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Abstract: Aircraft ground de-icing operations play a critical role in flight safety. However, to handle
the aircraft de-icing, a considerable quantity of de-icing fluids is commonly employed. Moreover,
some pre-flight inspections are carried out with engines running; thus, a large amount of fuel is
wasted, and CO2 is emitted. This implies substantial economic and environmental impacts. In this
context, the European project (reference call: MANUNET III 2018, project code: MNET18/ICT-3438)
called SEI (Spectral Evidence of Ice) aims to provide innovative tools to identify the ice on aircraft
and improve the efficiency of the de-icing process. The project includes the design of a low-cost
UAV (uncrewed aerial vehicle) platform and the development of a quasi-real-time ice detection
methodology to ensure a faster and semi-automatic activity with a reduction of applied operating
time and de-icing fluids. The purpose of this work, developed within the activities of the project,
is defining and testing the most suitable sensor using a radiometric approach and machine learning
algorithms. The adopted methodology consists of classifying ice through spectral imagery collected
by two different sensors: multispectral and hyperspectral camera. Since the UAV prototype is under
construction, the experimental analysis was performed with a simulation dataset acquired on the
ground. The comparison among the two approaches, and their related algorithms (random forest
and support vector machine) for image processing, was presented: practical results show that it is
possible to identify the ice in both cases. Nonetheless, the hyperspectral camera guarantees a more
reliable solution reaching a higher level of accuracy of classified iced surfaces.
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1. Introduction

Human safety is one of the main concerns at airports and aircraft icing represents a significant
hazard in aviation [1]. The ice formation leads the aircraft’s balance in a loss of control, and de-icing and
anti-icing are necessary treatments for flight safety during the winter [2,3]. However, de-icing operations
require the employment of chemicals such as ethylene glycol- (EG-) or propylene glycol- (PG-) that can
cause damage to the environment, in particular for the nearby surface and groundwater [3].

Ice accumulation can occur due to the supercooled droplets colliding with a hard surface forming
an ice film [4] with an air temperature between 0 and −20 ◦C [5]. As reported by the FAA (Federal
Aviation Administration), structural or in-flight ice and ground ice can be identified [6,7]. The former
occurs when the aircraft is flying through visible water such as rain or cloud droplets. The latter,
instead, may accumulate on parked aircraft due to precipitation and atmospheric conditions.
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According to the temperature, liquid water content, speed of the formation process, aircraft surface
temperature and shape, particle concentration and size, it is possible to distinguish three different
types of structural ice [8] (Figure 1):

• Rime ice that is a milky-white deposit of the ice, and it is the result of rapidly freezing of small
droplets at low temperature after impacting with the aircraft surfaces. It grows at low temperature
(<15 ◦C) with low water liquid content. The rime density is lower than 0.2–0.3 g cm−3, and it is
composed mainly of discrete ice granules [9].

• Clear or glaze ice, glassy transparent ice, caused by large droplets that run back on the aircraft
surface with slow freezing, has a density higher than 0.8 or 0.9 g cm−3 [10].

• Mixed-ice that has mixed features of the previous ones, because it forms when both rime and clear
ice accumulate on the aircraft.
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Due to the physical characteristics of these types of ice, their identification is currently based on 
visual (e.g., for rime ice, snow) and tactile (e.g., for clear ice, frost) inspections carried out by trained 
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visibility of these parts. A verification of cleaned surfaces shall always be made after the de-icing/anti-
icing, and this inspection can be either visual or tactile. The whole procedure is time-consuming and 
demanding, especially since it is crucial to maintain the flight’s schedule. A time-effective strategy 
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Frost, snow (or slush), fog, drizzle, rain (and their freezing states), and ice pellets can be considered
the foremost examples of ground icing.

The sublimation of deposited water vapor on the aircraft can form frost when the temperature is
at or below freezing. A fog formed of supercooled water droplets which freeze upon the impact with
the aircraft surface, also known as freezing fog, produces a coating of rime/clear ice.

Rain and drizzle, uniform precipitations of liquid water particles, can be distinguished by drop
diameters and proximity. The rain is characterized by drops with a diameter more than 0.5 mm very
separated, instead of drizzle, that has close drops with diameters less than 0.5 mm. These two kinds of
precipitations, in the freezing state, can create ice deposits with a transparent appearance. Snow or
slush are precipitations of ice crystals. The slush is formed by water-saturated snow.

As gathered from the Manual of Aircraft Ground De-icing/Anti-icing Operations [2], the difference
between in flight and on ground icing is not referred mainly on the characteristics of the ice but the
impacts on the flight and the de-icing procedures. As it is possible to notice from the definitions of
freezing fog or frost and freezing rain, clear and rime ice can also occur on the ground.

Due to the physical characteristics of these types of ice, their identification is currently based on
visual (e.g., for rime ice, snow) and tactile (e.g., for clear ice, frost) inspections carried out by trained
and qualified ground crew or flight crew [11].

The cleaning process moreover involves the use of a considerable amount of aircraft de-icing
fluids (ADFs), because targeted operations are not achievable. The contamination check shall cover all
surfaces that have aerodynamic-, control-, sensing-, movement- or measuring-function such as wings,
tail surfaces, engine, fuselage, antennas, and sensors. This investigation requires enough visibility of
these parts. A verification of cleaned surfaces shall always be made after the de-icing/anti-icing, and this
inspection can be either visual or tactile. The whole procedure is time-consuming and demanding,
especially since it is crucial to maintain the flight’s schedule. A time-effective strategy for ice detection
is required to limit ADFs use and improve the management of the crew’s operations.

In this context, UAV (uncrewed aerial vehicle) [12] imagery combined with machine learning
algorithms has shown excellent potential for rapid, remote, cost-effective detection tasks. This approach
allows ice identification from multiple views with an automatic check-up operation.
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The SEI (Spectral Evidence of Ice) project [13,14] proposes to provide an integrated solution that
can handle the automatic pre-deicing inspection, ice detection, and cleaning verification procedure.
The expert crew manages the request of de-icing and sends the UAV to the parking area (or hangar)
of a specific aircraft that needs the procedure. The UAV can autonomously recognize the location
of the aircraft and starts the inspection. Indeed, the multi-sensor UAV platform, equipped with a
hyperspectral or multispectral camera, has been designed to monitor and inspect aircraft in the specific
de-icing area of the airport. The main task of the drone is the identification of the location and the
extension of the ice-contaminated area. For this purpose, an automatic methodology for geometric and
radiometric detection of the ice has been determined. The development of computer-oriented methods
for ice detection is still challenging due to the physical characteristics of the ice, variable atmospheric
condition, and lack of autonomous technology in this application field.

Several devices have been developed for ice characterization for on-ground and in-flight
inspection [15,16]. Some examples are based on ultrasonic, magnetostrictive, and electromagnetic
sensors [17,18]. Some researchers such as Gong et al. [19] have discussed the use of the mid-infrared
sensor for ice detection. In this field, the spectral imagery, not only in the mir-infrared but also in all
electromagnetic range, is an emerging technology because of its high spectral and spatial resolution [20].
Our study would fulfil the gap and present the potential of hyperspectral or multispectral imaging
technique in the ice detection on aircraft.

Regardless of devices for data acquisition, machine learning approaches, such as random forest
(RF) [14] and support vector machine (SVM) [15], have been utilized for material detection and their
characterization [21]. These algorithms perform well in reducing the complexity of the classification
task associated with spectral data because they can handle the high dimensionality input space and
noisy dataset [22,23].

This work, within the activities of the SEI project, tests the feasibility to use spectral sensors,
such as hyperspectral and multispectral cameras, and random forest and support vector machine,
as machine learning algorithms.

Firstly, the purpose is the selection of the most suitable sensor to mount on a UAV prototype that
has to respond to cost requirements. For this reason, a multispectral camera, as a low-cost sensor,
was examined to reduce the system production cost. At the same time, the paper addresses the
definition of the time-effective automatic methodology for ice detection using the machine learning
approach. As known, the hyperspectral camera has a spectral resolution of more than 100 bands instead
of the multispectral camera that has a few bands (most of the cases from three to 15). A dimensionality
reduction process has been applied to accurately compare the performance of the two algorithms on
images with sharply different spectral resolution.

Since the UAV prototype is under construction, the experimental analysis was performed with a
simulation dataset acquired on the ground. However, the methodology can be easily transferred to a
UAV application.

2. Materials and Methods

This section describes the two sensors (Section 2.1), the methodology (Section 2.2), and the
algorithms and accuracy assessment (Sections 2.3–2.5).

2.1. Sensor Description

The data acquisition was performed by a hyperspectral camera (Senop Rikola) and a multispectral
camera (MAPIR Survey 3N). Senop Rikola hyperspectral camera is a snapshot camera based on
a Fabry–Perot Interferometer [24,25]. It includes two not aligned sensors: one sensor acquires
near-infrared bands (659.2–802.6 nm) and the second captures visible bands (from 502.8 to 635.1 nm).
The MAPIR survey 3N is a multispectral camera, and it records RGN (red, green, and near-infrared
bands) images as red (660 nm), green (550 nm), and near-infrared (850 nm) bands [26]. An RGB camera
with specifications comparable with the MAPIR (same spatial resolution, optics, and pixel size) was
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used to include the blue band (475 nm). The reason for the introduction of an additional band is
explained in the Methodology (Section 2.2).

The Senop and the MAPIR are lightweight UAV sensors, and they were selected because they have
a similar spectral range from 500 to 950 nm. Table 1 summarizes the specifications of the two sensors.

Table 1. Sensor specifications: the Senop Rikola hyperspectral camera and the MAPIR Survey3N
multispectral camera.

Camera Senop Rikola MAPIR Survey3N

Lens optics H 36.5◦, V 36.5◦ H 41◦ HFOV (47 mm)
Spectral range 500–900 nm 550–850 nm

Spectral channels 380 3
Spectral resolution 1 nm -

Shutter type Global Rolling
Focal length 9 mm 8.25 mm

Image resolution 1010 × 1010 pixels 4000 × 3000 pixels
Pixel size 5.5 µm 1.55 µm
Weight 720 g 75.4 g

Dimensions 172.7 × 89 × 77 mm 59 × 41.5 × 36 mm
Cost ≈60,000€ ≈700€

2.2. Methodology

The overall methodology is shown in the schema below (Figure 2).
For data collection, ice samples were generated in the laboratory using molds and a real section

of the aircraft wing. Since the idea was to have ice samples similar to rime (white ice) and clear ice
(transparent ice), two types of ice were created. Snow or other varieties of ice cited above are not
considered in this analysis because its production in our laboratory was not possible. The details of
sample production and data acquisition will be explained in Section 3.

The hyperspectral and multispectral images were radiometrically corrected using the empirical
line method (ELM) and the reference panel.

After that, the dimensionality reduction with principal component analysis (PCA) was executed
on the hyperspectral data. This step allows defining two new datasets, the one composed by principal
component hypercubes and the ones with a reduced number of bands. The original hyperspectral
dataset and both the new ones also with multispectral images were classified to evaluate the performance
of the detection and the computational time. Moreover, for the multispectral case, further analysis was
made using the RGBN (red, green, blue, near-infrared) images, to understand the improvement of the
additional band on the classification.
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2.3. Dimensionality Reduction of Hyperspectral Images: Feature Extraction and Feature Selection

The high dimensionality of hyperspectral images is a crucial problem in real-time application
because it takes time both in the acquisition and in ice detection steps. Moreover, it can produce
the so-called Hughes phenomenon [27]. For addressing this issue, the most popular methods for
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dimensionality reduction are feature extraction and feature selection. Feature extraction refers to a
linear or nonlinear transformation procedure that reduces the data redundancy in the spatial and
spectral domain. Feature selection refers to a process to define a subset of the original features without
a transformation [28–30]. PCA is widely used as a feature extraction method, but it can also be used
for feature selection.

The PCA dimensionality reduction is based on the estimation of the eigenvalues of the covariance
matrix [31–33]. For each pair of bands, the covariance is calculated as (1):

σi, j =
1

N − 1

N∑
p=1

(DNp,i − µi)
(
DNp, j − µ j

)
(1)

where DNp,j and DNp,j are digital numbers of a pixel p in the bands i and j, respectively, and the µi and
µj are the averages of the DN for bands i and j. Then the covariance matrix is defined as (2):

Cb,b =


σ1,1 . . . σ1,j

. . . . . . . . .
σi,1 . . . σi,j

 (2)

The roots of the characteristic equation provide the eigenvalues λ (3):

det(C− λI) = 0 (3)

where C refers to the covariance matrix (2), and I is the diagonal identity matrix.
The eigenvalues indicate the quantity of original information that they compress. The variance

percentage for each principal component is calculated as the ratio of each eigenvalue and the sum of
all of them. Those components which contain minimum variance and, thus, the minimum number of
information can be discarded. The matrix form of the principal components can be expressed as (4):

Yi =


w1,1 . . . w1, j
. . . . . . . . .
wi,1 . . . wi, j

X j (4)

where Y is the vector of the principal components (PC), W the transformation matrix, and X the vector
of the original data, the coefficients wi,j are the eigenvectors, and they link the PC with the real variable
providing information on their relationship. The eigenvectors can be calculated for each λk as (5):

(C− λkI)wk = 0 (5)

where C and I can be defined as the (3), while λk is the k eigenvalues and wk is the k eigenvectors.
There are three practical criteria to select the most representative PCs [34]:

• Cumulative percentage of total variation: the representative PCs must contribute to the cumulative
percentage of total variation to achieve 80% or 90%.

• Kaiser’s criterion: the selected PCs must have a variance that exceeds 1, which means that if all
the variables are independent, the PCs have variance equal to 1 in the correlation matrix.

• Screen graph: it is the plot of eigenvalues λk related to the order number of that eigenvalue k.
The PC number can be selected looking at the ‘elbow’ in the graph, that indicates the components
to retain. The number of PCs to use will be given by the smallest k characterized by the trend of
λk. The trend of the function must be sharply decreasing on the left of ‘elbow’ point, while on the
right, it has to be constant or weakly decreasing [35].
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Once the PCs have been chosen, the interpretation of them is based on eigenvectors, derived
from the (5). The meaning of PCs can be determined looking at the coefficient (wi, j) of variables Xj.
The greater wi, j is, the higher the correlation, and Xj is the most important for the PC [36].

2.4. Machine Learning: Random Forests and Support Vector Machine

Random forest (RF) algorithm builds multi-decision trees (forest) that operate as an ensemble
trained with a bagging mechanism [37,38]. The bagging mechanism samples N random bootstraps of
the training set with replacement. The number of trees characterized the forest, and the higher the
number of trees, the more accurate the classification [39]. Moreover, the following parameters can
affect the performance of the RF classifier: the tree depth, that is the number of splits for each tree,
the split criteria, that handle the split at each node (such as GINI index), and the minimum split [40,41].

Support vector machine (SVM) is a binary algorithm and constructs an optimal hyperplane or
a set of hyperplanes, that can be employed for the classification task [42]. The best hyperplane can
separate data points of different classes, and it is usually the plane that has the most significant margin
between the two classes [40]. SVM can be extended to the multiclass problem through two different
approaches: the one-against-all or the one-against-one. In the one-against-all approach, a set of N
binary classifiers is applied to the N-class problem. The second approach, one-against-one, carries out
a series of binary classifiers to each pair of classes. The training sample size has a high impact on the
performance of the SVM, as defined in Myburgh G. et al. [43].

2.5. Evaluation Metrics

Either for the random forest and the support vector machine, the accuracy assessment for
the performance evaluation can be achieved with different parameters based on the error matrix.
According to the literature, the selected parameters are the following [44,45]:

• Overall accuracy (OA) that is the ratio of the total number of correctly classified pixels with respect
to the total number of reference pixels;

• User’s accuracy (UA) that is the ratio of pixels correctly classified in given class with respect to all
pixels classified in the specific category.

Moreover, in this specific real-time application, the computational time for the classification part
was assessed. The processing time of the training procedure was not taken into account because the
final goal was to use transfer learning.

3. Ice Detection: An Experimental Analysis

For the experimental analysis, it was not possible to collect the real types of ice; thus, different
kinds of ice were generated in the laboratory as much as similar to the case study. Two types of ice
were produced: the first one similar to the rime ice with milky-white color and the second one to the
glassy clear ice.

The former was created using the water vapor condensed into the freezer at a temperature of
−15 ◦C and its thickness reaches values between 2 and 6 cm. The latter was generated by freezing tap
water within plastic molds at a temperature of −15 ◦C. Different plastic molds were used for producing
different blocks of ice that contained from 5 to 20 mL of water with a thickness of approximately around
3 cm. The ice blocks were located on a section of an aircraft wing to simulate the typical conditions in
which the ice is present.

The aluminum panel used in the tests was a section of a Socata MS.894 Rally Minerva with a
dimension of 400 × 400 × 2 mm. Before icing, the panel was stored in a freezer so the icing would start
with low surface temperature. Figure 3 shows the configuration of the samples.
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3.1. From Data Collection to Sample Annotation

The dataset was built by collecting a ground measurement. The acquisitions were performed at
Photogrammetry, Geomatics and GIS Laboratory of DIATI (Department of Environment, Land and
Infrastructure Engineering) at Politecnico di Torino (Italy) [46]. During this campaign, 10 images for
the hyperspectral and eight for the multispectral sensor with different illumination conditions were
collected (18 images in overall). The various illumination conditions were generated using a different
number of lamps and a combination of lamps and natural light to simulate the real scenario in which
the drones will be used in the parking area or the hangar. The term “Test” refers to each image with
different environmental conditions in this paper. All data were recorded, maintaining stable positions
and varying rotations of the camera slightly.

The hyperspectral camera was used in manual mode connected to the computer through a USB
cable. The selected image resolution was 1010 × 1010 pixels. The images were composed by 100 bands
covering the spectral range from 502 to 906 nm, with a wavelength step of 4 nm and a Full with
Half Maximum resolution (FWHM, where Wide means low gap index). The integration time was
set at 450 ms based on the environmental illumination condition. The sequence of the bands was
automatically generated using the Rikola Hyperspectral Imager software v2.0. These parameters were
chosen to cover the whole spectral range. The whole electromagnetic spectrum was also covered
to identify the most characteristic bands and features of studied materials. For the MAPIR instead,
the camera’s sensitivity was set to ISO- 800, and the exposure time was fixed to 1/15 s.

The two datasets of images were radiometrically calibrated using the Empirical Line Calibration
tool of ENVI 4.7 [47]. Then, the images of each sensor were manually annotated. In both cases, the same
10 classes were considered: rime ice, clear ice, white aluminum, aluminum, floor tile, wood and
reference panel (white, black, grey 21%, and grey 27%). The representative classes were only the rime
ice, the clear ice, and the white aluminum (Figure 3). These classes were chosen according to the
materials that it was possible to distinguish in the real case at aircraft scale. The selected materials
were related to the object (in our case, the aircraft) and the ice. Other materials were included in the
background in different classes to improve the performance of the classification. The option of a single
class for background materials would alter the accuracy of outcomes. The number of samples per class
for each dataset are reported in Table 2.
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Table 2. Hyperspectral and multispectral reference samples per class.

Class Hyperspectral Samples (Pixels) Multispectral Samples (Pixels)

Rime ice 10,156 101,797
Clear ice 10,457 104,819

White aluminum 11,632 116,588
Aluminum 3580 35,912

Wood 10,896 93,624
Floor tile 19,812 198,572

White reference panel 9545 95,672
Black reference panel 16,024 160,617

21% grey reference panel 12,980 130,089
27% grey reference panel 10,670 106,949

Average pixels per class 10,523 104,058

The training and test samples were collected based on visual interpretation. ArcGIS Pro 2.5.0
toolbox was used to create polygons as reference data for each class.

3.2. Dimensionality Reduction of Hyperspectral Data: Results

To reduce the hyperspectral data dimensionality, PCA was carried out using the “Principal
components tools” of ArcGIS Pro 2.5.0 [48]. As described in Section 2.3, it was possible to adopt the
PCA as feature extraction and band selection method.

As the first step, the feature extraction was performed to define the principal components. In the
second step, the selected PCs were used for significative band selection. Both feature extraction and
band selection methods were applied for understanding the best solution for ice detection.

Therefore, for the feature extraction, the eigenvalue and cumulative variance were obtained to
identify the number of principal components (PCs), which means the new dimensionality. The outcomes
of the first image only were reported as an example because the selection process and conclusions
were the same for the other pictures. Table 3 shows the percentages of the primary five components
of the sample image. As can be seen from Table 3, three PCs reach 90.31% of the total variance in
original data for the first criterion and pass the 1% for Kaiser’s rule (Section 2.3). As a consequence,
the dimensionality of the new representation is three, and the rest of the component can be discarded.
Moreover, also the screen plot in Figure 4 illustrates that it is possible to identify three as the number of
PCs (third rule described in Section 2.3).
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Table 3. Principal component analysis (PCA): example of eigenvalue and cumulative variance in
percentage on a single sample image.

Component Percent % Cumulative%

1 80.0010 80.0010
2 8.4818 88.4828
3 1.8341 90.3169
4 0.9935 91.3104
5 0.5888 91.8992

After the identification of the PC number, the first three principal components were used to select
a reduced number of original bands for the classification task. The band selection process was carried
out using the eigenvectors for each PC. The higher the absolute value of the band eigenvector, the
higher the importance of that band for the specific principal component. According to this criterium,
considering that the number of significative bands is strictly related to the application, a threshold of
eigenvector values, defined for each component, allows to identify the significative bands. The plot
of eigenvector values reports the correlation between spikes of the function and the representative
bands. Figures 5–7 represent the eigenvector values with respect to the band number for the three
selected principal components in four representative images (Test1, Test2, Test6, Test10) among 10
hyperspectral images. Different illuminations and the change of the state of ice characterize these four
tests, and this comparison was made to check the recurrence of the most significant bands, that can be
selected. The presence of spikes in the eigenvectors function allows to recognize the bands, for all the
images for the three selected PCs (Table 4):
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As it is possible to notice in Table 4, there are recurring bands in each test. Taking into account
all the identified bands, a new hypercube with 27 bands, that are 1 (506.31 nm), 3–7 (from 514.48 to
530.11 nm), 14 (558.28 nm), 25 (602.47), 32–38 (from 630.2 to 654.19 nm), 78–89 (from 817.58 to 861.65 nm)
can be generated. However, considering only the popular bands in each principal component of all
images, the number of significative bands can be further reduced to 10. The significative bands, in this
latter case, are 4–5 (from 518.12 to 522.48 nm), 33–37 (from 634.36 to 650.38 nm), 83–85 (from 837.98 to
846.21 nm).
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Table 4. Band selection for the three principal components (PC) in the representative tests (Test1, Test2,
Test6, Test10).

Principal Component Test1 Test2 Test6 Test10

1 1, 3–7, 25, 32–38 1, 3–6, 14, 33–37 1, 3–6, 32–37 4, 5, 32–34, 36, 37
2 80–85 80–85 78–89 83–89
3 35–37 35–37 35–37 35–37, 86–89

Three new datasets came from the dimensionality reduction process: 10 new images composed
by the three PCs, 10 new hypercubes with 10 bands and 10 hypercubes with 27 bands. The first set of
modified hypercubes was created through the toolbox “Principal Component Analysis” of ArcGIS
Pro 2.5.0 selecting three as a maximum number of principal components. The two remaining datasets
with reduced hypercubes were generated using a customized routine of Matlab for hyperspectral data
decomposition and the “Composite Bands” tool of ArGIS Pro 2.5.0 [49] for the selected band composition.

3.3. Hyperparameter Tuning for Random Forest and Support Vector Machine

The hyperparameter tuning process plays a crucial role in improving the accuracy of RF and
SVM algorithms.

Before starting with the hyperparameters adjustment, data were split in 80% for training and
20% for testing. The tuning of hyperparameters was made on the training set for defining a model.
Accuracy assessment was carried out for either the training and testing set to verify the performances
of the model in the classification task. The validation curve allows to visualize the values of the
model hyperparameters, and it shows different values of the single hyperparameter related to the
accuracy trend.

The optimized hyperparameters were chosen according to two criteria. The first one is the
minimum difference between the overall accuracy of training and validation models, and the second
one is the best user’s accuracy only for the validation. It is necessary to notice that for the evaluation of
the accuracy the random choice of the samples has to be taken into account; thus, tolerance has to be
considered. Accuracy analysis of training and validation are presented for both the algorithms.

Moreover, the accuracy assessment of the rime ice, clear ice, and white aluminum is under the
attention among the other classes. These three classes are distinctive in the real de-icing application.
The clear ice, as explained in the Introduction (Section 1), is critical to identify by visual inspection.
Thus, it has a relevant weight in this analysis.

The tuning was implemented either for RF or SVM on a single image (Test_1) of both datasets
(hyperspectral and multispectral images) and the “Segmentation and Classification tools” of ArcGIS
Pro 2.5.0 [50]. The tests were made on a window workstation (Windows 10) with an Intel® Core™
I7-6500U CPU at 2.50 Ghz, GPU AMD Radeon™ R7 M360 (Iceland) (six compute units at 980 MHz,
2048 MB) and 16 GB of RAM.

Since SEI project application requires a near real-time approach (Section 1), in this section, the
computational time was evaluated because one of the aims of the optimization is the definition of the
trade-off between accuracy and processing time.

As described in Section 2.4, the hyperparameters for each classifier have to be tuned. They are
the same either for hyperspectral and multispectral. The optimization was executed in manual mode.
For the RF algorithm, the maximum number of samples for each class was fixed; we tuned two
hyperparameters: the tree depth and the number of trees. For what concerns the SVM instead, only the
maximum number of samples per class was tuned.

3.3.1. Hyperparameters Tuning for the Hyperspectral Dataset

Starting for the RF, the sample size was set to 2000 for each class for tuning the tree depth and the
number of the trees. The tree depth optimization was done varying its value from 5 to 30. Instead,
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the number of trees was fixed to 50. As reported in Table 5, the difference between the overall accuracy
(OA) is comparable in all training and validation configuration. The case with a depth equal to 5 was
kept out because it was not reasonable with a low number of trees. Therefore, looking just to the
validation results, the tree depth equal to 30 produces the best value of OA and clear ice accuracy.
For these reasons, the selected tree depth was equal to 30.

Table 5. Training accuracy (on the left) and validation accuracy (on the right) for random forest (RF) tree
depth optimization. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow,
the selected optimized hyperparameter.

D_Trees Training Accuracy (%) Validation Accuracy (%)

R_i C_i W_a Overall R_i C_i W_a Overall

5 73.6842 91.0615 74.7475 92.5425 42.4802 92.9577 64.8855 85.5371
10 80.1887 98.8636 92.9412 97.0971 44.4992 94.9346 69.5067 87.7175
15 78.8018 98.8506 93.4524 96.8969 43.128 95.0083 68.9602 87.0574
20 84.6535 93.956 93.8547 97.2472 41.2747 94.108 68.7908 86.6773
25 79.3427 97.1429 93.4911 96.8468 42.2256 92.5159 68.932 86.5173
30 81.6038 99.422 95.3757 97.2472 43.6863 95.7816 70.8692 87.83

Instead, for the number of tree selection, the tree depth value was fixed to 30, according to Table 5.
The number of trees was varied from 5 to 50 (Table 6). Following the same reasoning defined for the
selection of tree depth, the cases with a lower number of trees were excluded. Indeed, the differences
among the OA is comparable in the other configurations. Concerning Table 6, the cases 15, 30, and 50
were characterized by a similar OA value that is also the highest one (87.9% on average). However,
the accuracy of the C_i class leads with a gap in the case 50. As a consequence, the number of trees
equal to 50 was the optimized value.

Table 6. Training accuracy (on the left) and validation accuracy (on the right) optimization of RF
number of trees. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow the
selected optimized hyperparameter is shown.

N_Trees Training Accuracy (%) Validation Accuracy (%)

R_i C_i W_a Overall R_i C_i W_a Overall

5 85,3403 96.5909 91.0053 97.1471 39.0855 93.9542 66.8908 86.0172
10 83.3333 99.422 95.4802 97.5475 41.1854 93.9344 67.7368 86.6573
15 82.381 99.422 94.2529 97.3974 45.4699 95.1604 71.3681 87.9587
20 80.7512 98.3051 95.2663 97.2472 43.2602 94.2122 71.205 87.2575
25 85.8586 97.2067 95.0549 97.6977 42.8571 93.4959 72.0339 87.3253
30 82.6923 97.7011 93.2203 97.1972 44.0476 94.3548 71.1538 87.8743
35 86.8687 99.4253 95.6522 97.998 44.081 93.75 70.892 87.3375
40 83.0846 96.4912 90.3226 96.9469 42.1217 94.2997 68.7988 86.5973
45 81.6425 98.8506 92.1348 97.0971 42.6404 95.098 69.9681 87.4375
50 81.6038 99.422 95.3757 97.2472 43.6863 95.7816 70.8692 87.83

In Figure 8, the comparison between training and validation overall trends among all the
considered depths and numbers of trees can be appreciated. The validation curves confirm the previous
observations and the criteria used for the optimized hyperparameters selection.

Table 7 presents the RF processing time for the training in the analyzed configurations considering
the tuning of both the hyperparameters. In the case of D_Trees, the processing times are not excessively
influenced by the increase of the depth number. While in the case of N_trees, the higher the number of
trees, the higher the computational time. However, the computational time is stable after 15 N_tree
because the selected sample size does not affect the number of trees. It is possible, thus, to choose 50 as
N_trees value.
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Table 7. Processing time for the training in RF using different values of tree depth (on the left) and the
number of trees (on the right). In yellow the time for training the model with the selected optimized
hyperparameter is shown.

D_Trees Processing Time N_Trees Processing Time

5 34” 5 14”
10 31” 10 26”
15 26” 15 32”
20 26” 20 31”
25 27” 25 32”
30 33” 30 29”
- - 35 33”
- - 40 30”
- - 45 33”
- - 50 33”

For what concerns the SVM instead, the maximum number of samples per class ranged between
100 and 5000 samples. The differences between OA training and validation remains 8% on average in
all configurations (Table 8). The highest value of the OA (validation) occurs in the case of 5000 samples,
but this configuration was excluded because the related computational time is too long (3h4′25”)
(Table 9). Thus, the cases of 100, 750, and 1000 were taken into account. The configuration 100 was
discarded because the sample size was small, and the random choice of the sample hugely affects the
overall accuracy in the images.

Table 8. Training accuracy (on the left) and validation accuracy (on the right) optimization of support
vector machine (SVM) number of the sample. R_i stands for rime ice, C_i for clear ice, and W_a for
white aluminum. In yellow the selected optimized hyperparameter is shown.

N_Samples Training Accuracy (%) Validation Accuracy (%)

R_i C_i W_a Overall R_i C_i W_a Overall

100 77.6744 97.7401 92.1687 96.3964 56.6879 99.1667 72.4719 91.4671
250 86.8687 97.7401 96.7568 97.9980 46.8354 96.4567 74.5247 89.7206
500 86.6667 1.0000 94.6237 97.9479 44.7059 95.2756 73.1707 88.6228
750 93.5135 99.4382 98.4615 99.0490 51.8644 93.9623 90.9091 90.9182

1000 91.8919 98.895 97.3822 98.7487 52.8571 92.6740 89.0000 91.0679
2000 91.5344 1.0000 97.8836 98.9990 49.6815 93.8697 89.4444 89.8204
5000 97.1910 1.0000 98.4925 99.5996 52.9825 92.8058 91.1917 91.3673
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Table 9. Processing time for the training in SVM using different values of sample size. In yellow the
time for training the model with the selected optimized hyperparameter is shown.

N_Samples Processing Time

100 2′8”
250 12′26”
500 24′51”
750 47′21”

1000 1h18′2”
2000 1h33′36”
5000 3h4′25”

For the remaining cases, since OA is comparable, thus the hyperparameter selection was based on
the accuracy of the clear ice. In the validation, the C_i accuracy is 94.0% in the 750 sample case, instead
of 92.7% in the 1000 sample case. According to this consideration, the selected number of samples was
750. The validation curves confirm that this parameter is the best fit (Figure 9).Drones 2020, 4, x FOR PEER REVIEW 14 of 26 
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Table 9 reports the processing time for each configuration. It is possible to notice that, as expected,
the computational time increases according to the increase of the sample size.

3.3.2. Hyperparameter Tuning for the Multispectral Dataset

With the RF, the samples size was set to 10,000 for each class. Tree depth and the number of trees
ranges were chosen according to the number of samples and the image resolution. For multispectral
images, the training sample size is five times greater than the hyperspectral, and the resolution is
4000 × 3000 pixels instead of 1010 × 1010 pixels. The case 50_30 was chosen as starting point according
to the previous tuning on hyperspectral data (Section 3.3.1). The tree depth optimization was done,
varying its value from 30 to 60. The number of trees ranged from 50 to 125.

Table 10 presents the training and validation accuracies considering all the combinations of the
number of trees (xx in the test code) and the depth tree (yy in the test code).

The OA in training and validation is constant in all configurations, 81% and 77%, respectively.
As a consequence, the best configuration can be defined, looking only to the validation accuracy.
The OA accuracy is not strongly affected by the different hyperparameters. However, the test 100_30
presents the highest value of OA (77,8%). Looking at the clear ice UA, the best case should be 125_40
with a value of 69.8% instead of 69.7% in the case 100_30. From these observations, it is not possible to
recognize this case as the best fit without the computational time analysis because the UA for C_i is
quite similar (Table 11).
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Table 10. Training accuracy (on the left) and validation accuracy (on the right) RF tree depth and the
number of trees optimization. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.
The test name is defined as xx_yy, where xx is the number of trees, yy is the depth. In yellow the
selected optimized hyperparameter is shown.

Test
(xx_yy)

Training Accuracy (%) Validation Accuracy (%)

R_i C_i W_a Overall R_i C_i W_a Overall

50_30 70.5078 66.9162 56.3398 81.6832 55.3701 68.7615 60.2531 77.1311
50_40 69.8004 67.3592 56.2977 816582 54.1104 67.8014 60.6952 77.0461
50_50 69.5568 67.5865 55.8317 81.5282 53.0954 68.4173 60.8929 77.2861
50_60 70.0849 67.6036 54.2184 81.4681 53.5284 68.5125 60.6882 77.6211
75_30 68.8278 67.2374 55.5764 81.4281 53.9481 67.9496 60.4317 77.1311
75_40 69.9799 67.5952 56.2234 81.7932 53.4521 68.7778 59.3454 76.9912
75_50 69.5681 66.3261 55.0188 81.5732 53.0235 67.9594 59.4336 77.0561
75_60 68.8259 66.6204 53.4672 81.2381 54.9031 68.4853 61.2722 77.3711
100_30 67.2472 67.9566 54.3531 81.4881 56.2536 69.6554 61.6554 77.8161
100_40 71.1968 67.5524 56.8807 81.8782 54.2343 69.0955 60.4542 77.6161
100_50 70.6303 67.463 57.5832 81.3081 54.5098 68.7132 61.0991 77.3811
100_60 69.8595 67.5313 55.8442 81.3281 54.0376 69.2891 60.8715 77.5611
125_30 68.8588 66.3749 54.7497 81.2081 53.224 69.2393 59.2529 77.4511
125_40 69.0385 67.5875 55.7325 81.7182 52.5876 69.8535 60.451 77.6211
125_50 69.5795 67.8422 56.7398 81.7282 53.6558 69.1431 59.2657 77.3261
125_60 691205 66.6516 55.627 81.4181 53.7237 69.7354 60.792 77.7861

Table 11. Processing time for the training in RF using different values of tree depth and the number of
trees. In yellow the time for training the model with the selected optimized hyperparameter is shown.

Test Processing Time

50_30 2′59”
50_40 2′54”
50_50 2′57”
50_60 3′4”
75_30 4′50”
75_40 5′8”
75_50 5′4”
75_60 5′13”
100_30 6′55”
100_40 7′23”
100_50 7′25”
100_60 7′24”
125_30 9′23”
125_40 8′58”
125_50 9′1”
125_60 9′25”

For what concerns the processing time, in all configurations, the trend increases according to the
number of trees increasing. The case 100_30 was selected because it has a good trade-off between
processing time (6′55” instead of 8′58” for the case 125_40), overall and glassy ice accuracy.

For the SVM classifier, only the sample size per class ranged between 500 and 2000 samples.
In Table 12, it can be noticed that cases with 1500 and 2000 samples have the best OA and the latter also
has the highest value for the C_i accuracy (68.6%). Nonetheless, taking into account the computational
time (Table 13), the test with 2000 samples lasts around 20 min more than the test with 1500 samples
(1h5′43”). The best fit can be considered the configuration with 1500 samples.
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Table 12. Training accuracy (on the left) and validation accuracy (on the right) optimization of SVM
number of the sample. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum. In yellow
the selected optimized hyperparameter is shown.

N_Samples Training Accuracy (%) Validation Accuracy (%)

R_i C_i W_a Overall R_i C_i W_a Overall

500 67.8201 62.1644 54.3074 80.9231 51.924 64.772 60.339 75.9512
1000 67.1179 64.2766 57.4959 80.463 51.8227 66.7797 62.0635 76.6062
1500 66.7683 64.8352 54.526 80.213 52.5362 67.6934 61.0333 77.0711
2000 68.616 66.6042 54.0258 80.283 53.9737 68.603 61.3453 77.0461

Table 13. Processing time for the training in SVM using different values of the number of samples.
In yellow the time for training the model with the selected optimized hyperparameter is shown.

N_Samples Processing Time

500 24′47”
1000 50′47”
1500 1h5′43”
2000 1h23′20”

Table 13 provides the computational time in all configurations and displays that the increase of
sample size defines the increasing of the processing time trend in a proportional way.

3.4. Ice Detection using Hyperspectral Data: Results

The ice detection was performed on three types of hypercubes:

1. the original hypercubes collected with the Senop Rikola (Section 3.1);
2. the reduced hypercubes composed by the selected bands (27 bands and 10 bands) (Section 3.2);
3. the images formed by the three principal components (PC images) (Section 3.2).

For the classification, the “Classify Raster” tool of ArcGIS Pro 2.5.0 [51] and the Test_1 was employed
for the training. The analysis, in this section, is focused on two main parameters: the accuracy and the
computational time for the classification only.

In general, as explained in Section 2.5 both overall accuracy and user’s accuracy were used for
assessing the classification. As mentioned in Section 3.1, some materials are included in the background,
but at the same time annotated as different classes to check the performance on different materials.
Since these classes were not included in the real scenario, because in that case, the background will be
different (e.g., asphalt instead of floor tile), the overall accuracy was included just to show the general
performance of the algorithms. However, the primary parameter is the user’s accuracy, because the
object of this study is the detection of the ice and in detail the clear ice due to its transparent property.

For each dataset (original hypercubes, reduced hypercubes, and PC images), random forest
and SVM with the optimized hyperparameters derived from Section 3.3.1 were used. For the RF,
the hyperparameters selected for the classification are the number of trees equal to 50, tree depth equal
to 30 and 2000 samples. For the SVM, the classification with 750 samples was performed.

As in the case of PCA (Section 3.2), the classification evaluation is shown only in four representative
images (Test_1, Test_2, Test_6, and Test_10). Test_1, Test_2 and Test_6 present varied environmental
conditions and Test 10 was included to display the behavior of the model in the presence of ice
phase transition.
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For what concerns the original dataset classified with the RF, the overall accuracy reaches a
maximum value of 88%, and the computational time is 14 min on average (Table 14). The classification
performs better on the clear ice than the other classes, reaching a maximum value of ca. 96%. Regarding
the rime ice, its accuracy is on average under 50% since the radiometric response is similar to that
related to the white aluminum (67% on average).

Table 14. Accuracy and processing time on the original dataset with random forest. R_i stands for rime
ice, C_i for clear ice, and W_a for white aluminum.

Test
Accuracy (%) Processing Time

R_i C_i W_a Overall

Test_1 41.7311 96.3272 69.0852 87.3775 13′22”
Test_2 46.3158 96.3636 70.9497 88.8378 14′38”
Test_6 53.2446 81.6364 69.1238 86.9974 12′37”

Test_10 43.3428 52.7938 59.5405 81.5763 16′9”

With SVM classifier (Table 15), the overall accuracy reaches a maximum value of 92%, and the
computational time is 17 min on average. Additionally, in this case, C_i user’s accuracy is higher
than the other significant classes, reaching a maximum value of ca. 97%. Rime ice accuracy is on
average under 60% since the radiometric response is similar to that related to the white aluminum
(78% on average).

Table 15. Accuracy and processing time on the original dataset with SVM. R_i stands for rime ice, C_i
for clear ice, and W_a for white aluminum.

Test
Accuracy (%) Processing Time

R_i C_i W_a Overall

Test_1 50.4886 95.1975 88.0297 90.39 15′2”
Test_2 56.6781 97.0843 82.5337 91.91 16′48”
Test_6 56.5801 80.2994 72.5888 88.39 15′4”

Test_10 63.1236 55.4054 64.4209 84.54 21′29”

As presented in Tables 14 and 15, the SVM reaches better accuracy on average than the RF. Indeed,
the overall accuracy is 86.2% for the RF and 88.8% for SVM. The drawback of the SVM is the processing
time. The average computational time is 14′22” for the RF and the 17′5” for the SVM. Therefore, the RF
is faster than the SVM in the classification process.

For both algorithms, Test_10 reports low user’s accuracy values compared with the other tests,
because in this case, ice was starting to melt. This evidence also recurs in the reduced hypercube
datasets and the PCA dataset. There is only one test in which the ice is starting to melt. Thus, it is
predictable that the algorithm, in this case, works worst and the detection of the ice in other physical
states was out of this preliminary study. It is well known that the ice changes its features according to
its state. Thus, for the real case application, further acquisitions will be made for training the algorithm
and improving the detection of the ice while changing its state to the liquid one.

The same analysis was carried out for the reduced hypercube datasets (27 bands and 10 bands)
(Table 16). The reached OA with RF classifier has a maximum value of 83.8% for the hypercubes with
27 bands and 80.6% for the hypercubes with 10 bands. The computational time varies from 28.5” for the
27 bands to 26.5” for the 10 bands. These observations demonstrate that the two cases are comparable,
and the dataset with 10 bands can be considered reliable. Moreover, the C_i user’s accuracy stands
that the model has in any way a good performance. As a consequence, it verifies that the set of bands
selected using the PCA is adequate for the classification task.
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Table 16. Accuracy and processing time on the reduced hypercube (27 and 10 bands) with RF. R_i
stands for rime ice, C_i for clear ice, and W_a for white aluminum.

Bands N◦ Test
Accuracy (%) Processing Time

R_i C_i W_a Overall

27

Test_1 41.7047 92.7769 69.1438 82.5365 25”
Test_2 52.2158 93.28 74.6367 86.0572 28”
Test_6 40.4255 70.997 67.0165 80.3561 31”

Test_10 34.1797 54.2955 56.0549 76.3753 30”

10

Test_1 43.5185 95.4392 69.9213 80.8962 24”
Test_2 50.1825 94.8074 74.7238 83.2366 27”
Test_6 38.9886 80.3754 59.7285 77.0154 26”

Test_10 30.7018 57.7818 56.6897 73.0546 29”

Table 17 presents the outcomes of the SVM. The overall accuracy reaches a maximum value of
87.3% for the 27 bands-hypercubes and 80.8% for the 10 bands-hypercubes. The processing time
varies from 1′50” to 1′40”, respectively, for the 27 bands and the 10 bands. Regarding the clear ice,
the dimensionality reduction does not affect accuracy. Even if the SVM accuracy has the same trend of
RF for the two datasets, there are still slight differences (Tables 16 and 17). Referring to the average OA
for the 27 bands, the SVM performs better than the RF, while for the 10 bands is the opposite. For both
reduced datasets, the SVM has a higher user’s accuracy of C_i class, and it is slower compared with
the RF.

Table 17. Accuracy and processing time on the reduced hypercube (27 and 10 bands) with SVM. R_i
stands for rime ice, C_i for clear ice, and W_a for white aluminum.

Bands N◦ Test
Accuracy (%) Processing Time

R_i C_i W_a Overall

27

Test_1 45.2203 94.4217 70.1794 82.84 1′33”
Test_2 62.4833 96.7882 72.6236 87.32 1′52”
Test_6 53.3607 84.0215 68.2892 82.18 1′58”

Test_10 45.7447 61.0082 59.3465 78.02 1′57”

10

Test_1 44.1153 94.9749 70.038 79.37 1′35”
Test_2 48.8522 96.144 72.9124 80.84 1′43”
Test_6 49.3736 84.3806 67.8459 78.89 1′42”

Test_10 33.6364 61.4594 55.3836 72.78 1′40”

Turning now to the analysis on the PC dataset, for the RF algorithm, Table 18 indicates that
there is a perceivable reduction of the accuracy rate concerning original and reduced hypercubes.
The average OA does not overcome the value of 72%. Regarding the computational time, it is around
38” on average.

Table 18. Accuracy and processing time on the PC images with RF. R_i stands for rime ice, C_i for clear
ice, and W_a for white aluminum.

Test
Accuracy (%) Processing Time

R_i C_i W_a Overall

Test_1 37.8215 94.8214 65.92 75.8552 34”
Test_2 41.1435 75.6241 78.6325 73.5947 39”
Test_6 33.5897 68.3121 57.9747 69.4139 39”

Test_10 46.1314 54.9505 72.1607 70.9542 41”
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For the SVM algorithm, Table 19 presents findings comparable to the RF one. The average OA
does not overcome the value of 76%. Moreover, the computational time is around 1′17” on average.

Table 19. Accuracy and processing time on the PC images with SVM. R_i stands for rime ice, C_i for
clear ice, and W_a for white aluminum.

Test
Accuracy (%) Processing Time

R_i C_i W_a Overall

Test_1 42.4956 95.3888 68.2451 78.16 59”
Test_2 42.7742 81.6558 80.7923 78.24 1′5”
Test_6 45.1613 77.8899 64.8072 76.05 1′16”

Test_10 45.9184 56.5625 71.4886 72.29 1′48”

These observations demonstrate that either SVM and RF produce ambiguous and inaccurate
outcomes in some cases and the resulting average accuracy for clear ice (77.8% for SVM and 73.4% for
RF) could be not acceptable for our applications. Finally, the comparison between the two algorithms
proves that SVM behaves better than RF. Overall and user’s accuracy for all classes always have a
higher value in SVM, but its computational time is twice as much as RF’s one. Hence the classification
with the SVM is still slower than the RF’s.

According to the above analysis, for the ice detection in all datasets (original, reduced 27 bands,
reduced 10 bands and PC), it is possible to make some general considerations. SVM and RF accuracy
are comparable in all cases. Indeed, the difference between the accuracies is from 0.1% to 2%. Despite
these minimal differences, the SVM presents the higher values of the user’s and overall accuracy on
average than the RF classifier. The reduction of dimensionality affects the overall accuracy slightly.
Considering the difference between the original hypercube and the PC hypercube, the OA decreasing
on average is 12% for the SVM classifier, instead of 14% for the RF one.

For the user’s accuracy of the C_i, a descending trend based on the dimensionality of the feature
space cannot be defined. However, the differences of clear ice accuracy between the best case (10 bands
hypercube) and the worst case (PC images) is 7% for the SVM and 9% for the RF.

The processing time is strictly related to the size of the feature space. The dimensionality reduction
helps to contract the processing time. In general, the analysis on the computational time shows that
the RF is faster than the SVM, both in training and classification parts.

Figure 10 illustrates the results of the classification for each dataset. It can be appreciated
graphically the discrepancy related to the reduction of the number of bands. Specifically, Figure 10
refers to the Test_1 hypercube classified with SVM. The RF graphical results are not included because
it is impossible to detect the visual differences compared with the SVM accuracy. As can be seen,
the clear ice is well detected in all the cases; while the rime ice identification gets worse according to
the reduction of the bands.
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Figure 10. The classification results on Test_1 with SVM. (a) Original classified hypercube,
(b) reduced classified hypercube-27 bands, (c) reduced classified hypercube-10 bands, and (d) PC
classified hypercube.

3.5. Ice Detection Using Multispectral Data: Results

The ice detection was performed in the case of multispectral images on two datasets:

1. the original data acquired with the MAPIR (RGN images);
2. the multispectral data composed with the blue band of the RGB (RGBN images).

The optimized hyperparameters identified after the tuning (Section 3.3.2) were used. For the RF,
the hyperparameters selected for the classification are the number of trees equal to 100, tree depth
equal to 30 and 10,000 samples. For the SVM, the number of samples is 1500.

Considering the RGN dataset, the classification assessment is described in four representative
images (Test_1, Test_2, Test_6, and Test_10) that have the same characteristics of the hypercubes
described in Section 3.4. For the RGBN dataset, only the Test_1 integrated with the blue band is cited
to demonstrate the improvement related to the blue presence in terms of accuracy.

With the RF, the evaluation of the outcomes on RGN images shows that OA is on average 49.5%.
Instead, the computational time on average is 6′43” (Table 20). As expected, the lack of blue band alters
deeply also values of UA compared with hyperspectral hypercubes. For example, the maximum value
for the glassy ice accuracy is lower than the 80%. Thus, it is not sufficient to be considered correct
and accurate.
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Table 20. Accuracy and processing time on the RGN (red, green, and near infrared) images with RF.
R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.

Test
Accuracy (%) Processing Time

R_i C_i W_a Overall

Test_1 54.9565 69.7936 60.7158 77.6311 6′40”
Test_2 36.1789 42.5788 35.2851 47.9226 6′36”
Test_6 25.2031 33.7942 8.2353 30.9185 6′30”

Test_10 34.7062 33.3841 44.8087 41.34 7′5”

With the SVM, the accuracy assessment of the RGN dataset shows that OA is on average 49.2%.
Instead, the computational time on average is 23′40” (Table 21). The missing blue band problem is still
visible. Indeed, the clear ice accuracy does not surpass the value of 67% in the best configuration.

Table 21. Accuracy and processing time on the RGN images with SVM. R_i stands for rime ice, C_i for
clear ice, and W_a for white aluminum.

Test
Accuracy (%) Processing Time

R_i C_i W_a Overall

Test_1 52.2795 67.3587 63.1305 76.9362 22′13”
Test_2 34.8404 41.2713 32.8609 46.8527 23′9”
Test_6 25.8493 35.6347 10.6874 30.6135 23′55”

Test_10 40.3123 37.1409 42.4566 42.375 25′21”

Nonetheless, the comparison among the two algorithms shows that RF performs better
classification on average and its computational time is lower than SVM’s one.

Considering that the accuracy assessment for the RGN dataset is not comparable with the ones
obtained using the hypercube with similar feature space size (e.g., PC images), the blue band was
added to create RGBN images. Indeed, looking to the results of the band selection (Section 3.2) it is
possible to notice that the blue band has essential weight.

Table 22 illustrates an overview of the accuracy and the processing time in the RGBN case. As can
be seen, the OA reported a significant increase compared with the RGN images. Indeed, it overcomes
the value of 80% for both the algorithms. The UA values are higher than the average of the respective
values in the RGN case. At the same time, the computational time decreases for the RGBN images.

Table 22. Accuracy and processing time on the RGBN(red, green, blue, near-infrared) image with RF
and SVM. R_i stands for rime ice, C_i for clear ice, and W_a for white aluminum.

Classifier
Accuracy (%) Processing Time

R_i C_i W_a Overall

RF 57.9867 54.2284 83.7163 84.495 4′49”
SVM 62.3726 57.3843 88.1515 86.695 8′18”

Regarding the comparison between the two algorithms in the RGBN case, the SVM produces a
better classification, but its computational time is longer than the RF’s one.

Figure 11 highlights the results of the classification in the two datasets using the SVM.
The improvement related to the introduction of the additional band is evident. The blue band
allows to reduce the classification noise and at the same time a better identification of all materials.
Moreover, the enhancement of the distinction between rime ice or clear ice and white aluminum is clear.
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4. Discussion

Since the previous section describes already the outcomes related to the dimensionality reduction of
hyperspectral data and the classification with the two algorithms on the different datasets, the discussion
focuses on:

• the consideration related to the use of hyperspectral or multispectral images for the ice
detection task;

• the comparison between the two classifiers in terms of computation time and accuracy;
• the comparison among the detection of the different material.

For what concern the first point, this study confirms that for the ice detection task, the use of
hyperspectral images is more reliable. However, on the other hand, highlights that the advantage of
operating with multispectral data (with the same spatial resolution of the hyperspectral images) is related
to the computational time. The latter, indeed, is one of the crucial problems in real-time application.

The outcomes demonstrate that the hyperspectral data are suitable for real-time applications after
a priori analysis. A dimensionality reduction process can easily compress the size of hyperspectral data
preparing the data for the classification task. This step leads to breaking down the limits related to the
computational time of the original hypercubes. The experimental analysis shows that the processing
time can be improved, downscaling the spectral resolution. The case of reduced hypercube with
10 bands can be considered a trade-off between accuracy and computational time, regardless of the
employed algorithm.

Moreover, starting with the analysis of significative bands, a multispectral sensor can be defined
for facilitating the acquisition and classification operations. It is crucial to take into account, in the
case of multispectral images, that the spatial resolution is four times greater than the hyperspectral.
The results obtained with the introduction of a significative band (in this case, the blue band) shows
the effectiveness of predefined-band knowledge in the classification.

Regarding the classifiers, it is possible to state that the SVM performs better in terms of accuracy;
on the opposite, the RF classifier is faster than the SVM. This observation is valid for both datasets:
the multispectral and the hyperspectral dataset. However, the accuracy reached with the multispectral
data is not comparable with ones of the hyperspectral camera regardless of the selected algorithm.

Finally, turning now to material detection, this study focuses the attention on the classification of
clear ice. As explained in the Introduction (Section 1), the clear ice is not visible with the naked eye and
requires tactile inspection. The ice, in the real case, could have different features (e.g., density, shape)
than the ice samples that were generated in this study. At this stage of our work, other types of ice
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were examined to understand if the classification was able to distinguish, as two classes, the different
condition of the same material, such as transparent ice and rime ice. Due to its characteristics, the rime
ice is more visible; thus, the detection is more straightforward. Concerning the ice detection reliability,
it is possible to underline that both algorithms conservatively recognize both forms of ice. For instance,
if an area is contaminated by ice, conservative way means that it is much more unlikely that the
algorithms recognize that area as aluminum or as other material instead of ice (this is the case of a false
negative). This example implies that even if the algorithms recognize an area of aluminum as ice, it is
very improbable that the contrary occurs. It is possible to notice in Figures 10 and 11 that the main
false negative can be associated with the white aluminum, that is identified as ice.

In the real case, not to apply de-icing fluids to some areas with ice is more dangerous than applying
the de-icing procedure on some other areas that do not need it. Therefore, it could be possible that
some de-icing fluids will be wasted for areas in which actually ice is not present; however, the safety,
that is a primary goal, is not compromised.

Moreover, although the radiometric classification is noisy for the rime ice, the results can
be improved with the use of geometric features. The previous activities of the SEI project [14]
demonstrated that the rime ice is accurately identifiable in this application, using the RGB sensor and a
photogrammetric approach.

5. Conclusions

In this paper, the feasibility to use spectral images for ice detection was studied, testing different
sensors with different spectral resolutions such as the Senop Rikola and the MAPIR. To address this
purpose, two different types of ice samples were created to understand if it was possible to distinguish
clear ice (transparent ice) from rime ice (white ice). Then, images were collected in different illumination
conditions, because there is no open-source and ready to use dataset to face this specific task. Moreover,
semantic segmentation algorithms (such as RF and SVM) were defined, also evaluating the accuracy
and the processing time.

The main challenges of this work were the definition of the efficient use of hyperspectral data
in the near real-time application and the research of spectral resolution and algorithms capable of
providing higher accuracy and limited computational time.

This experimental analysis demonstrates the possibility to use the reduced hypercubes and both
the RF and SVM as a classifier with an OA higher than 80% on average.

As feature work, we plan to transfer the knowledge and the promising outcomes acquired through
this simulation in a drone application. Moreover, the drone’s application can help to consider also
other kinds of ice that are not possible to reproduce in the laboratory, such as snow and freezing rain.
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