dual-altitude flight path at 80 m and 10 m 

AGL as shown in Figure 2, light (i.e., turbulence index of 0) and moderate (i.e., turbulence 

index of 10) turbulence conditions were simulated. 

It is worth noting that turbulence does not equate to wind gust. Gust denotes a local 

maximum above a certain threshold above the mean wind speed within a certain amount 

of time such as one or two minutes [40]. 

2.2.4. Overview of Simulation Runs 

The incrementally increased wind speed, direction, and turbulence values resulted 

in 58 simulation runs at single altitude of 80 m AGL to evaluate flight stability and endur-

ance (Table 2). A wind speed of 14 m/s was only used under no turbulence conditions 

because adding turbulence at this level would have resulted in failed flight missions for 

the quadcopter frame selected in Mission Planner’s SITL. Simulation runs for a turbulence 

index of five only included wind speeds of 10.5 m/s because the results for turbulence 

indices of 0 and 5 were similar. 

In addition, a total of six simulation runs were generated for dual altitudes of 80 m 

and 10 m AGL (Table 3). At 10 m AGL, the simulation included a wind speed of 3.5 m/s 

and a turbulence index of 0. At 80 m AGL, the simulation included a wind speed of 10.5 

m/s and two possible turbulence index values: 0 and 10. 

After setting up wind parameters in each individual run, the simulated aircraft was 

then armed and flown in autopilot mode. Once the simulated aircraft landed and dis-

armed its motors within Mission Planner, the flight log was downloaded from the flight 

controller via the simulated radio link. Each flight log was stored in a folder for dissemi-

nation. 

Table 2. A total of 58 simulation runs with incrementally increased wind speed, direction and tur-

bulence values at single altitude of 80 m AGL. 

Wind Direction (°) Wind Speed (m/s) Turbulence Index 
Flight Height AGL 

(m) 

N/A 0.0 0 80 

0 3.5 0 80 

0 7.0 0 80 

0 10.5 0 80 

0 14.0 0 80 

22.5 3.5 0 80 

22.5 7.0 0 80 

22.5 10.5 0 80 

22.5 14.0 0 80 

45 3.5 0 80 

45 7.0 0 80 

45 10.5 0 80 
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Wind Direction (°) Wind Speed (m/s) Turbulence Index 
Flight Height AGL 

(m) 

45 14.0 0 80 

67.5 3.5 0 80 

67.5 7.0 0 80 

67.5 10.5 0 80 

67.5 14.0 0 80 

90 3.5 0 80 

90 7.0 0 80 

90 10.5 0 80 

90 14.0 0 80 

0 10.5 5 80 

22.5 10.5 5 80 

45 10.5 5 80 

67.5 10.5 5 80 

90 10.5 5 80 

0 0.0 10 80 

0 3.5 10 80 

0 7.0 10 80 

0 10.5 10 80 

22.5 3.5 10 80 

22.5 7.0 10 80 

22.5 10.5 10 80 

45 3.5 10 80 

45 7.0 10 80 

45 10.5 10 80 

67.5 3.5 10 80 

67.5 7.0 10 80 

67.5 10.5 10 80 

90 3.5 10 80 

90 7.0 10 80 

90 10.5 10 80 

0 0.0 20 80 

0 3.5 20 80 

0 7.0 20 80 

0 10.5 20 80 

22.5 3.5 20 80 

22.5 7.0 20 80 

22.5 10.5 20 80 

45 3.5 20 80 

45 7.0 20 80 

45 10.5 20 80 

67.5 3.5 20 80 

67.5 7.0 20 80 

67.5 10.5 20 80 

90 3.5 20 80 

90 7.0 20 80 

90 10.5 20 80 
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Table 3. A total of six simulation runs for dual altitudes of 80 m and 10 m AGL. 

Wind Direction (°) Wind Speed (m/s) Turbulence Index 
Flight Height AGL 

(m) 

0 
10.5 0 80 

3.5 0 10 

45 
10.5 0 80 

3.5 0 10 

90 
10.5 0 80 

3.5 0 10 

0 
10.5 10 80 

3.5 0 10 

45 
10.5 10 80 

3.5 0 10 

90 
10.5 10 80 

3.5 0 10 

2.3. Flight Log Dissemination and Parsing 

When a simulation run completed the mission, the flight log downloaded contained 

the status of the FCU recorded at 5 Hz throughout the flight. This led to a log containing 

150,000 to 200,000 lines of information in each simulation run. For this study, the position 

and attitude of the craft at the time of image acquisition and the battery power consumed 

at the end of the mission were of particular interest. To meet the needs, a Python script 

that read the flight log and output a text file containing the desired information was writ-

ten. The script looked for flight log messages beginning with the “CAM” tag (i.e., camera 

shutter information) and wrote them to a text file in a designated format. Then the script 

found the last flight log message containing a “BAT” tag (i.e., gathered battery data) and 

wrote it to a separate text file. The “CAM” messages contained the attitude and positional 

information of the airframe when the camera was triggered during the mission (Figure 

4a). The position coordinates were recorded in the World Geodetic System 1984 (WGS-84) 

ellipsoidal model, and they were converted to the Universal Transverse Mercator (UTM) 

projected coordinate system to facilitate statistical analysis (Figure 4b) [41]. All altitudes 

were left in their original AGL format. The “BAT” message contained information on the 

total power consumed during the mission. 

  
(a) (b) 

Figure 4. A section of flight log downloaded in a simulation run. (a) Original flight log; (b) Flight log after coordinate 

conversion to the UTM system. 
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2.4. Data Aggregation and Statistical Metrics 

The “CAM” and “BAT” files were imported into a master file in Microsoft Excel for-

mat to determine the wind impacts. The metrics used included average 3D error, standard 

deviation, flight time, and battery use.  

The average 3D error and the standard deviation of 3D error provided metrics for the 

differences between intended waypoints and the corresponding camera trigger locations. 

The average 3D error in each individual simulation run is defined as 

�̅ =
∑ ‖�� − ��‖�

���

�
 (3)

where �̅ is the average 3D error between intended waypoints and actual camera trigger 

locations, � is the number of waypoints where the camera was supposed to be triggered 

(� = 48 and 96 in the single-altitude and dual-altitude cases, respectively), � and � are 

the intended waypoint location vector and corresponding actual camera trigger location 

vector, respectively, and ‖� − �‖ is the 3D Euclidean distance.  

The standard deviation in each individual simulation run can be expressed as 

� = �
∑ (�� − �̅)��

���

� − 1
 (4)

where � is standard deviation of 3D errors between intended waypoints and actual cam-

era trigger locations, � is the number of waypoints where the camera is supposed to be 

triggered, and �� is the 3D error between an intended waypoint and its associated cam-

era trigger location. 

Flight time provided a metric for the total time needed to complete a mission (i.e., 

from the first to the last image taken). Battery use provided a metric for the cumulative 

use of battery power. 

3. Results 

3.1. Simulation Runs for Single Altitude at 80 m AGL 

3.1.1. Average 3D Error and Standard Deviation 

As shown in Table 4, the average 3D error between intended waypoints and actual 

camera trigger locations increased as the wind speed increased. The magnitude of the im-

pacts varied significantly as a function of the turbulence level. Specifically, as the turbu-

lence level increased, the impact on the average 3D error became more noticeable. This 

observation is not surprising because the sUAS tried to compensate for the wind and sta-

bilize its platform to where the waypoints were intended. 

For low turbulence levels (i.e., turbulence indices of 0 and 5), the average 3D error 

did not increase significantly if the wind speed was up to 10.5 m/s. If the speed increased 

to 14 m/s, the 3D error was at least 26% higher compared to the average 3D error for the 

speed up to 10.5 m/s. For a turbulence index of 10, the average 3D error began to vary 

significantly at lower speeds. For instance, compared to the reference zero-speed with no-

turbulence wind scenario, a 42% higher average 3D error was observed for a wind speed 

of 3.5 m/s. 89% and 189% higher values were observed for wind speeds of 7.0 m/s and 10.5 

m/s, respectively. For a turbulence index of 20, the average 3D error began to vary at even 

lower speeds. For instance, compared to the reference zero-speed with no-turbulence 

wind scenario, the average 3D errors were found to be 253%, 311%, and 558% higher for 

wind speeds of 3.5 m/s, 7.0 m/s, and 10.5 m/s, respectively. 

Based on the simulation runs, maximum average 3D error reached up to 1.36 m when 

wind speed was set to 10.5 m/s with a turbulence index of 20. This was the worst (i.e., 

most extreme) wind condition evaluated in the study that still allowed the simulated 

quadcopter to maintain travel along the planned mission route. Greater wind disturbance 

could be programmed in Mission Planner’s SITL. However, that would result in failed 

flight missions for the selected quadcopter model and divergent 3D errors. 
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Table 4. Average 3D errors (m) between intended waypoints and actual camera trigger locations 

for 58 simulation runs at single altitude of 80 m AGL. 

Wind Speed 

(m/s) 

Wind Direction (°) 

0 22.5 45 67.5 90 

Turbulence index = 0 

0.0 0.19 

3.5 0.19 0.19 0.20 0.19 0.19 

7.0 0.19 0.19 0.20 0.19 0.20 

10.5 0.19 0.20 0.20 0.21 0.24 

14.0 0.24 0.34 0.66 0.71 0.66 

Turbulence index = 5 

10.5 0.26 0.26 0.26 0.28 0.30 

Turbulence index = 10 

0.0 0.26 

3.5 0.27 0.28 0.27 0.27 0.25 

7.0 0.36 0.36 0.33 0.37 0.39 

10.5 0.55 0.56 0.45 0.53 0.53 

Turbulence index = 20 

0.0 0.66 

3.5 0.67 0.62 0.56 0.60 0.54 

7.0 0.78 0.9 0.71 0.80 0.83 

10.5 1.25 1.28 1.36 1.21 1.09 

In addition to displaying wind direction as shown in Table 4, Table 5 further investi-

gates average 3D errors with respect to aircraft-wind angular relationship (i.e., α value) 

for all 58 simulation runs at single altitude of 80 m AGL and divides each run up into two 

separate segments that correspond to the East and West flight lines. For instance, the col-

umns of “α = 180° (Tailwind)” and “α = 0° (Headwind)” together correspond to that of 

wind direction of 90° in Table 1. The columns of “α = 90° (Crosswind)” and “α = 270° 

(Crosswind)” together correspond to that of wind direction of 0° in Table 1. It is worth 

reiterating that the crosswind refers to the wind movement occurring perpendicular to 

the flight path. The columns of “α = 202.5°” and “α = 22.5°” together reflect the scenario 

where wind direction equated to 67.5° (Figure 3e,f).  

For a turbulence index of 0, if the wind speed was up to 7.0 m/s, the variation in 

average 3D error due to differences in the α value was up to (0.21−0.18)/0.18 = 17%. 

Compared to a reference zero-speed with no-turbulence wind scenario, the average 3D 

error varied from −5% to 11%. The impact was more noticeable as the wind speed in-

creased. If the wind speed was 10.5 m/s, the variation in average 3D error due to differ-

ences in the α value was up to 64%. At 14 m/s, the variation in average 3D error due to 

differences in the α value was up to 405%. 

For a turbulence index of 10, if the wind speed was up to 7.0 m/s, the variation in 

average 3D error due to differences in the α value was up to 69%. If the wind speed was 

10.5 m/s, the variation in average 3D error due to differences in the α value was up to 85%. 

For a turbulence index of 20, if the wind speed was up to 7.0 m/s, the variation in 

average 3D error due to differences in the α value was up to 205%. If the wind speed was 

10.5 m/s, the variation in average 3D error due to differences in the α value was up to 

258%. 

Figure 5 creates wind rose charts that give a view of how wind conditions impact 

average 3D error in all 58 simulation runs. Results display average 3D error without tur-

bulence (Figure 5a) and that impacted by turbulence (Figure 5b). The angles written out-

side the circles depict the α angles. Each wind speed/turbulence scenario assigns a distinct 

color for representation. The radius of the wind rose reflects the magnitude of the average 
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3D error for a particular wind condition. Adjacent concentric circles have an interval of 

0.5 m in radius.  

Figure 5a suggests that when no turbulence was involved, least average 3D error was 

generated in crosswind scenarios, i.e., the aircraft and wind directions were perpendicular 

(i.e., α = 90° or 270°). Average 3D error tended to enlarge in all other scenarios where a 

headwind or tailwind component contributed during the flight mission. Observations in 

Figure 5a also reveal that pure headwind scenario (i.e., α = 0°) created worst flight stabil-

ities and positional errors than any other scenarios when wind speed was up to 14 m/s 

(i.e., average 3D error was 0.96 m). Figure 5b demonstrates that when turbulence existed 

(i.e., turbulence index of 5, 10 or 20), average 3D error remarkably increased in all possible 

α values, indicating that average 3D error was less sensitive to the differences of aircraft-

wind angular relationship than turbulence. 

Table 6 shows the standard deviation of 3D distance (i.e., 3D error) between intended 

waypoints and actual camera trigger locations for all 58 simulation runs at single altitude 

of 80 m AGL, and Table 7 summarizes standard deviation with respect to aircraft-wind 

angular relationship. Figure 6 shows wind rose plots of standard deviations for all 58 sim-

ulation runs. Compared with wind impacts on average 3D error, similar conclusions can 

be drawn to the impacts on standard deviation. 
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Table 5. Average 3D errors (m) between intended waypoints and actual camera trigger locations with respect to aircraft-wind angular relationship (i.e., α value) for 58 simulation runs 

at single altitude of 80 m AGL. 

Wind Speed 

(m/s) 

Aircraft-Wind Angular Relationship (i.e., α Value) 

α = 0° (Head-

wind) 

α = 180° (Tail-

wind) 

α = 90° (Cross-

wind) 

α = 270° 

(Crosswind) 
α = 67.5° α = 247.5° α = 45° α = 225° α = 22.5° α = 202.5° 

Turbulence index = 0 

0.0 0.19 

3.5 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.20 0.19 0.19 

7.0 0.18 0.21 0.18 0.19 0.18 0.20 0.18 0.21 0.18 0.21 

10.5 0.19 0.29 0.18 0.20 0.17 0.22 0.17 0.23 0.17 0.24 

14.0 0.96 0.37 0.19 0.29 0.36 0.32 0.93 0.39 0.96 0.46 

Turbulence index = 5 

10.5 0.30 0.30 0.23 0.30 0.25 0.27 0.22 0.30 0.30 0.26 

Turbulence index = 10 

0.0 0.26 

3.5 0.24 0.25 0.27 0.28 0.28 0.29 0.23 0.31 0.28 0.26 

7.0 0.37 0.41 0.34 0.38 0.37 0.35 0.28 0.37 0.37 0.37 

10.5 0.53 0.52 0.54 0.55 0.59 0.53 0.43 0.48 0.51 0.55 

Turbulence index = 20 

0.0 0.66 

3.5 0.54 0.54 0.72 0.62 0.53 0.72 0.55 0.57 0.60 0.61 

7.0 0.84 0.81 0.70 0.86 1.06 0.73 0.74 0.67 0.82 0.78 

10.5 1.14 1.03 1.35 1.16 1.14 1.42 1.20 1.52 1.10 1.31 
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(a) (b) 

Figure 5. Wind rose plots of average 3D errors between intended waypoints and actual camera trigger locations at single 

altitude of 80 m AGL. (a) Wind rose plot of average 3D errors for no-turbulence runs; (b) Wind rose plot of average 3D 

errors for all simulation runs with turbulence. 

Table 6. Standard deviations (m) of 3D errors between intended waypoints and actual camera trig-

ger locations for 58 simulation runs at single altitude of 80 m AGL. 

Wind Speed 

(m/s) 

Wind Direction (°) 

0 22.5 45 67.5 90 

Turbulence index = 0 

0.0 0.04 

3.5 0.03 0.03 0.04 0.04 0.03 

7.0 0.03 0.04 0.04 0.04 0.04 

10.5 0.04 0.05 0.05 0.05 0.07 

14.0 0.18 0.18 0.31 0.29 0.34 

Turbulence index = 5 

10.5 0.11 0.09 0.15 0.11 0.16 

Turbulence index = 10 

0.0 0.10 

3.5 0.11 0.11 0.10 0.11 0.1 

7.0 0.18 0.19 0.14 0.24 0.26 

10.5 0.39 0.37 0.27 0.42 0.43 

Turbulence index = 20 

0.0 0.39 

3.5 0.48 0.42 0.32 0.49 0.34 

7.0 0.65 0.62 0.41 0.50 0.50 

10.5 0.55 0.71 0.82 0.8 0.59 
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Table 7. Standard deviations (m) of 3D errors between intended waypoints and actual camera trigger locations with respect to aircraft-wind angular relationship (i.e., α value) for 58 

simulation runs at single altitude of 80 m AGL. 

Wind Speed 

(m/s) 

Aircraft-Wind Angular Relationship (i.e., α Value) 

α = 0° (Head-

wind) 

α = 180° (Tail-

wind) 

α = 90° (Cross-

wind) 

α = 270° 

(Crosswind) 
α = 67.5° α = 247.5° α = 45° α = 225° α = 22.5° α = 202.5° 

Turbulence index = 0 

0.0 0.04 

3.5 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 

7.0 0.03 0.04 0.04 0.02 0.04 0.02 0.04 0.03 0.04 0.04 

10.5 0.04 0.06 0.05 0.03 0.06 0.03 0.05 0.03 0.04 0.04 

14.0 0.19 0.12 0.14 0.20 0.16 0.20 0.07 0.20 0.10 0.19 

Turbulence index = 5 

10.5 0.17 0.16 0.09 0.11 0.10 0.09 0.10 0.18 0.14 0.08 

Turbulence index = 10 

0.0 0.10 

3.5 0.10 0.11 0.09 0.12 0.11 0.11 0.09 0.10 0.12 0.10 

7.0 0.28 0.25 0.20 0.16 0.22 0.17 0.13 0.14 0.22 0.26 

10.5 0.36 0.51 0.48 0.28 0.43 0.31 0.27 0.27 0.34 0.50 

Turbulence index = 20 

0.0 0.39 

3.5 0.33 0.36 0.55 0.40 0.42 0.40 0.35 0.29 0.29 0.64 

7.0 0.46 0.55 0.49 0.78 0.75 0.41 0.34 0.47 0.56 0.44 

10.5 0.54 0.65 0.62 0.46 0.61 0.79 0.60 0.98 0.55 1.00 
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(a) (b) 

Figure 6. Wind rose plots of standard deviation of 3D errors between intended waypoints and actual camera trigger loca-

tions at single altitude of 80 m AGL. (a) Wind rose plot of standard deviations for no-turbulence runs; (b) Wind rose plot 

of standard deviations for all simulation runs with turbulence. 

3.1.2. Flight Time 

Table 8 shows total flight times (i.e., from the first image to the last image) for each 

simulation run at single altitude of 80 m AGL. In general, the total time to complete a 

mission was less sensitive to changes in wind speed, direction, and turbulence conditions 

than the average 3D error and standard deviation. If the wind speed was up to 7.0 m/s 

and the turbulence index was up to 10, the flight time increased approximately 2.5% com-

pared to the reference zero-speed with no-turbulence wind simulation run. At this wind 

speed, even if the turbulence index was 20, the total flight time increased less than 25% 

compared to the reference zero-speed with no-turbulence simulation run. If the wind 

speed was 10.5 m/s and the turbulence index was up to 10, the total flight time increased 

approximately 12% compared to the reference zero-speed with no-turbulence wind sim-

ulation run. However, if the turbulence level was 20, the total flight time increased 109% 

compared to the reference zero-speed with no-turbulence run. 

Table 9 shows flight times disaggregated by aircraft-wind angular relationship for all 

58 simulation runs at single altitude of 80 m AGL. The time required to transit from the 

last waypoint of one flight line to the first waypoint of the next line was not included (i.e., 

18.8 m as shown in Figure 1). If the wind speed was up to 7.0 m/s and the turbulence index 

was up to 10, the variation in flight time due to differences in aircraft-wind angular rela-

tionship (i.e., α value) was no greater than 6%. Unsurprisingly, headwind conditions pro-

duced a higher total flight time than tailwind conditions. The effect due to differences in 

aircraft-wind angular relationship was more noticeable for higher wind speeds and tur-

bulence levels. If the wind speed was 10.5 m/s and the turbulence index was 10, the total 

flight time was 18% greater under headwind condition than under tailwind condition. 

However, if the wind speed was 14 m/s and the turbulence index was 20, the total flight 

time was 182% higher under headwind condition than under tailwind condition. In Table 

9, it is worth nothing that “N/A” was marked as flight times for zero-wind-speed simula-

tion runs where the aircraft-wind angular relationships were not formed. The directional-

ity of wind impacts on flight times is also quantified in the wind rose plots in Figure 7. 
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Table 8. Total flight times (s) for 58 simulation runs at single altitude of 80 m AGL. 

Wind Speed 

(m/s) 

Wind Direction (°) 

0 22.5 45 67.5 90 

Turbulence index = 0 

0.0 318 

3.5 318 318 318 318 318 

7.0 318 318 318 318 318 

10.5 319 318 318 318 319 

14.0 358 359 416 448 456 

Turbulence index = 5 

10.5 320 323 325 325 325 

Turbulence index = 10 

0.0 320 

3.5 320 320 320 323 321 

7.0 322 323 323 326 324 

10.5 339 341 344 357 356 

Turbulence index = 20 

0.0 351 

3.5 360 346 357 353 362 

7.0 377 374 390 391 397 

10.5 635 635 665 635 657 
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Table 9. Flight times (s) with respect to aircraft-wind angular relationship (i.e., α value) for 58 simulation runs at single altitude of 80 m AGL. 

Wind Speed 

(m/s) 

Aircraft-Wind Angular Relationship (i.e., α Value) 

α = 0° (Head-

wind) 

α = 180° (Tail-

wind) 

α = 90° (Cross-

wind) 

α = 270° 

(Crosswind) 
α = 67.5° α = 247.5° α = 45° α = 225° α = 22.5° α = 202.5° 

Turbulence index = 0 

0.0 N/A 

3.5 146 146 146 146 146 146 146 146 146 146 

7.0 146 146 146 146 146 146 146 146 146 146 

10.5 146 147 146 146 146 146 146 146 146 146 

14.0 284 145 146 146 152 147 218 147 262 146 

Turbulence index = 5 

10.5 153 146 146 146 147 146 151 145 151 148 

Turbulence index = 10 

0.0 N/A 

3.5 148 146 146 147 148 146 148 146 151 146 

7.0 153 145 148 147 150 146 151 145 152 147 

10.5 178 151 150 158 156 152 170 146 177 150 

Turbulence index = 20 

0.0 N/A 

3.5 172 160 159 164 159 159 158 164 168 157 

7.0 202 163 168 172 177 166 197 163 196 166 

10.5 442 177 313 256 340 219 397 194 403 174 

Note: This table excluded transit times between flight lines. This table did not include flight time information for all zero-speed simulation runs due to unavailability of the α angle. 
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(a) (b) 

Figure 7. Wind rose plots of total flight time at single altitude of 80 m AGL. (a) Wind rose plot of flight times for no-

turbulence runs; (b) Wind rose plot of flight times for all simulation runs with turbulence. 

3.1.3. Battery Use 

Similar to analysis performed with the flight time metric, battery use (Table 10) was 

also less sensitive to changes in wind speed, direction, and turbulence conditions than the 

average 3D error and standard deviation. If the wind speed was up to 7.0 m/s and the 

turbulence index was up to 10, the flight time increased less than 14% compared to the 

reference zero-speed with no-turbulence simulation run. At this wind speed, even if the 

turbulence index was 20, the total battery use increased less than 34% compared to the 

reference zero-speed with no-turbulence run. If the wind speed was up to 10.5 m/s and 

the turbulence index was up to 10, the battery use increased less than 35% compared to 

the reference zero-speed with no-turbulence run. However, if the turbulence level was 20, 

the battery use increased 125%. 

Table 10. Battery use (mAh) for 58 simulation runs at single altitude of 80 m AGL. 

Wind Speed 

(m/s) 

Wind Direction (°) 

0 22.5 45 67.5 90 

Turbulence index = 0 

0.0 2601 

3.5 2661 2660 2660 2659 2659 

7.0 2917 2910 2915 2921 2928 

10.5 3214 3212 3217 3220 3224 

14.0 3874 3883 4377 4707 4774 

Turbulence index = 5 

10.5 3233 3177 3188 3206 3274 

Turbulence index = 10 

0.0 2572 

3.5 2644 2639 2643 2657 2658 

7.0 2953 2955 2943 2970 2952 

10.5 3385 3323 3339 3511 3492 

Turbulence index = 20 

0.0 2726 
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3.5 2904 2816 2865 2941 2893 

7.0 3248 3219 3411 3413 3483 

10.5 5537 5641 5849 5746 5822 

3.2. Simulation Runs for Dual Altitudes at 80 m and 10 m AGL 

As displayed in Table 3, the simulation included a wind speed of 10.5 m/s with two 

possible turbulence index values of 0 and 10 at 80 m AGL, and the simulation also in-

cluded a wind speed of 3.5 m/s with a turbulence index of 0 at 10 m AGL. These were 

evaluated at three wind directions resulting in a total of six simulation runs taking into 

account both the 80 m and 10 m AGL flight paths per a simulation as shown in Figure 2. 

Table 11 summarizes evaluation results for the six simulation runs. Each value in the table 

indicates the evaluation result that took both 80 m and 10 m AGL into account. When no 

turbulence was involved at both 80 m and 10 m AGL, each evaluation metric was found 

to vary slightly between scenarios with different wind directions. The average 3D error 

and standard deviation statistics were consistent with that reported in Tables 4 and 6 

when looking into the cells with a turbulence index of 0 and wind speed of 10.5 m/s. This 

emphasizes that the choice of flight height will not affect simulated wind impacts on flight 

performance as stated in Section 2.1. However, the flight endurance and battery use in 

Table 11 increased compared with that reported in Tables 8 and 10 when looking into the 

cells with a turbulence index of 0 and wind speed of 10.5 m/s. This is because Table 11 

involved dual altitudes in the mission. Compared with the scenario where the turbulence 

index was 0 at both 10 m and 80 m AGL, when the turbulence index was increased up to 

10 at 80 m AGL, the average 3D error and standard deviation values were found to in-

crease significantly while the total flight time and battery use were observed to rise by up 

to 7.6% and 6.1%, respectively (Table 11). 

Table 12 shows evaluation results with respect to aircraft-wind angular relationship 

(i.e., α value) for the six simulation runs at dual altitudes of 80 m and 10 m AGL. Each 

value indicates the evaluation result that took both 80 m and 10 m AGL into account. 

Similar to observations in Section 3.1.1, when turbulence existed at 80 m AGL (i.e., turbu-

lence index of 10), flight stability remarkably decreased in all possible α values compared 

to the no-turbulence scenarios indicating that average 3D error and standard deviation 

were more sensitive to turbulence than the differences of aircraft-wind angular relation-

ship.  

Different from Table 12, each value in Table 13 indicates the disaggregated evaluation 

result that considered partial flight operation conducted at each altitude (i.e., either 80 m 

or 10 m AGL) separately. Expectedly, the worst flight performance was achieved when 

the turbulence index was up to 10 at 80 m AGL. However, when no turbulence was in-

volved, nearly identical flight performances were obtained between the 80 m and 10 m 

AGL simulation scenarios in terms of the average 3D error and standard deviation. This 

is because the flight height in the study is independent to simulated wind effects and, 

therefore, the choice of flight height will not affect wind impacts as explained earlier in 

Section 2.1. On the other hand, the flight time at 10 m AGL was decreased remarkably 

compared to that at 80 m AGL for any given α angle. This is because the flight lines were 

scaled down at 10 m AGL as shown in Figure 2. 

Table 11. Evaluation results for six simulation runs at dual altitudes of 80 m and 10 m AGL. Each 

value indicates the evaluation result that took both 80 m and 10 m AGL into account. 

Evaluation Metric 
Wind Direction (°) 

0 45 90 

Turbulence index = 0 at both 10 m and 80 m AGL 

Average 3D error (m) 0.20 0.21 0.23 

Standard deviation (m) 0.05 0.05 0.06 
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Total flight time (s) 473 471 473 

Battery use (mAh) 4418 4418 4425 

Turbulence index = 0 at 10 m, turbulence index = 10 at 80 m AGL 

Average 3D error (m) 0.38 0.34 0.37 

Standard deviation (m) 0.33 0.23 0.35 

Total flight time (s) 494 497 509 

Battery use (mAh) 4590 4539 4693 

Note: The total flight time values in the table excluded transit times from 80 m descending to 10 m 

AGL. 

Table 12. Evaluation results with respect to aircraft-wind angular relationship (i.e., α value) for six simulation runs at dual 

altitudes of 80 m and 10 m AGL. Each value indicates the evaluation result that took both 80 m and 10 m AGL into account. 

Evaluation Metric 

Aircraft-Wind Angular Relationship (i.e., α Value) 

α = 0° (Head-

wind) 

α = 180° (Tail-

wind) 

α = 90° 

(Crosswind) 

α = 270° 

(Crosswind) 
α = 45° α = 225° 

Turbulence index = 0 at both 10 m and 80 m AGL 

Average 3D error (m) 0.21 0.25 0.19 0.21 0.19 0.23 

Standard deviation (m) 0.05 0.07 0.06 0.04 0.05 0.04 

Flight time (s) 212 213 212 212 212 212 

Turbulence index = 0 at 10 m AGL and turbulence index = 10 at 80 m AGL 

Average 3D error (m) 0.38 0.36 0.37 0.38 0.32 0.35 

Standard deviation (m) 0.30 0.39 0.38 0.26 0.22 0.23 

Flight time (s) 244 218 216 224 236 212 

Note: The total flight time values in the table excluded transit times from 80 m descending to 10 m AGL. The flight time 

values in the table also excluded transit times between flight lines. 

Table 13. Evaluation results with respect to aircraft-wind angular relationship (i.e., α value) for six simulation runs at dual 

altitudes of 80 m and 10 m AGL. This table shows disaggregated results by considering partial flight operation conducted 

at each altitude (i.e., either 80 m or 10 m AGL) separately. 

Evaluation Metric 

Aircraft-Wind Angular Relationship (i.e., α Value) 

α = 0° (Head-

wind) 

α = 180° (Tail-

wind) 

α = 90° 

(Crosswind) 

α = 270° 

(Crosswind) 
α = 45° α = 225° 

Turbulence index = 0 at 80 m AGL 

Average 3D error (m) 0.19 0.29 0.18 0.20 0.17 0.23 

Standard deviation (m) 0.04 0.06 0.05 0.03 0.05 0.03 

Flight time (s) 146 147 146 146 146 146 

Turbulence index = 10 at 80 m AGL 

Average 3D error (m) 0.53 0.52 0.54 0.55 0.43 0.48 

Standard deviation (m) 0.36 0.51 0.48 0.28 0.27 0.27 

Flight time (s) 178 151 150 158 170 146 

Turbulence index = 0 at 10 m AGL 

Average 3D error (m) 0.22 0.20 0.19 0.21 0.22 0.22 

Standard deviation (m) 0.05 0.04 0.07 0.05 0.05 0.04 

Flight time (s) 66 66 67 67 66 66 

Note: The total flight time values in the table excluded transit times from 80 m descending to 10 m AGL. The flight time 

values in the table also excluded transit times between flight lines. 
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4. Lessons Learned and Conclusion 

A timely investigation and reconstruction at the motor vehicle crash scene plays a 

pivotal role in identifying the cause and severity of the accident, assessing roadway safety 

risks, clarifying insurance liabilities, and facilitating legal proceedings. SfM photogram-

metry with sUAS in crash scene reconstruction has gained increasing attention in recent 

years because of its reliability and flexibility in offering quality geospatial surveying prod-

ucts. One of the main deficiencies in past literature has been the failure of demonstrating 

its effectiveness in adverse weather conditions, under which the risk of motor vehicle 

crashes is exacerbated. In this article, wind was chosen as the primary factor that drove 

adverse weather conditions, and the sUAS was presented in the form of a simulated quad-

copter in the ArduPilot SITL environment. The main objectives were to: (1) characterize 

the impacts of wind speed, direction, and turbulence on the positional accuracy, required 

flight time, and battery use of the simulated quadcopter type via realistic flight simula-

tions, and (2) generalize lessons learned for platform-independent quadcopter flight de-

sign under wind conditions for crash scene mapping. Real-world quadcopters were not 

tested and compared due to flight safety and compliance concerns. The simulation also 

provided a method to assess wind impact on flight design in a systematic and controlled 

fashion, which is generally not feasible in real-world operating conditions. A total of 58 

simulation runs with incremental increases in wind speed, direction, and turbulence were 

created and analyzed at a single altitude of 80 m AGL. Six more simulation runs were 

created and analyzed at dual altitudes of 80 m and 10 m AGL. 

The wind disturbance settings were deliberately chosen to ensure that the simulated 

quadcopter was able to maintain the planned route and avoid divergent 3D errors be-

tween intended waypoints and actual camera trigger locations. The results indicated that 

as wind conditions departed from the ideal zero-speed with no-turbulence scenario, there 

was an adverse impact on sUAS stability performance, measured in terms of positional 

accuracy, required flight time, and battery use. Several lessons learned related to real-

world quadcopter sUAS flight design under wind conditions for crash scene reconstruc-

tion are discussed and summarized below. 

The average 3D error and corresponding standard deviation of 3D error between 

planned waypoints and the actual camera trigger locations increased as the wind speed 

increased. The research findings suggested operating the simulated quadcopter when the 

wind is not greater than 11 m/s. It is important to note that this ArduPilot quadcopter 

module has been run on real-world systems such as 3DR Solo and Parrot Bebop 2, and 

this conclusion accords well with the accepted wind tolerance that the respective user 

guides recommend for these platforms [33,34,42]. This recommendation on wind toler-

ance is also consistent with that of other popular quadcopter sUAS platforms in current 

operation of similar size such as DJI Phantom 4 Pro/Pro+, DJI Inspire 2 and Skydio 2 [43–

45]. However, it should be realized that wind tolerance is platform dependent and 11 m/s 

as the documented value in this work may not be generalized for all types of quadcopter 

sUAS platforms. For the average 3D error and corresponding standard deviation of 3D 

error between planned waypoints and the actual camera trigger locations, the magnitude 

of the impact varied significantly as a function of the turbulence level. The simulation runs 

also demonstrated that the flight performance remained relatively stable under light to 

moderate turbulence levels (i.e., turbulence level ≤ 5).  

Flying perpendicular to the wind direction is a well-known practice for fixed-wing 

sUAS survey missions. It helps maintain stable ground speed during imagery data collec-

tion [46,47]. Results obtained in this study suggest that this rule of thumb for fixed-wing 

aircrafts applies well to quadcopter sUAS platforms. Under high wind and low turbulence 

scenarios (e.g., a wind speed of 14 m/s and turbulence level of 0), statistical results proved 

that flying in crosswind (i.e., α = 90° or 270°) and against headwind (i.e., α = 0°) were the 

most and least favorable flight patterns, respectively. While the average 3D error metric 

was not sensitive to the increase of wind speed in crosswind scenarios (i.e., α = 90° or 

270°), the average 3D error sharply grew four times if wind speed rose from 0 to 14 m/s 
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for the headwind scenario (i.e., α = 0°). Similar results were observed in the flight time 

metric. The sUAS spent nearly twice as much time on headwind flight segments (i.e., α = 

0°) than those segments where flight lines were perpendicular to the wind direction (i.e., 

α = 90° or 270°). As shown in the simulation runs, the total flight time metric was less 

sensitive to changes in wind speed, direction, and turbulence conditions than the average 

3D error and standard deviation metrics. The ideal flight paths for quadcopter sUAS plat-

forms are, therefore, supposed to stay nearly perpendicular to horizontal wind. However, 

in real-world scenarios, this goal may not be achievable in every single flight attempt due 

to road geometry at the crash location, overhead safety concerns, airspace restrictions and 

so forth. A general recommendation to the crash investigation team and sUAS remote 

pilot within high wind and low turbulence environments is to apply this conclusion when 

pertinent on-site conditions permit. 

Under strong wind conditions (e.g., wind speed ≥ 11 m/s and turbulence level > 5 for 

the simulated quadcopter platform in ArduPilot SITL), flight stability degraded dramati-

cally, resulting in disrupted frontal and side overlap settings due to large waypoint tar-

geting errors. This overlap disruption is expected to get amplified for flight missions at a 

low altitude (e.g., below 10 m AGL) due to smaller camera field of view (FOV). This can 

result in a decreased number of detected and matched features in a pair of overlapping 

images in SfM processing routine, potentially affecting the overall quality of 2D orthomo-

saic image and 3D point cloud products. Even if overlaps are not disrupted in some cases, 

remote pilots are supposed to take battery usage into careful consideration prior to con-

ducting high-wind flight missions. Nowadays, many commercially available multirotor 

sUAS platforms need a 2S to 6S lithium-ion polymer (LiPo) battery with the energy capac-

ity less than 6000 mAh to achieve best balance between performance, flight time, and 

weight [43–45,48,49]. Assuming this battery specification applies to the examined quad-

copter platform in ArduPilot SITL, Table 10 implies that when strong wind and turbulence 

exist (i.e., wind speed of 10.5 m/s and turbulence level of 20), the fully charged LiPo bat-

tery can potentially run out of power before completion of the mapping mission over the 

simulated crash scene area of 105 × 70 m. The rapid degradation in flight efficiency as 

observed from the simulation runs and platform demonstrates the need for adequate bat-

tery backup under high wind conditions, even when the scene is within a limited geo-

graphic extent. However, while this statement is generalized, it needs to be pointed out 

that battery consumption is platform dependent. Some lighter weight quadcopters may 

potentially complete a mission with one LiPo battery should they withstand as much wind 

as the simulated quadcopter type. 

At a crash scene, the quadcopter to be deployed on the ground usually stay in close 

proximity to the on-site investigators and nearby vehicles. If the wind speed is marginally 

below the aforementioned maximum wind tolerance (e.g., 11 m/s for the simulated quad-

copter in ArduPilot SITL), the remote pilot is supposed to pay extra attention during 

quadcopter take-off and landing phases. This is because a quadcopter sUAS is likely more 

susceptible to the air movement when it is flat on the ground and sitting still, causing an 

increased risk of flipping over in windy conditions. When the platform comes to hover in 

the air or traverse pre-defined waypoints to collect images for a photogrammetric survey, 

it should largely be able to withstand the maximum wind tolerance in a relatively steady 

state. In such phase, the gimbal stabilizer, which is nowadays attached to many commer-

cially available quadcopter sUAS platforms, also helps maintain favorable image quality 

by compensating for angular motions to the onboard camera.  

It is worth emphasizing that as a popular and reliable open-source autopilot software 

suite, ArduPilot has been used on a wide spectrum of autonomous systems with full-fea-

tured autonomous capabilities. ArduPilot on SITL features a high-fidelity simulation en-

vironment running a realistic flight dynamics model, and therefore, the major simulation 

findings summarized in this study are expected to be applicable to real-world flight sce-

narios. In addition, the choice of 80 m and 10 m AGL in the article was generic. Changing 
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flight altitude did not vary wind and turbulence effect and hence, did not affect the sim-

ulated results other than flight endurance and battery consumption. The wind and turbu-

lence parameters were defined and adjusted in Mission Planner interface, so the same 

wind impact results apply to other pre-defined flight altitude for the simulated quadcop-

ter without loss of generality. However, in a real-world flight mission for crash scene re-

construction, flight height is usually determined by considering factors such as desired 

GSD and camera model settings, flight time, geographic extent of the mission, and way-

point geometry given specific overlap settings. 

In the United States, public and commercial sUAS operations within the national air-

space system (NAS) require obtaining either a Certificate of Waiver or Authorization 

(COA), with the option of including a Section 333 exemption, or Part 107 license from the 

Federal Aviation Administration (FAA). For public safety and transportation agencies 

that administer auto crash investigation, having a COA may warrant sUAS operations 

across vast airspace regions. More importantly, the COA may grant these agencies privi-

lege of flying in suboptimal flight conditions, such as during nighttime and foggy hours 

to carry out an emergency survey immediately after a crash takes place. On the other 

hand, getting a Part 107 license usually requires less time and effort, but it is generally 

considered more restrictive in various dimensions compared with the COA. Thanks to the 

FAA’s recent efforts, waivers to Part 107 rules can be applied to gain approvals of certain 

sUAS operations outside the limitations defined in the rules [50]. For example, a waiver 

can request easing the restrictions of conducting routine sUAS operations above standard 

Part 107 flight height limits (e.g., 121.9 m (400 ft) AGL at the time of this writing). This 

type of special permission allows pilots of public safety and transportation agencies to 

operate sUASs with adequate flexibility at a crash scene while ensuring safety and com-

pliance. Recently, the FAA provided rule amendments to Part 107 to enable routine oper-

ations of sUAS over people, from moving vehicles, and at night under certain conditions. 

Nowadays, sUASs have become an integral part of our daily life, and technologies to ad-

vance sUAS safety evolve rapidly. This leaves open the possibilities of exploring impacts 

of multiple suboptimal weather conditions on sUAS flight performance for crash scene 

reconstruction in the near future. The intended future work also includes: 1) investigating 

wind impacts on fixed-wing sUAS platforms, and 2) conducting real-world flight missions 

with different commercially available quadcopters under varying wind conditions and 

assessing the flight performance as well as SfM photogrammetric products. 
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