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Abstract: Coral reefs, as biologically diverse ecosystems, hold significant ecological and economic 
value. With increased threats imposed on them, it is increasingly important to monitor reef health 
by developing accessible methods to quantify coral cover. Discriminating between substrate types 
has previously been achieved with in situ spectroscopy but has not been tested using drones. In this 
study, we test the ability of using point-based drone spectroscopy to determine substrate cover 
through spectral unmixing on a portion of Heron Reef, Australia. A spectral mixture analysis was 
conducted to separate the components contributing to spectral signatures obtained across the reef. 
The pure spectra used to unmix measured data include live coral, algae, sand, and rock, obtained 
from a public spectral library. These were able to account for over 82% of the spectral mixing cap-
tured in each spectroscopy measurement, highlighting the benefits of using a public database. The 
unmixing results were then compared to a categorical classification on an overlapping mosaicked 
drone image but yielded inconclusive results due to challenges in co-registration. This study 
uniquely showcases the potential of using commercial-grade drones and point spectroscopy in 
mapping complex environments. This can pave the way for future research, by increasing access to 
repeatable, effective, and affordable technology. 

Keywords: remote sensing; coral reefs; drones; linear unmixing; R; google earth engine 
 

1. Introduction 
Coral reefs are some of the most biologically diverse ecosystems on the planet, 

providing key ecosystem services to coastal communities through tourism, food security, 
and coastal protection [1]. However, reefs around the world are currently experiencing 
decline, through mass coral bleaching, ocean acidification, and water quality reduction 
[2]. Due to both their ecological and economic importance, more accessible and cost-effec-
tive methods to map and monitor the decline of coral reefs are needed. 

Many monitoring programs have focused on studying reefs locally using in situ field 
methods [3]. Due to the various difficulties of working in aquatic environments, there is 
increasing pressure to develop better, wide-scale methods to map and monitor coral reef 
benthos [4,5]. Collecting data through using remote sensing therefore complements re-
search conducted in the field. By developing more affordable and repeatable methods in 
remote sensing, research can be made more accessible and efficient. This is particularly 
useful in locations that are hard to access as the improved capacity to survey remote areas 
can facilitate repeated monitoring [6]. This can be achieved at broad spatial and temporal 
scales, using platforms such as drones, aircrafts, or satellites. 

Drone-based remote sensing presents a wide array of advantages with regard to lo-
cal, detailed assessments of study sites. With advances in the technological field over the 
years, the cost of using drone-mounted sensors has decreased, making consumer-grade 
drones accessible to many whilst reducing the need for expertise in operating commercial 
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grade drone technology [7]. Increased battery life has led to increased flight time, and 
decreased payload weight has made drones lighter and more user friendly [8]. Addition-
ally, on-demand deployment has the advantage of choosing favourable weather condi-
tions for collecting data [9]. Drones provide the benefit of flying under the cloud cover, 
resulting in greater flexibility in terms of data collection time frames compared to satellites 
and aircrafts. Furthermore, since external limitations presented by the environment influ-
ences the accuracy of benthic mapping studies, reducing the distance between the sensor 
and the subject reduces atmospheric effects on readings [10]. These combined benefits 
give drones competitive advantage over other remote sensing platforms. 

However, there are disadvantages in using drones that need to be considered as well. 
Data processing errors often occur within the quantitative analysis and classification 
steps. As for errors in data collection, these are presented by the sensors and platforms, 
the classification steps, and the environment. When collecting data with drones, it is im-
portant to note that the platform moves. When doing so, attached spectrometers do not 
always point directly downwards. This means that spectral readings may not always be 
taken from the area of interest [11]. Errors in data collection from drones may also occur 
through geopositioning, as the accuracy of the GPS location determined by the drone is 
not always exact. This is particularly the case in commercial-grade drones, as the inertial 
navigation systems that measure position information are often of low to medium accu-
racy to save costs and payload weight [12]. Similar to the inaccuracies present by drones’ 
GPS, in-water validation imagery collected in situ are also subject to spatial inaccuracy. 
This, along with scale differences in field data justify the difficulties to use field data for 
direct comparisons to aerial mapping [13]. 

Mapping and monitoring using remote sensing often relies on being able to accu-
rately record colour or light interactions in the environment [14]. This includes using spec-
trometers to make measurements of reflection, absorption, and transmission, and finding 
patterns or ‘spectral signatures’ that may be unique to features of interest – in this case, 
live coral, algae, rock, and sand. This information can be collected using imaging spec-
trometers (e.g., hyperspectral scanners) or with individual point based spectroscopy [14]. 
Spectroscopy has been used to distinguish between live coral and other coral reef benthos 
in the past, but these studies have largely been limited to in situ underwater or close-range 
measurements [15–20]. Capturing data in that way is time intensive and provides limited 
coverage. 

However, drone-based spectroscopy provides the opportunity to extend the cover-
age, providing a tool for rapid data collection. While other research has documented the 
potential for using small and lightweight imaging spectrometers on drone platforms (e.g., 
[21], little work has been done to test the extent to which the more affordable point-based 
spectrometers can also capture categorical and continuous variable information about the 
benthos and water column. 

In using drones, a major consideration is the influence of the water column and the 
nature of its influence under different light and environmental conditions, such as waves. 
With varying depths and water quality, there is likely increased confusion between more 
spectrally similar classes such as algae and coral due to uneven attenuation throughout 
spectral signatures [18]. For example, it has been found that with higher chlorophyll or 
sediment content in the water, more algae will likely be classified as coral [22]. Lee et al. 
[23] proposed a widely used inversion model that uses diffuse attenuation coefficients as 
functions of light absorption and scattering. This model was built upon to derive water 
column properties and water depth, which has been widely used in water column correc-
tion [24,25]. Classification of benthic groups was successfully achieved by Goodman and 
Ustin [24] through combining Lee et al. [25]’s semi-analytical inversion model with linear 
spectral unmixing, which allowed for the correction of the water column and achieved an 
overall accuracy of 80% for all substrate groups. BRUCE, a model built upon Lee et al. 
[25]’s algorithm achieved an overall accuracy of 79% in mapping benthic substrates [26]. 
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However, in clear, unturbid, and shallow waters under 5 metres, water column correction 
is not always necessary to capture accurate measurements of the benthos. 

This study tests the extent to which consumer-grade drones are capable of providing 
fine resolution information on coral reefs. This type of data offers a low-cost resource that 
has the potential to overcome separability issues between classes such as coral and algae, 
as well as a level of detail and information that cannot be provided by multispectral and 
RGB data. By using drones, there is the potential to bridge the scale gaps presented be-
tween field and satellite-based assessments. Achieving this would help pave the way for 
future research in the field of remote sensing, as it would demonstrate how accessible 
technology such as consumer-grade drones and public spectral endmember libraries can 
be used by anyone. As such, the aim of this study is to quantify the amount of various 
benthic substrates using drone-based spectroscopy on Heron Reef. 

2. Materials and Methods 
2.1. Study Site 

Data were collected at Heron Reef (23.44°S, 151.91°E), a shallow, lagoonal coral reef 
located on the Southern end of the Great Barrier Reef, Australia (Figure 1). The shallow 
depth of the reef and the clear water afforded by its offshore location allow for effective 
spectral data collection. As it is a lagoonal reef, the depth remains relatively constant 
across the reef. 

 
Figure 1. (a) Heron Reef study site. Image obtained from Google Earth and shows Heron Island, Heron Reef and the 
lagoon, along with the primary drone flight used to establish workflow. Drone flight is indicated as a series of black points. 
Satellite images were obtained from Google Earth. (b) Mosaicked RGB image of reef and study area on Google Earth 
Engine. Note that in Google Earth Engine the creation of completely circular areas is not possible and therefore the use of 
a pentagon was used to get the closest equivalence for linear unmixing results. (c) Example spectrum from drone flight 
sampled from the high coral cover region of the reef. 

2.2. Data Collection 
2.2.1. Public Spectral Library 

We used a spectral library of known features to calibrate and validate our drone spec-
troscopy mapping model. For the purpose of this study, we defined the benthic substrate 
features of interest (spectral endmembers) as live coral, algae, sand, and rock as these are 
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the most common generalised substrate groups found at the study site [27]. Representa-
tive spectra were chosen from the public spectral library of substrata collected in situ on 
Heron Island in 2006 by Dr Christian Roelfsema and Dr Stuart Phinn [28]. The public li-
brary consisted of endmember spectra that were recorded at shallow depths using a dive 
torch as a light source 5 cm away from the subject and a white panel was used as a baseline 
to calibrate the respective spectrometers. The dark current of the spectrometer (concurrent 
to the thermal variation) was also accounted for, removing the effects of dark current 
noise. Recordings of the digital number obtained were converted to reflectance values 
through the equation below, where dark current is written as Dark, Target refers to the 
reflectance of the target, and White refers to the reflectance of the white panel: 𝑹 𝑻𝒂𝒓𝒈𝒆𝒕 𝑫𝒂𝒓𝒌𝑾𝒉𝒊𝒕𝒆 𝑫𝒂𝒓𝒌  (1)

2.2.2. Drone Spectroscopy 
Spectroscopy data were collected using an Ocean Optics STS-Vis 15° field of view 

spectrometer, which measured reflectance at bands within the effective spectral range of 
350 to 800 nm mounted on a 3DR Solo drone [29]. At a flying altitude of 20 m, this achieved 
an approximate spectral and spatial resolution of 0.13 nm and 5.2 m, respectively (Figure 
2). Point spectroscopy data were collected approximately four times per second and each 
data point was attributed with the time and coordinates of the drone at the time of capture. 
The drone was flown up and down adjacent flight paths using a trajectory perpendicular 
to the shore in order to obtain a cross-reef-flat study area (Figure 1a). Data were calibrated 
to reflectance using a 99% Spectralon® reference panel (Labsphere) [22]. A Phantom 4 Pro, 
with an RGB camera also captured photos over the same region for accuracy assessment. 

 
Figure 2. Drone footprint of flight path for spectrometer data collection. Since drone was flown at 
a constant height of 20 m, a point resolution of approximately 5.2 m diameter was achieved. 

2.3. Data Processing 
As seen in Figure 3, there are three subsequent steps in the methods tested which are 

described below. As it relies entirely on running the code written on R and Google Earth 
Engine, there is no need for expertise regarding commercial software, nor is there the need 
to obtain licenses for paid software (see Supplementary Materials). 
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Figure 3. Workflow of the study. Each column represents the workflow to achieve the three objectives. The first column 
demonstrates the steps to obtain and modify the spectral library from a public database to obtain the four spectra for live 
coral, sand, algae, and rock. The second column shows the steps to obtain the processed drone data. These two datasets 
will be used in combination to derive the fractional contributions of each endmember class. The third column shows the 
steps of the accuracy assessment. The output datasets are shown in boxes and unboxed comments represent the steps for 
each objective. 

2.3.1. Evaluating the Spectral Library 
To choose endmember spectra, a principal component analysis (PCA) was conducted 

on all the endmembers present in the public library [30]. This method to visualise the 
maximum variation seen between data points has been used in studies proving its use in 
endmember determination [31]. Spectra that were projected far apart from other substrate 
classes and within their own substrate class were chosen. Preliminary review comparing 
spectral signatures to known “pure” endmember signatures was conducted to confirm 
suitability of the endmember. 

Spectra were processed to create the final endmember library of the four substrate 
classes (Figure 3). Spectra were smoothed through Savitzy–Golay smoothing and normal-
ised for vector length. Vector length normalisation involves calculating the length of re-
flectance vectors and dividing reflectance values by the vector length [32]. This ensures 
that a focus is given on the shape of the spectral signatures in the spectral unmixing step 
rather than the absolute values. Finally, the spectra were tested for collinearity using the 
detect.lindep()function in R from the plm package [33,34]. There should be no collinearity 
or linear dependence detected between endmember spectra as this is likely to lead to mis-
classification. 

2.3.2. Evaluating Drone Spectroscopy 
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A separate endmember library consisting of endmembers sampled from the hyper-
spectral drone data were created through conducting a principal component analysis of 
the data and choosing the “purest” endmembers found clustered furthest apart. This was 
used as a comparison to the public endmember library in order to evaluate the pros and 
cons of each. Sampling within the studied dataset gives the advantage of providing spec-
tra that will inherently be sourced from the same sensor and in the same environmental 
conditions. However, the likelihood of providing “pure” spectra is low due to the resolu-
tion of the spectroscopy data and the fine scale of spatial heterogeneity of the reef benthos. 

Spectral reflectance values of the final endmembers were corrected for through 
smoothing and normalising in the same manner as the drone data, as explained above. 
Spectra were then resampled in order to coordinate with the wavelengths sampled in the 
drone spectroscopy dataset. Resampling was conducted through the resample() function 
in the spectrolab package using R [33,35]. The algorithm will then be used to separate 
these endmembers and determine the fractional contribution of each endmember. 
Through this, live coral cover may be estimated. This section of the workflow was pro-
cessed in R (Figure 3) [33]. 

2.3.3. Unmixing Drone Spectroscopy 
Spectra were imported into and processed in R in the appropriate format to run the 

code (columns as wavelengths and rows as individual points) and work through the steps 
of objective 2 in the workflow (Figure 3) [33]. Prior to the unmixing step, spectra from the 
drone data were also smoothed using Savitzy–Golay smoothing and normalised, through 
vector length normalisation [32,36]. Spectra collected by the drone were subset to record 
reflectance between 400 and 750 nm due to the opaque nature of the water column at 
wavelengths above and atmospheric scattering below that in the visible spectrum. Data 
reduction serves in reducing dimensionality of the dataset, which further facilitates algo-
rithm performance, complexity, and data storage [37]. Due to the time limitations pre-
sented by the study and the aim of shaping a more accessible, repeatable, and relatively 
simple workflow, water column was not corrected for using radiative transfer equations. 
Previous studies have confirmed that classification of reef substrata using the aforemen-
tioned spectral range remains possible at depths shallower than six meters, which was the 
case for this study [38]. 

A single endmember spectral mixture analysis (SMA) was conducted to unmix 
endmembers for the hyperspectral data obtained. This was chosen because previous stud-
ies, have established its ability to unmix benthic classes, its accessibility of unmixing algo-
rithms, and the lower computational power needed compared to MESMA or non-linear 
SMAs. Single endmember unmixing functions as a linear unmixing method. This assumes 
a linear contribution of endmembers to the spectra. This implies that the fractional spatial 
contribution of an endmember will equal the fractional spectral contribution an endmem-
ber will have on a spectrum. Although it is unlikely that the nature of spectral mixing 
among reef substrata is completely linear, most coral reef benthic studies that have used 
this method have yielded positive results [20,39]. The lack of perfect linearity in coral reef 
systems could be explained by the morphologic nature of coral colonies, where spectral 
reflectance may differ depending on the viewing angle of the colony [40]. This is also im-
portant when considering different substrate types overlaying one another. For example, 
a coral colony may have a dead top that might present as turf algae, whilst the rest of the 
coral colony below classifies as live coral. Despite this, using a linear unmixing model 
provides the additional advantage of being less sensitive to collinearity between endmem-
bers [41]. This is useful for this study as live coral spectra and algae spectra are known to 
be highly similar, resulting in an increased likelihood of estimation errors if a non-linear 
model is used. 

Non-negative and least squares (NNLS) constraints were applied to carry out simul-
taneous inversion of the data and endmember determination. The inversion step allows 
the fractional abundances retrieved to be constrained to be non-negative, meaning that all 
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fractions within a pixel will be positive, rendering the results more realistic over uncon-
strained methods. The model was not forced to sum to one, to give a better indication of 
the unexplained spectral contributions by endmembers. If the summed fractional contri-
butions obtained from the linear unmixing step are significantly less than one, this will 
indicate the inability of the set of endmembers to fully explain the spectral signature of 
the hyperspectral data point. The linear unmixing algorithm chosen was performed 
through R using the unmix() function in the package RStoolbox [33,42]. It was chosen as 
the model implies sparsity within the pixel of certain endmembers, meaning that some 
endmembers within a hyperspectral pixel can be set to zero. This is important as not all 
endmembers will necessarily be present in all pixels. NNLS unmixing is also widely used 
in the field of marine studies due to its simplicity and proven ability to yield more accurate 
results than unconstrained unmixing [43,44]. In addition, NNLS unmixing also decreases 
fractional retrieval error over unconstrained methods, especially in waters under 5 m of 
depth, which was the case for this study’s dataset. Previous studies have demonstrated 
that the highest accuracy of classification occurs when the fractional percentage of the 
endmembers cover over 25% of the pixel recorded [45]. As coral colonies on Heron Reef 
can span over an area larger than one pixel (>5m wide), accurately determining live coral 
cover using this method is likely. 

2.4. Accuracy Assessment 
Using RGB/multispectral drone data collected along the same flight paths, an accu-

racy assessment was conducted. An RGB image was created by mosaicking images col-
lected along the flight path. Live coral cover was estimated for each RGB image through 
supervised classification using Google Earth Engine, based on the methods of Bennett et 
al. [13] yielding high classification accuracy of over 85% for live coral. The workflow in 
this study was modified to suit the format of the dataset and to calculate substrate cover 
for point sizes comparable to those obtained by drone spectroscopy (Figure 3). 

Within the multispectral images, polygons delimiting each substrate class were cre-
ated to train the classification. The same number of random points across substrate classes 
were then selected within these polygons to ensure equal sampling and validation of the 
training data. The Classification and Regression Tree (CART) algorithm was chosen, as 
the most suitable when compared to Random Forest [46]. To calculate live coral cover, 50 
randomly generated corresponding points of overlapping coordinates with the hyper-
spectral drone data were marked. A pentagonal area of 2.6 meter radius was then demar-
cated for each point and the live coral cover within each area was calculated. This radius 
was chosen to equate the circular area of the spectral point’s 5.2 meter diameter. Note that 
in Google Earth Engine the creation of completely circular areas is not possible and there-
fore the use of a pentagon was used to get the closest equivalent of linear unmixing results. 
The accuracy of live coral cover assessment through spectral unmixing was then assessed 
using a Spearman’s correlation test between the measured live coral cover (recorded from 
the RGB classification) and the percentage values obtained from spectral unmixing. This 
was also conducted for the substrate classes of algae, rock, and sand. Through conducting 
the linear spectral unmixing, the root mean square error was also obtained for each 
endmember for an additional measure of error for each individual endmember. 

3. Results 
By combining drone spectroscopy data and a public spectral library, linear unmixing 

of the spectroscopy points collected on the drone flight was achieved. Over 82% of the 
spectral variance seen in the drone spectroscopy dataset was explained by the chosen 
endmembers. With statistically significant correlations between live coral, rock, and sand 
cover derived from the linear unmixing and the RGB classifications, we highlight the po-
tential for using drone spectroscopy in mapping coral reef habitats. 

3.1. Evaluating Spectral Libraries 
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The PCA was conducted on a total of 101 spectra from a public spectral library that 
were divided into eight substrate classes. There was a lack of distinct clusters for all sub-
strate classes, but with most coral spectra forming a cluster with low scores in the first 
principal component (Figure 4a). Spectra ‘56′ was chosen as it was projected furthest away 
from the highest density of algae spectra, with high scores in the first component. The 
coral spectra chosen was of an Acropora colony, which was deemed appropriate due to 
the common nature of Acropora in shallow, lagoonal waters, but also specifically at Heron 
Reef in the area of the data capture [47]. The projections of algae spectra also led to the 
choice of spectrum ‘67′, which was that of turf algae. This was also deemed appropriate 
due to turf algae generally being the most abundant algal assemblage found on coral reefs 
[48,49]. For both sand and bare rock, due to the low number of spectra present in the pub-
lic spectral library, spectra ‘80′ and ‘48′, respectively were chosen, being positioned away 
from the other chosen spectra. 

The four spectra were normalised, smoothed, and tested for linear dependence, for 
which results indicated a lack thereof. Spectral signature shapes were compared to known 
endmember spectra in the literature to validate the likeliness to “pure” spectra. Compar-
ison to the spectra published by Joyce and Phinn [43] confirmed that spectra chosen for 
the endmember library were suitable (Figure 4b). 
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Figure 4. (a) Principal component analysis of endmember spectral signatures. Chosen endmembers are circled in green 
(coral), red (algae), green-blue (rock), and blue (sand). Various other substrate classes are also included from the spectral 
library but were not included in the formation of the final endmember library. The first principal component accounts for 
37.5% of the variation, whilst the second component accounts for 29.43%, indicating a lack of full explanation of variance 
by the first two principal components. (b) Spectral signatures of chosen endmembers. Spectra were all smoothed using 
Savitzy–Golay smoothing and normalised for vector length. 

3.2. Evaluating Drone Spectroscopy 
To challenge the use of public libraries, a PCA was conducted on the drone spectros-

copy data to evaluate the potential for endmember extraction within the dataset. As seen 
in Figure 5i, no clear clusters can be seen, but points were projected across the plot in three 
directions (a, b, and c). Points projected around “b” and “c” were, respectively situated 
with low and high scores in the first principal component, whereas points around “a” 
were projected with high scores in the first and second principal components (Figure 5i). 
Situating these spectra on a map indicated these represent deep water, coral, and sand 
(Figure 5ii). This was validated upon further inspection of the spectral signatures, with 
the deep-water signature showing a characteristic continuous dip in reflectance past 
750nm (Figure 5iii). However, due to the spatial resolution of the drone data (circular area 
of 5.2m diameter) and the heterogeneous nature of coral reefs, it was unlikely that the 
extracted spectra were as “pure” as those obtained from the public spectral library. The 
difference in spectral signature between the extracted spectra and the public spectral li-
brary spectra could also be attributed to endmember heterogeneity, where the extracted 
endmembers for coral could have represented different species or even bleached corals. 
Despite some clustering in the plot, it was difficult to confidently extract “pure” algae and 
rock endmembers, thus reinforcing the advantages of using the public spectral library. 
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Figure 5. (i) Principal component analysis of hyperspectral drone data, (ii) Map of drone flight, (iii) Spectral signatures of 
self-sampled spectra. Spectra were chosen from the points that clustered the furthest apart, where “a” is likely to represent 
deep water, “b” coral, and “c” sand. Note that spectra are unlikely to be pure but serve as the purest spectra within the 
drone dataset. Axes are not shown to the same scale for better visualisation of spectral trends. 

3.3. Unmixing Drone Spectroscopy 
A total of 2,553 reflectance measurements were unmixed during the spectral unmix-

ing step using the selected endmember library. Spectral unmixing of the drone data using 
the endmember library created revealed a live coral coverage ranging from 0 to 24% across 
the drone flight path studied. An increasing coral cover gradient can be observed pro-
gressing away from the island (Figure 6a). Similarly, rock cover decreased along the same 
gradient, but was found in lower density compared to live coral, ranging from 0 to 17% 
(Figure 6b). Conversely, sand cover is higher on the sandy reef areas with sand cover 
ranging from 0 to 64%, as expected. Data points where no sand influenced the spectral 
signatures all coincide with the highly structured section of the reef preceding the reef 
slope (Figure 6c). Algae showed the greatest range of percentage cover, of 0 to 69%. As 
seen on Figure 7d, most points displayed a percentage algal cover between 25 and 60%, 
which is high compared to the other substrate classes. 
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Figure 6. (a) Percentage benthic habitat type estimated from linear unmixing using drone spectroscopy: (a) Coral, (b) rock, 
(c) sand, and (d) algae. Results were overlaid on a map of the study area in question. Substrate cover is shown from a scale 
of 0 to 1. The model yielded an RMSE of 0.00204. 

As fractional contributions of endmembers were not forced to sum to one (100%), the 
unexplained fractional contributions may be explained by endmembers that were not in-
cluded in the endmember library, such as species within the same class with variable spec-
tra or completely separate substrate classes such as marine biota or mud. Overall, the 
summed percentage cover of the four endmembers for all points ranged from 82 to 100%, 
showing that the endmembers chosen were able to account for at least 82% of the spectral 
mixing seen within each drone point. Over 78% of data points studied showed total per-
centages of over 90%. This demonstrates that the use of only four endmembers can pro-
duce a relatively representative map. 

3.4. Accuracy Assessment 
To check the validity of the results, an accuracy assessment was conducted to com-

pare the unmixing results to a classification of fifty polygonal areas (Figure 7). As seen on 
the classified mosaicked image, the inner reef flat showed the greatest number of pixels 
being classified as sand. Further towards the crest, algae is the dominant substrate class, 
with coral and rock substrate types increasing in this area as well (Figure 7). 
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Figure 7. Mosaicked RGB image of the corresponding study region showing the fifty randomly generated pentagons to 
calculate substrate cover with a classified map of the four substrate classes: coral (purple), rock (orange), sand (yellow), 
and algae (green). 

Retrieving fractional contributions by linear unmixing revealed an unsurprising spa-
tial distribution of the endmembers unmixed. Spearman’s correlation tests revealed a sig-
nificant moderate correlation between live coral cover derived from spectral unmixing 
and from RGB classification (rs = 0.408, S = 13085, p = 0.00297) (Table 1). Results estimated 
a mean live coral cover of 17% and 14%, respectively for the unmixing and RGB classifi-
cations. As seen on Figure 8a, this was predominantly the case at low to moderate coral 
cover (Figure 8a). Although a correlation is seen, in order to better test the correlation 
between the unmixing results and the RGB classification, a greater range in coral cover 
would need to be tested. 

Similar to live coral, rock cover yielded a moderate correlation between classification 
results (rs = 0.505, S = 10943, p = 0.000158). However, rock cover was underestimated in 
the linear unmixing process when compared to the RGB classification (Figure 8b). This 
underestimation may have been the result of misclassification within the accuracy assess-
ment, by falsely classifying other benthic types as rock. Confusion between rock and algae 
is especially likely due to the difficulties in distinguishing turf algae that may be over-
grown on rock or dead coral specimens. This would have resulted in an overestimation of 
rock in the RGB classification. 

On the other hand, algae cover was shown to have a low and insignificant correlation 
between unmixing and RGB classification results (rs = 0.115, S = 19570, p = 0.424) (Figure 
8c). Again, this may be due the inability of distinguishing between turf algae and other 
benthic groups in the RGB classification, but could also be linked to human error in the 
training step, being limited by less spectral information and inefficient spatial resolution 
to confidently classify groups. 

Sand classified by linear unmixing had the highest correlation with that obtained 
from the accuracy assessment, likely meaning that the sand measured is in truth, sand (rs 
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= 0.620, S = 8392.8, p = 1.208 × 10-6). Sand was underestimated in the linear unmixing 
process, which could potentially be explained by error in the unmixing step, but also could 
be attributed to misclassification in the RGB classification (Figure 8d). Sand could have 
been underrepresented due to the unmixing algorithm detecting spectral influences from 
other substrate classes such as algae and small biota that may be too small to be visualised 
with the resolution available from the RGB image. Sand may also be variable in origin, 
grain size, and mineralogy, and therefore one endmember may not explain the spectral 
mixing caused by both silicate sand and carbonate sand from bioeroders such as parrot-
fish and physical erosion. 

 
Figure 8. Relationship between substrate cover determined from linear unmixing and from the RGB classification. The 
black line represents the best fit line and the grey area indicates the 95% confidence interval. (a) Regression results for live 
coral cover, (b) Rock cover, (c) Algae cover, and (d) Sand cover. Axes are not shown to the same scale for better visualisa-
tion of individual trends. 

Table 1. Results of Spearman’s correlation test. Significant correlations are highlighted in bold. 

Substrate type rs S p 
Live Coral 0.408 13085 0.00297 

Algae 0.115 19570 0.424 
Sand 0.620 8392.8 1.208 × 10−6 

Rock 0.505 10943 0.000158 
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4. Discussion 
4.1. Using public Spectral Libraries 

Successfully using public spectral libraries for these types of analyses encourages 
mapping efforts by making unmixing studies more accessible (by decreasing the need for 
field collection of endmembers), as well as opening doors for the facilitation of endmem-
ber determination [28]. It is important to note that determining endmembers arguably re-
mains the most crucial step in the spectral unmixing process [50]. Acting as the first step 
along with the pre-processing of data, minimising error is vital, as error caused from in-
sufficient or unrepresentative endmember selection can propagate errors in all subsequent 
steps of the analysis. 

Despite yielding positive unmixing results, direct improvements to the methods can 
be achieved in the future through additional selective steps. Choosing endmembers from 
the PCA plot is the only step that is not automated in the linear unmixing workflow and 
relies on user choice. Although the endmembers chosen were successful in unmixing the 
drone spectroscopy points in this study, the methods used in choosing endmembers 
should be automated to remove bias and ensure repeatability. The method is also flawed 
in that choosing endmembers that cluster far apart on a PCA plot could lead to the extrac-
tion of anomalies, leading to the use of endmembers that are not representative of their 
substrate class. This stresses the need for standardised endmember determination meth-
ods. Examples of methods include endmember determination include iterative endmem-
ber selection (IES) or endmember average RMSE (EAR) [50]. Using automated steps such 
as these will help in standardising the proposed workflow of this study and ensure that 
the choice of suitable endmembers is statistically backed. 

With marine public spectral libraries becoming more accessible and complete, it may 
be soon possible to find pure spectra with matching sensors and environmental conditions 
as those collected for individual studies, facilitating the pre-processing step by decreasing 
the need for extensive normalisation of datasets. In order to achieve this, future data col-
lection methods should aim to standardise methods for collecting spectra for libraries and 
provide additional information on the factors affecting intra-specific variability, such as 
developmental stage, tidal position, and bathymetric position [51]. Public databases are 
commonly used in the fields of mineral exploration and canopy analysis, where organisa-
tion and individual researchers have combined efforts to develop shared libraries for a 
range of different materials, both natural and anthropogenic. To minimise the variation in 
spectra caused by differences in data collection techniques, various standardisation meth-
ods have been proposed, such as continuous wavelet analysis, a form of scaling spectra 
[52]. By doing this, spectral libraries become increasingly transferrable between studies 
and the use of spectra from different libraries can be made possible. Shared public data-
bases such as USGS, SPECMIN, and SPECCHIO also help in identifying the requirements 
of a spectral library, by using a Database Management System (DBMS) that stores spectral 
information in relational tables [53]. However, this does not necessarily enforce data in-
tegrity, reinforcing the need for standardisation methods during data collection. 

4.2. Benthic Distribution on Heron Reef 
According to the current Reef Check Australia Health Report of Heron Island, the 

reef comprises of approximately 37% live coral, similar to the 36% in 2017, the year the 
drone spectroscopy data were collected [54]. In that year, across 17 sites studied, hard 
coral cover ranged between 3% and 65%, which is the range within which the unmixed 
fractional contributions fell within. The highest coral cover was highest at the reef slopes 
and the lowest on sandy reef flats, which agreed with findings by the Reef Check Report 
[54]. Although the unmixing results fall within the live coral cover range found by Reef 
Check, comparing results to monitoring studies must always be done with caution, as 
these in situ studies often overestimate live coral. This is often the case due to bias in 
choosing monitoring sites, where the sandy regions tend to be monitored less frequently. 
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Additionally, the findings of this study were based on one single drone flight and there-
fore may not serve as an accurate representation for the benthic distribution on the rest of 
Heron Reef. This could explain the slightly lower overall coral coverage yielded by the 
unmixing at 17% compared to the estimated 37% found by Reef Check. 

For algae, a previous study by Roelfsema et al. [55] found that chlorophyll a concen-
trations found in Heron Reef sediments were among the highest reported for any marine 
sediments. This was especially the case on the windward side of the reef, which is where 
the drone data from this study was captured. The sediments sampled were used to quan-
tify benthic microalgal communities [46]. The high levels of benthic microalgae could be 
a factor explaining the dominance of algae seen in the findings of the spectral unmixing, 
as the endmember of algae could have extracted the fractional contributions of turf, 
macro- and microalgae combined. Similarly, this could also explain the low rock cover 
found through the unmixing process, as rock covered by turf algae is likely to have a 
spectral signature similar to that of the turf algae endmember used. 

4.3. Sources of Error and Potential Improvements 
Weak correlations in the accuracy assessment may be attributed to error in the data 

collection and error in misclassification during data processing. Whilst errors in the data 
processing generally occur in the quantitative analysis and classification steps, errors in 
data collection are accumulated through the sensors and platforms, the classification 
steps, and the water column, as previously mentioned [56]. As this study involved com-
bining three separate datasets, errors produced within collecting or processing of all three 
need to be considered. 

4.3.1. Sources of Error from Sensors and Platforms 
As discussed, sources of error from sensors and platforms may arise due to the insta-

bility of the moving drone platform and inaccuracies in geopositioning. To avoid this, 
spectrometers may be attached on a gimbal. However, not all commercial-grade drones 
have a built-in gimbal and attaching one will add additional weight and cost. Errors in 
geopositioning present implications for the accuracy assessment step, as matching up the 
coordinates between the drone spectroscopy data and the mosaicked RGB image will not 
be exact. This could explain the lack of correlation seen in the accuracy assessment, as 
spatial inaccuracy, even minimal, can lead to significant changes in substrate cover in a 
heterogeneous environment. As the spectroscopy data are not in the form of imagery and 
do not provide spatial context, matching up of data through landmark structures is not 
possible. This highlights one of the drawbacks of this study’s chosen accuracy assessment. 

4.3.2. Sources of Error from the Classification Steps 
It must be noted that the accuracy assessment used in this study serves as one option 

to testing accuracy without the need for underwater data collection. The RGB classifica-
tion in itself presents inaccuracies, as it relies on visual classification by the user and is 
therefore prone to human error and bias. It is also limited by the amount of spectral infor-
mation it holds and is more likely to confuse benthic groups such as coral and algae [27]. 
Therefore, the classification obtained from the linear unmixing has the potential to show 
higher accuracy compared to that obtained from the RGB image. To improve the RGB 
classification accuracy, more polygons and points could have been used to train the clas-
sifier and sun glint could be added as a substrate group to minimise misclassification. In 
making sure that we collect data in the most appropriate way in the first place, we mini-
mize artefacts due to sampling and environmental conditions [57]. As this study estab-
lishes a protocol where in situ underwater validation was not conducted as part of it, fur-
ther testing is recommended for future studies to validate this. 

As previously discussed, GPS location errors also arise during underwater validation 
and images collected underwater in situ cannot be compared at the same scale. Efforts to 
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minimise GPS location errors include the use of georeferenced quadrat sampling in esti-
mating benthic cover, combined to underwater photography [13]. However, this would 
greatly increase data collection effort and does not address the issue of scale. An alterna-
tive would be to conduct an accuracy assessment using imagery collected from the same 
drone and at the same time of drone spectroscopy collection. This would reduce spatial 
discrepancies between the spectroscopy dataset and the validation data, as both would be 
collected from the same source. Although this may serve as a credible accuracy assess-
ment, the need to develop more effective methods for validation is highlighted. 

Aside from the accuracy assessment, misclassification errors could have occurred in 
the linear unmixing step. These errors could be linked to inefficient data reduction, the 
absence of representative endmembers, or the confounding presence of the water column. 
Studies have found that many of the differences between coral and algae lie between 520 
and 580nm and therefore linear unmixing could have been conducted on a dataset where 
these wavelengths were given a greater weighting [13]. Hochberg et al. [27] used a multi-
variate stepwise selection procedure to isolate the wavelengths that best differentiate be-
tween substrate classes. Spectral feature selection is another method that relies on extract-
ing endmembers that minimise intra-class variability and maximise inter-class variability 
[58]. These methods remove less meaningful information in the dataset for more efficient 
classification. Inefficient data reduction could therefore be improved by focusing on 
wavelengths where diagnostic features of substrate classes can be found, but the disad-
vantages of losing data must be considered. 

Inaccurate estimation of benthic cover could have also occurred in the linear unmix-
ing step by not including certain endmember classes (biota such as holothurians) or not 
accounting for endmember variability within the analysis [59]. Due to the inherent spec-
tral variation that occurs within and between species of the same class, using one 
endmember spectra per substrate class leads to an oversimplification of the model that 
does not incorporate the heterogeneous nature of coral reef habitats [50]. Algae comes in 
the form of more than turf, with various species of red, brown, green, fleshy and calcare-
ous algae, whereas corals can be classified as bleached, blue, brown or soft/gorgonians, 
that each differ in spectral signatures [60]. In order to account for spectral variability 
within endmember classes, previous studies have used averages of various species and 
yielded a lower overall RMSE. 

Alternatively, implementing MESMA instead of single endmember SMA accounts 
for endmember variability [45,61]. Using MESMA, where different endmember spectra 
can be chosen depending on the pixel, has shown to yield lower RMSE values in coral reef 
unmixing studies in the past [62,63]. However, MESMA can also be flawed as it cannot 
fully incorporate the heterogeneous nature of coral reefs, only choosing one endmember 
spectra per class in each pixel or point [62]. To evaluate its potential with point spectros-
copy data such as that used in this study, further research should be conducted. Results 
can then be compared to those from studies in which endmember variability is not ac-
counted for, or where an average signature is used to represent one endmember class. 

There are significant biological implications associated with grouping species to-
gether within endmember classes or omitting substrate classes. Although some mapping 
studies may not require the differentiation within algal and coral groups, the use of such 
proxies for coral reef health could be misleading. Generally, an increase in turf or macroal-
gae over time can represent a phase shift from coral-dominated to algae-dominated reefs, 
indicating a decline in reef health as the presence of some algae affects coral recruitment 
and survival [48]. However, observed increases in crustose coralline algae (a red alga) can 
instead be an indicator of increasing coral reef health [48,64]. Although this study is a 
development and test of a workflow that does not include testing biology, it is important 
to consider for future applications of the technique what biological implications the da-
taset being used can have. 

4.3.3. Sources of Error from the Environment 
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This study was conducted on a shallow study site, when environmental conditions 
were good and water quality was high, and therefore it was an optimal study site to test 
the effectiveness of the workflow in ideal conditions. If this method were to be applied in 
deeper water, water column correction would be needed. Lee et al. [25]’s algorithm con-
sistently showed improvements in classification accuracy when applied. This should be 
used to build upon the workflow in this paper, for future studies requiring water column 
correction. Combining a semi-analytical model with linear unmixing on hyperspectral im-
agery has been achieved with positive results by Goodman and Ustin [24] and Klonowski 
et al. [65], demonstrating the potential for using such models on spectroscopy data. It is 
important to note that water column correction remains a difficult task, explaining the 
choice to exclude it from this study, for the sake of simplicity in using it for shallow reefs. 
Nonetheless, through the use of linear unmixing techniques, this workflow serves as a 
first step towards scaling mapping of hyperspectral point data and can be added to in 
order to incorporate water column correction. 

4.4. Examples of Future Applications 
Although accurate measurements have been done using the relatively more afforda-

ble RGB data, there are benefits of using data with a greater amount of information. Map-
ping studies, such as that by Bennett et al. [13] focused on using RGB images to extract 
substrate cover, instead of spectroscopy, and showed the pros and cons of doing so. Alt-
hough yielding positive results, the paper highlighted the difficulties in differentiating 
between certain substrate types such as live coral and rock, where live coral cover esti-
mates are often overestimated due to rock being classified as coral. The reason for the use 
of spectroscopy in this project was to assess whether the use of a greater number of wave-
bands within the data would help to differentiate between similar looking substrate clas-
ses. In the case of estimating live coral cover, or the cover of other types of substrata, a 1D 
coverage could be an effective way to obtain estimates whilst ensuring a higher accuracy 
of classification than provided through the use of RGB images. Using such data can be 
useful for more sophisticated information extraction purposes in the future. 

Although spectroscopy has been shown to successfully help in monitoring live coral 
cover, it is not limited by this application. Since it provides a way to access complex da-
tasets without the need for extensive expertise in remote sensing, the proposed workflow 
could be used in various fields such as quantitative mapping, through monitoring bleach-
ing and reef health, without being restricted by the environmental and time limitations 
offered by a satellite. Joyce and Phinn [66] used hyperspectral imagery to derive chloro-
phyll content of coral reef substrates. Quantifying pigment concentrations using drones 
may serve as early warnings for bleaching or health monitoring on the reef for conserva-
tion managers. Drone spectroscopy could be further applied to quantitative mapping by 
quantifying in situ fluorescence spectra of benthic substrates, which if further tested, 
could open doors to quantifying photosynthetic potential of the substrata [67]. This gives 
an indication of applications of drone spectroscopy that need to be tested, which could 
facilitate monitoring through directly quantifying key variables. Developing this work-
flow for mapping substrate cover demonstrated a relatively simple application, but helps 
to present a method that enables a range of other more sophisticated applications. The 
applications are endless and the simplicity of running the code makes these applications 
achievable. 

5. Conclusions 
Overall, using drone spectroscopy data shows promise for mapping benthic cover on 

Heron Reef. This type of data offers a low-cost resource that has the potential to provide 
a level of detail and information that cannot be provided by multispectral and RGB data. 

The process of determining endmembers in this study was able to account for over 
82% of the spectral mixing throughout all spectral measurements collected from a con-
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sumer-grade drone and was able to moderately determine the exact fractional contribu-
tions of live coral, sand, and rock. Although there still remains the need to further refine 
current workflows, this method provides an accessible process that can be applied to data 
collected by affordable technology. Due to this, future research should focus on testing 
the effectiveness of using drone spectroscopy for specific applications, such as quantita-
tive mapping or detecting coral bleaching. Further recommended steps to improve the 
study include an automated endmember selection step, bathymetric retrieval, and water 
column correction. 

This highlights the importance of this study, as it can hopefully help further wide-
scale research and monitoring programs, not only in highly studied sites, but in remote 
areas. With the increase in accessibility to both drone hyperspectral data and public spec-
tral libraries, high spectral resolution information will be made available for mapping 
studies for a range of various research, as the applications for remote sensing are endless. 
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