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Abstract: Thermal effects of wing color for Albatross-inspired drones performing in the Martian
atmosphere are investigated during the summer and winter seasons. This study focuses on two
useful consequences of the thermal effects of wing color: the drag reduction and the thermoelectric
generation of power. According to its color, each wing side has a certain temperature affecting
the drag. Investigations of various configurations have shown that the thermal effect on the wing
boundary layer skin drag is insignificant because of the low atmospheric pressure. However, the total
drag varies as much as 12.8% between the highest performing wing color configuration and the
lowest performing configuration. Additionally, the large temperature differences between the top and
the bottom wing surfaces show great potential for thermoelectric power generation. The maximum
temperature differences between the top and bottom surfaces for the summer and winter seasons
are, respectively, 65 K and 30 K. The drag reduction and the power generation via thermoelectric
generators both contribute to enhancing the endurance of drones. Future drone designs will benefit
from increased endurance through optimizing the wing color configuration.
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1. Introduction

Over the past few decades, various government and private programs have been developed
for space exploration. Among the high interest exploration targets is the planet Mars. NASA has
performed many missions in the past and will continue with new mission in the future including the
upcoming Mars 2020 mission [1]. The private company, SpaceX, hopes to establish a supply depot on
Mars by the year 2024 as a cornerstone for future manned missions to the planet [2]. As Mars begins to
generate greater interest in the near future, planetary exploration will become much more important.
The current methods used to explore the Martian surface include rover, lander, and satellite [3]. In the
past few years, the concept of using drones for planetary exploration has gained traction and many
design concepts have been developed [3]. To design a drone suitable for Mars exploration, it is
important to understand the Martian atmosphere and other properties for flight. Compared to Earth,
the atmosphere of Mars is much thinner, and the temperature is also colder [4]. Atmospheric properties
such as density, pressure, and temperature were obtained at varying altitudes from the high-speed
entry of a probe into the atmosphere [5].

Due to the extreme conditions and challenges associated with flying in the Martian atmosphere,
maximizing the efficiency of a drone is essential [3,4]. Drones require high endurance to be able to
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perform many defined missions for planetary exploration. The endurance of a drone is primarily
limited by the available energy [6]. There are various propulsion systems and fuel/oxidizers that
provide energy for drones, and there are additional methods, such as solar cells, batteries, etc., that
provide energy to the drone [7,8]. Solar cells have been gaining popularity for use in space exploration
for several systems. Orbitals and drones have had studies performed for Solar Electric Propulsion (SEP)
applications [9,10]. When considering enhancing the endurance of a drone, there are various methods
to take into consideration. Optimizing the propulsion system to increase the total available energy is
one option. In the case of an electric propulsion system, recharging the battery by various means can
enhance the endurance of the drone. Solar panel methods have been researched as a possible option to
power or partially power drones [11–14]. Additionally, thermoelectric generators are another possible
method to harness energy via converting the thermal energy from the temperature difference between
two surfaces to electrical power [15]. Another option for enhancing the endurance of a drone is to
optimize the structure so that energy can be best conserved which will result in a reduction of necessary
power [16–21]. Control algorithms have also a great impact on the energy consumption [22,23].

Researchers have explored various techniques to decrease and manage the required power for
drones. An example is to propose new design methods for drones, which improve their aerodynamic
and mechanical efficiencies and consequently reduce the power consumption. Therefore, design
methods enhance the performance and efficiency of drones which will extend their endurance and
improve their utility in complex environments. Reduction of drag can be considered one of the main
factors during the design process to conserve energy for the mission. In other words, drag reduction of
fixed wing drones is crucial to flight efficiency on Mars [24].

The structure of a fixed wing drone can come in many different shapes and sizes. Often, when
trying to optimize a drone, inspiration can be sought from nature. As seen from nature, on Earth there
exists different modes of flight depending on the species of bird including flapping, hovering, gliding,
and soaring [25]. Specifically, soaring and gliding are flight modes that are used by fixed wing drones.
The nature of a bird’s mode of flight was used in a study to design a drone capable of wing morphing.
Two different flight conditions were achieved through either sweeping or spanning the wing [26].
Another study was previously performed to analyze the thermal effects of wing color on the resulting
heated boundary layer flow over the wing of an Albatross [27]. The study analyzed different wing
color configurations to identify the most efficient configuration. The results verify the drag efficiency
of the natural wing color configuration of the Albatross (which is black on the top surface and white
on the bottom surface) compared to other color configurations. To design an efficient drone capable of
flying in the Martian atmosphere, a similar study will be performed to analyze the thermal effects of
wing color on the heated boundary layer of an Albatross wing shape within the Martian atmosphere.
To the authors’ knowledge, a thermal boundary layer analysis of wing color configurations for drag
efficiency calculations of a drone based on wing color on Mars has not been previously performed.
This study will provide information on the surface temperature of a wing during different seasons
and for different color configurations. An optimal wing color configuration will be determined to
achieve maximum drag efficiency. Additionally, due to a possible temperature difference between
the top and bottom wing surfaces, an investigation into the application of thermoelectric generators
(TEGs) will be performed. Thermoelectric generators are composed of semiconductor material that
produces thermoelectric modules. These modules are between ceramic wafers and then connected to
an electrical load resistance. Electrical power is generated from the temperature difference as a result
that can be explained through the Seebeck effect. The specific type of TEG considered for this study is
the BiTe which is considered suitable for low-temperature heat recovery applications [28–30].

The paper is organized as follows: the thermal model describing the energy balance, wing color
configurations, and the surrounding temperatures and heat fluxes is discussed in Section 2. Section 3
considers both the wing surfaces to investigate the skin drag forces and the effects of the angle of attack.
A 3D aerodynamic analysis is performed to determine the total drag forces in Section 4. Section 5
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studies the application of thermoelectric generators for drones in the Martian atmosphere. A summary
and conclusions are drawn in Section 6.

2. Mathematical Model

An analytical model is developed using an energy balance to determine the wing surface
temperature and consequently the skin friction drag. Atmospheric properties, such as sky, ground,
and ambient temperatures are determined and applied to the energy balance. Each section of the
energy balance is discussed in detail for the following sections: solar energy absorption, convective
heat transfer, and radiative heat transfer. The conductive heat transfer will be defined in Section 4.

2.1. Energy Balance

To understand the thermal effects of different wing colors, a thermal analysis is performed using
an energy balance and including the influences of solar energy absorption, convection heat loss,
and radiative heat loss. The energy balance on a drone fixed wing can be expressed as:

Psolar = Pconvective + Pradiative+Pconductive (1)

The various sources of energy acting on the wing can be seen in Figure 1. The absorbed
solar radiation is balanced by the convective, radiative and conductive transfer. Determining the
various fluxes in the energy balance requires information from the Martian atmosphere. In this study,
the ambient temperature, pressure, wind speed, and other atmospheric properties are obtained from
the dataset collected by Viking Lander 1 and the entry probe (VL1), which is located at 22.37 N latitude
and 47.97 W longitude on the surface of Mars [31].
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Figure 1. Heat flux on a wing.

The top and the bottom wing surfaces experience different heat fluxes, which can be determined
by the view factors, surface temperatures, surface absorptance, and surface emissivity. The total energy
balance equations for both the top and the bottom surfaces of the wing are given in Equations (2) and
(3), respectively [32].

αt·Gb· cos θ+ αt·Ft
d·Gdh + αt·al·Ft

al·(Gbh + Gdh) − h·(Ts−top − Tamb) − εt·σ·

Ft
d·(T

4
s-top − T4

sky) − εt·σ·Ft
al·(T

4
s−top − T4

grd) −
1

Reff
·(Ts-top − Ts-bottom) = 0

(2)
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αb·Fb
d·Gdh +αb·al·Fb

al·(Gbh + Gdh) − h·(Ts-bottom − Tamb)

−εb·σ·Fb
d·(T

4
s-bottom − T4

sky)

−εb·σ·Fb
al·(T

4
s-bottom − T4

grd)

−
1

Reff
·(Ts-bottom − Ts-top) = 0

(3)

In the energy balance equations, the meanings of the different symbols are detailed in the
nomenclature, using subscripts t and b to denote top and bottom wing surface, respectively.
The convective heat transfer coefficient, denoted h is obtained from calculating the Nusselt Number on
a flat plate in laminar regime as detailed in [33] using Mars atmospheric properties and assuming that
the dominant gas is CO2. These properties were obtained from [34]. The atmospheric density was
determined by using ideal gas law at 8.5 mbar of atmospheric pressure.

2.2. Sky, Ground, and Ambient Temperatures

As mentioned previously, this study includes the summer and winter seasons. As such, the sky,
ground, and ambient temperatures for both seasons are needed. The information for a summer day
corresponds to a solar longitude of 140◦ and for a winter day corresponds to a solar longitude of
280◦. Figure 2 shows the ambient temperatures based on the season. The ambient temperature for
summer is higher than winter and has a larger variation over the day. The summer daily variation has
a range of almost 50 ◦C, while the winter only has a daily variation of nearly 15 ◦C [31]. Figure 3 shows
the sky and ground temperatures as reported by Matz et al. [32] at the same location on the same
day. The ground temperature follows a similar trend where the summer temperatures are higher and
vary more throughout the day compared to the winter ground temperatures. The sky temperatures,
however, have the opposite trend. The winter sky temperature is higher and varies more compared to
the summer sky temperatures.
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2.3. Solar Energy Absorption

Being inspired by migrating birds’ flight on Earth, different color combinations are investigated.
It is assumed that the top and bottom surfaces have different colors and therefore different absorptivity
values. The different color configurations considered during this study are shown in Figure 4. The four
configurations are on the top and bottom surfaces, respectively, black–white, black–black, white–black,
and white–white. The solar irradiance that acts on the top surface of the wings includes direct beam,
diffuse, and albedo radiations. The wing surface exposure to different radiation fluxes is governed
by the view factors to the sky and the ground. The absorbed energy on the two wing surfaces can be
written as [32]:

Psolar-top = αt·Gb· cos θ+ αt·Ft
d·Gdh + αt·al·Ft

al·(Gbh + Gdh) (4)

Psolar-bottom = αb·Fb
d·Gdh + αb·al·Fb

al·(Gbh + Gdh) (5)
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The view factors for the top and bottom surfaces are needed and are expressed by Equations (6)–(9),
where β is the angle of attack. The view factor for the top surface to the sky is Ft

d while the view factor
for the top surface to the ground is Ft

al. For the bottom surface, the view factor for the bottom to the sky
Fb

d is identical to Ft
al. Likewise, the view factor from the bottom surface to the ground Fb

al is identical
to Ft

d. In this case, the drone is considered to be flying very close to the ground because some of the
atmospheric properties used were measured by VL1 at ground level. It is noted that at a zero-degree
angle of attack Equations (2) and (3) are decoupled because the view factor from the top surface to the
sky is 1 and the view factor for the top surface to the ground is zero.

Ft
d =

1 + cos β
2

(6)

Ft
al =

1− cos β
2

(7)
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Fb
d = Ft

al (8)

Fb
al = Ft

d (9)

The absorptivity values for αt and αb used in this study are 0.88 and 0.23, which correspond to
the absorptance of anodize black paint and biphenyl white solid paint, respectively. Both are often
used for space applications [35]. Depending on several variables, such as the solar angle of incidence
shown in Figure 5, the optical depth of the Martian atmosphere, and the season, the solar irradiance
changes. NASA researchers from Lewis Research Center in Ohio have derived a set of equations to
determine the solar irradiance on Mars [36]. One of the most crucial elements for determining the solar
irradiance is the position of the wing with respect to the sun. The solar incidence angle θ is used to
describe this relation and can be determined from Equation (10), as follows [37]:

cosθ = sinϕ sin δ cos β− sin δ cosϕ cosλ sin β+ cosϕ cos δ cosω cos β

+ cos δ sinϕ cosλ cosω sin β+ cos δ sinλ sinω sin β
(10)
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To determine the solar incidence angle, positional information about the drone must be known,
such as the latitude ϕ, declination angle δ, hour angle ω, angle of attack β, and the wing azimuth angle
λ. The wing azimuth angle can be considered as the direction of flight. In this study, the drone is
assumed to be flying directly southward. The hour angle only considers daylight hours from 7:00 to
17:00. Additionally, the hour angle refers to solar Martian time (0:00–24:00). The declination angle
depends on the season which is described by the areocentric longitude Ls. The latitude selected for the
study is the location of the rover which is where the atmospheric properties are obtained. The values
for latitude, declination angle, tilt angle, and wing azimuth angle that are used in this study are shown
in Table 1 for both summer and winter seasons.

Table 1. Location parameters [36].

Summer (Ls = 140◦) Winter (Ls = 280◦)

Latitudeϕ 22◦ 22◦

Declination angle δ 17◦ −24◦

Tilt angle β 0◦ 0◦

Wing Azimuth angle λ 0◦ 0◦
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After determining the solar incidence angle, the solar irradiance can then be determined. The direct
beam irradiance Gb, diffuse irradiance on a horizontal surface Gdh, and the global irradiance on a
horizontal surface Gh which are used to determine the beam, diffuse, and albedo irradiance, respectively,
can be determined from Equations (11)–(13) [36]. The optical depth τ varies depending on the date
which is represented by the areocentric longitude Ls. The optical depth is a result of the atmospheric
dust particles in the atmosphere [38]. The values for the solar irradiance variables that are used for this
study are shown in Table 2. The normalized net flux function f(θ, τ) values [36] used during this study
that correspond to the solar incidence angle and optical depth are presented in Table 3.

Gb = Gob·e(
−τ

cosθ ) (11)

Gdh = Gh −Gbh (12)

Gh =
Gob· cos θ·f(θ, τ)

1− al
(13)

Table 2. Solar irradiance variables [36].

Summer Winter

Areocentric longitude 140◦ 280◦

Optical depth 0.4 2.7
Mars eccentricity 0.093377 0.093377

Albedo 0.1 0.1

Table 3. Normalized net flux function [36].

Hour f(θ,τ) (Summer) f(θ,τ) (Winter)

7 0.667 0.136
8 0.75 0.175
9 0.802 0.28

10 0.815 0.325
11 0.824 0.36
12 0.827 0.37
13 0.824 0.36
14 0.815 0.325
15 0.802 0.28
16 0.75 0.175
17 0.667 0.136

The solar irradiance at the top of the atmosphere Gob, which can be seen in Equation (14) [36],
is needed along with the optical depth τ, solar incidence angle θ, and the normalized net flux function
f(θ, τ) to determine the direct beam irradiance and the global irradiance. Mars eccentricity b is around
0.093377, as can be seen in Table 2. The diffuse irradiance can be determined by subtracting the
direct beam irradiance on a horizontal surface Gbh from the global irradiance on a horizontal surface
Gh. The equation for direct beam irradiance on a horizontal surface can be expressed as shown in
Equation (15) [36].

Gob =
590·[1 + b· cos (Ls − 248◦)]2

(1− b2)
2 (14)

Gbh = Gob· cos θ·e(
−τ

cosθ ) (15)

2.4. Radiative Heat Loss

Equations (16) and (17) represent the radiative heat loss for the top and bottom wing surfaces,
respectively. The top and bottom wing surfaces will differ depending on the emissivity ε and the shape
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factors. For a zero-degree angle of attack, the top wing surface only loses energy to the sky while the
bottom wing surface only loses energy to the ground. The values used for emissivity are based on
anodize black paint and biphenyl white solid paint, respectively. For both white and black colors,
the emissivity is 0.88 [24]. The sky and ground temperatures can be found in Figure 3a,b, respectively.

Pradiative-top = εt·σ·Fdt·(T4
s-top − T4

sky) + εt·σ·Falt·(T4
s-top − T4

grd) (16)

Pradiative-bottom = εb·σ·Fdb·(T4
s-bottom − T4

sky) + εb·σ·Falb·(T4
s-bottom − T4

grd) (17)

2.5. Thermal Boundary Layer Analysis

For simplicity, the wing curvature is ignored, and a flat plate is considered for the boundary layer
analysis. Figure 6 represents a schematic view of the boundary layer over a flat plat [25].

Figure 6. Considered boundary layer over a flat plate [25].

The thermal boundary layer effects on the skin friction drag are determined using Equation (18) [39],
where the wingspan ws, is 3.5 m and the chord length, L, is 0.22 m [7]. To determine the viscosity
µ, Sutherland’s formula, which can be found in Equation (19), is used [40]. T0 and µ0 are the
reference temperature and viscosity, respectively, which are 293.14 K and 1.48 × 10−5 kg

m·s for the
Martian atmosphere [41]. The Sutherland constant C, for CO2 is 240 K [41] and Ts is the wing surface
temperature. The density ρ is determined using ideal gas law considering CO2 in Equation (20).
The ideal gas constant for the Martian atmosphere R, is 192.1 J

kg·K [30]. The pressure P is found from
the information collected by VL1.

D = 0.664·ws·
√
ρ·µ·u3·L (18)

µ = µ0·

(T0 + C
Ts + C

)
·

(
Ts

T0

)3/2

(19)

ρ =
P

192.1R·Ts
(20)

3. Wing Surface Analysis

In this section, the whole wing (top and bottom surfaces) is considered for the study. The wing
structure will be considered as a hollow wing composed of a hollow center with a top layer and a
bottom layer of material. The model of the overall wing can be seen in Figure 7a,b. From Figure 7b,
it can be observed that the conductive heat transfer will cover three layers of material; the first layer of
material, the interior which is air (CO2 for the Martian atmosphere), and the third layer of material.
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The expression for heat conduction is given in Equation (21), where the conduction is determined
from the temperature difference between the top surface Ts-top, and the bottom surface Ts-bottom divided
by the effective resistance of all materials. The effective resistance is presented in Equation (22) where
Lsurface is the depth of the wing material, Lair is the average depth of the hollow part of the wing,
Ksurface denotes the thermal conductivity of the material, Kair represents the thermal conductivity of the
Martian atmosphere, Asurface is the area of the material, and Aair denotes the area of the hollow part.

Pconductive =
Ts-top − Ts-bottom

Reff
(21)

Reff =
2Lsur f ace

KsurfaceAsurface
+

Lair

KairAair
(22)

Air (CO2) acts as an insulator in this case which prevents conductive heat transfer from occurring
between the top surface and the bottom surface. The surface temperature for the top and bottom
surfaces with and without considering conductive heat fluxes are shown in Figure 8 for summer.
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Figure 8. Surface temperature with and without conduction for (a) top surface and (b) bottom surface.

Air has a very low thermal conductivity, which will result in a very high thermal resistance.
The heat conducted through the wing can be considered negligible compared to the total energy
balance. This allows Equations (2) and (3) to be simplified into Equations (23) and (24). The two new
energy balance equations become uncoupled without the conductive heat transfer and are used for the
rest of this study.

αt·Gb· cos z + αt·Ft
d·Gdh + αt·al·Ft

al·(Gbh + Gdh) − h·(Ts-top − Tamb) − εt·σ·Ft
d

·(T4
s-top − T4

sky) − εt·σ·Ft
al·(T

4
s-top − T4

grd) = 0
(23)
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αb·Fb
d·Gdh + αb·al·Fb

al·(Gbh + Gdh) − h·(Ts-bottom − Tamb) − εb·σ·Fb
d

·(T4
s-bottom − T4

sky) − εb·σ·Fb
al·(T

4
s-bottom − T4

grd) = 0
(24)

When considering an angle of attack of zero degrees, the equations are completely decoupled
and thus can be solved individually. Therefore, the effects of the conduction are not considered in
further analysis. As can be seen in Figure 9a,b, the solar absorption for the top surface (both white
and black colors) are higher than the bottom surface. This is due to the direct beam irradiance that is
only experienced by the top surface. Additionally, the solar absorption during summer is higher than
during the winter due to the high solar intensity that occurs during the summer period of the Martian
solar cycle.
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Figure 10. Surface temperature for (a) summer and (b) winter.

Using the surface temperature, Equations (18)–(22) can be solved to find the viscosity, density,
and drag. The viscosity for both wing surfaces and for black and white colors are plotted in Figure 11a,b,
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respectively. The viscosity follows a similar trend to the surface temperature. The higher surface
temperature wing color configuration results in a higher viscosity along the boundary. The density,
which can be seen in Figure 12a, is lower along the boundary layer when the surface temperature is
higher. The total drag of the combined wing color configurations is plotted in Figure 13a,b for summer
and winter, respectively. The four different wing color combinations are as follows: black on top and
black on bottom (black–black), black on top and white on bottom (black–white), white on top and
black on bottom (white–black), and white on top and white on bottom (white–white). It follows from
Figure 13a, during the summer, that the highest drag color configuration is the white–white, and the
lowest drag is the black–black. During the winter, it is shown in Figure 13b that the highest drag is from
the color configuration black–black and the lowest drag is from the color configuration white–white.

 
 

    (a)      (b) 

Figure 11. Surface viscosity for (a) summer and (b) winter. 

               (a)                 (b) 

Figure 12. Surface density for (a) summer and (b) winter. 
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Figure 12. Surface density for (a) summer and (b) winter.
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Comparing the relative change between the highest drag color configuration and the lowest drag
color configuration results in Figure 13a,b. During the summer the highest drag color configuration is
white–white and the lowest is the black–black color configuration. During the winter, the trend
is reversed with the highest drag color configuration being black–black and the lowest color
configuration white–white.

During the summer season, the optimal wing color configuration is black–black which results in a
decrease of drag by a maximum of 0.125% compared to the white–white wing color configuration.
During the winter season, the optimal wing color configuration is white–white which has a maximum
drag reduction of 0.15% compared to the black–black configuration, as shown in Figure 14.
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Until now, the results have been generated using a zero-degree angle of attack (AoA). To 
understand the effects of the angle of attack, the drag as a function of angle of attack at solar noon is 
plotted in Figure 15. The change in drag during the summer period is near constant over a range of 
10 degrees AoA. During the winter, the maximum change in drag occurs for the white–black color 
configuration with a change percentage of 0.001%. It can be concluded that the change in angle of 
attack is negligible to determining the drag force. This led to using a constant zero-degree angle of 
attack for the study. 
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Figure 15. Drag as a function of angle of attack for (a) summer and (b) winter. 

Figure 14. Relative change for (a) summer and (b) winter in the Martian atmosphere.

Until now, the results have been generated using a zero-degree angle of attack (AoA). To understand
the effects of the angle of attack, the drag as a function of angle of attack at solar noon is plotted in
Figure 15. The change in drag during the summer period is near constant over a range of 10 degrees
AoA. During the winter, the maximum change in drag occurs for the white–black color configuration
with a change percentage of 0.001%. It can be concluded that the change in angle of attack is negligible
to determining the drag force. This led to using a constant zero-degree angle of attack for the study.
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4. 3D Aerodynamic Analysis

The skin friction drag has already been determined based on the boundary layer analysis in
Section 3. In this section, the aerodynamic performance for the whole wing will be analyzed by
determining the total drag. The drag will be determined using an aerodynamic analysis software
named XFLR5. The total drag includes the form drag, the induced drag, and the parasitic drag.
The software used to analyze the 3D wing geometry can determine the drag coefficients. The study
considers a constant zero-degree angle of attack under similar conditions as the boundary layer analysis
from Section 3 and the two results are compared. Four analysis methods, namely, Lifting Line Theory
(LLT), Horseshoe Vortex (VLM1), Ring Vortex (VLM2), and 3D panel method are used in order to
estimate the total drag of an Albatross-inspired drone in the Martian atmosphere. All of these methods
consider the assumption of inviscid flow.

The LLT method uses the assumption that the lift coefficient as a function of the angle of attack is
linear. One major assumption for the LLT method is that the surfaces are in the X-Y plane and that the
dihedral angles and the sweep are not needed for the lift distribution calculations. The lift of the wing
for this theory is determined from the incremental vortices shed along the trail span of the wing along
the freestream direction [42].

The VLM1 and VLM2 methods allow for more freedom in the choice of wing geometry.
This includes winglets, high dihedral angles, low aspect ratio, and sweep. For the VLM methods,
the general idea is to model the perturbation of the wing planform using a vortices’ distribution
sum. The lift coefficient is computed by integrated surface forces, such as the moment coefficients.
The VLM methods calculate the lift distribution, induced angles, and induced drag. Because of this,
the methods are independent of the wing speed. The VLM methods assume small angles of attack,
so stall angles should be avoided when computing results. The main difference between the VLM1
and VLM2 methods is that the VLM1 method does not consider side slip [42].

The 3D panel method is able to account for the thickness of the wing unlike the VLM methods
that only consider the mean camber line. Because of this, the 3D panel method can allow for an
understanding of the center of pressure distribution over the top and bottom surfaces of the wing.
The 3D panel method uses an approach that sum the doublets and sources distributed of the surface of
the wing from the perturbations generated. The 3D panel method can be used to polish the results of
the other three methods, so this is often considered to be the most accurate method. The 3D panel
method will be considered as the standard for this study that the other three methods will be compared
to [42].

As mentioned in the previous section, the 3D aerodynamic analysis methods all have inviscid
assumptions. To account for the viscosity in the 3D analysis, a 2D viscous analysis is performed for
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the selected airfoil to obtain 2D viscous information. The 2D information is then interpolated and
then incorporated into the 3D analysis and this is how the viscous effects are included in the analysis.
The 2D boundary layer problem is solved using a software called XFoil by using an iterative method
along with the inviscid velocity field as an input. The method provides a viscous velocity from the
boundary layer solution which is used as an input for the potential flow solver. This iterative method
is called the “Interactive Boundary Layer” [42]. The wing shape considered for the 3D analysis is that
of an Albatross. Figure 16 shows the analyzed wing shape and Table 4 lists the geometric properties.

 
 

 
Figure 16. 3D wing shape. 
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previously, the 3D panel method is considered to be the most accurate method and the other three 
methods are compared to the 3D panel method to determine their accuracy. The number of panels 
on the wing is determined in order for the different methods of analysis to converge. Figure 17 
compares the total drag for the different analysis methods for both summer and winter. Inspecting 
the plotted curves in these figures, it is clear that VLM1 and VLM2 methods have comparable results 
to the 3D panel method. The LLT method varies greatly compared to the other three methods. In 
Tables 5 and 6, the percent difference between the different methods compared to 3D panel method 
is shown. The percent difference between VLM1 and VLM2 compared to the 3D panel method is 
3~4%, which shows good agreement. However, the LLT method compared to the 3D panel method 
has a greater than 50% error, which shows that the LLT method is not capable of handling the 
complex geometry of the Albatross-like wing shape.  
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Figure 16. 3D wing shape.

Table 4. Wing geometry of the drone.

Wing Span (m) Wing Area (m2) Mean Aerodynamic Chord (m) Aspect Ratio

3.5 0.69 0.22 17.6

To solve the 2D and 3D analyses, certain properties are needed, namely, the Reynolds number and
wing velocity. The wing velocity and the Reynolds number for the 3D analysis are the same as for the
boundary layer analysis. The Reynolds number is calculated based on the viscosity and density found
in Section 3. The total drag varies depending on the analysis method. As mentioned previously, the 3D
panel method is considered to be the most accurate method and the other three methods are compared
to the 3D panel method to determine their accuracy. The number of panels on the wing is determined
in order for the different methods of analysis to converge. Figure 17 compares the total drag for the
different analysis methods for both summer and winter. Inspecting the plotted curves in these figures,
it is clear that VLM1 and VLM2 methods have comparable results to the 3D panel method. The LLT
method varies greatly compared to the other three methods. In Tables 5 and 6, the percent difference
between the different methods compared to 3D panel method is shown. The percent difference between
VLM1 and VLM2 compared to the 3D panel method is 3~4%, which shows good agreement. However,
the LLT method compared to the 3D panel method has a greater than 50% error, which shows that the
LLT method is not capable of handling the complex geometry of the Albatross-like wing shape.
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Figure 17. Total drag comparison of the different analysis method for black–black color configuration
for (a) summer and (b) winter.

Table 5. Drag percent difference compared to 3D panel method during the summer.

Black–Black (%) Black–White (%) White–Black (%) White–White (%)

VLM1 3.49 3.51 3.50 3.50
VLM2 3.50 3.53 3.52 3.51

LLT 54.44 54.44 54.41 54.41

Table 6. Drag percent difference compared to 3D panel method during the winter.

Black–Black (%) Black–White (%) White–Black (%) White–White (%)

VLM1 3.22 3.22 3.39 3.38
VLM2 3.16 3.16 3.25 3.21

LLT 52.96 52.85 52.11 51.90

The total drag forces for the wing at a constant angle of attack and at different times throughout
the day is calculated using the 3D panel method. The total drag includes the form drag, the induced
drag, and the parasitic drag. Figure 18 shows the total drag dependent on the hour for the 3D panel
method. Compared to the drag determined using the boundary layer analysis, the drag calculated
using the 3D panel method is much larger, by a factor of 5 on average. During the winter, the drag
is much higher than during the summer. This remains consistent with the trend found for the skin
friction drag. Additionally, the black–black wing color configuration is the most optimal case that
results in the least amount of drag for both summer and winter. The percent change between the most
optimal wing color configuration (black–black) and the least optimal color configuration (white–white)
is much more significant when considering the total drag instead of just the skin drag. For summer the
percent change is 12.6% and for the winter the change is 6.8%. This demonstrates that the effects of the
skin drag are significantly less compared to the total drag.
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5. Thermoelectric Energy Generators in Martian Atmosphere

The basis of a thermoelectric generator is the ability to convert heat energy into electrical power
when there exists a temperature difference between two surfaces. Most TEGs are created using pairs of
thermocouples that are connected in series (electrical) and parallel (thermal) in between two plates.
A representation of a typical TEG is presented in Figure 19. The power produced from the TEG is the
difference between the heat supply Ph and heat removal Pc which is also equal to the product of the
voltage across the external load resistance V and the current I. The energy balance can be expressed as:

PTEG = Ph − Pc = V·I (25)
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Figure 19. Schematic of a thermoelectric generator.

The derived equation for the electrical harvested power is written as [15]:

PTEG = RL·
α2
·(Th − Tc)

2

(Ri −RL)
2 (26)

It follows from Equation (26) that the electrical power is dependent on the Seebeck coefficientα, the
internal resistance Ri, the external resistance RL, and the temperature difference between the hot surface
Th and the cold surface Tc. Depending on the specific TEG and the manufacturer, the coefficients will
differ. It is often assumed that the internal properties of a TEG device are constant and independent of
temperature. However, it has been demonstrated through experimental data by Hsu et al. [28] that the
internal properties vary as a dependent on the hot side temperature. For the experiment, Hsu et al.
considered a TEG module (TMH400302055, Wise Life Technology, Taiwan) and varied the hot side
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temperature to determine the effects on the Seebeck coefficient and the internal resistance. Expressions
for both the internal resistance and the Seebeck coefficient are determined by [15]. The expressions are
validated to the experimental data by Hsu et al. [28]. The expressions for the Seebeck coefficient and
the internal resistance are given by:

α(T) = a1T2 + a2T + a3 (27)

Ri(T) = b1T + b2 (28)

The temperature range that is experienced by the wing surfaces on Mars are 180–300 K. In Figure 20,
the internal properties for the TEG under consideration are determined by using the expressions above
for the Seebeck coefficient and the internal resistance.
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Figure 20. Internal properties of a TEG device over a temperature range for (a) Seebeck coefficient 
and (b) internal resistance. 

An analysis is performed to determine the harvested power over a range of values for the 
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over a range of temperatures from 180–300 K. According to Figure 20, the Seebeck coefficient ranges 
from 0.064–0.072 (V/K) and the internal resistance ranges from 0.85–1.15 (Ω). However, the set of 
temperatures were obtained using data from one specific day each during the summer and winter. 
Consequently, to account for a certain amount of variation, a Seebeck coefficient ranging from 0.05–
0.08 (V/K) and an internal resistance ranging from 0.8–1.3 (Ω) will be used for the parametric study 
and performance analysis. Figure 21 shows a 3D plot representing the harvested power as a function 
of the external resistance and the Seebeck coefficient with a fixed value for the internal resistance 
during summer for each color configuration. Figures 21a–d are for the color configurations black–
white, black–black, white–black, and white–white, respectively. Each color configuration has a 
different time of day for which the maximum power occurs. This is because the maximum power is 
occurring when the temperature difference between the top and bottom surfaces is greatest. For the 
maximum harvested power, the time of day for each color configuration (a–d) is 10:00, 10:00, 15:00, 
and 15:00 solar time. 
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Figure 20. Internal properties of a TEG device over a temperature range for (a) Seebeck coefficient and
(b) internal resistance.

An analysis is performed to determine the harvested power over a range of values for the external
resistance, Seebeck coefficient, and internal resistance. These coefficients were determined over a
range of temperatures from 180–300 K. According to Figure 20, the Seebeck coefficient ranges from
0.064–0.072 (V/K) and the internal resistance ranges from 0.85–1.15 (Ω). However, the set of temperatures
were obtained using data from one specific day each during the summer and winter. Consequently,
to account for a certain amount of variation, a Seebeck coefficient ranging from 0.05–0.08 (V/K) and an
internal resistance ranging from 0.8–1.3 (Ω) will be used for the parametric study and performance
analysis. Figure 21 shows a 3D plot representing the harvested power as a function of the external
resistance and the Seebeck coefficient with a fixed value for the internal resistance during summer
for each color configuration. Figure 21a–d are for the color configurations black–white, black–black,
white–black, and white–white, respectively. Each color configuration has a different time of day
for which the maximum power occurs. This is because the maximum power is occurring when the
temperature difference between the top and bottom surfaces is greatest. For the maximum harvested
power, the time of day for each color configuration (a–d) is 10:00, 10:00, 15:00, and 15:00 solar time.



Drones 2020, 4, 43 18 of 22

 
 

               (a)              (b) 

Figure 20. Internal properties of a TEG device over a temperature range for (a) Seebeck coefficient 
and (b) internal resistance. 

An analysis is performed to determine the harvested power over a range of values for the 
external resistance, Seebeck coefficient, and internal resistance. These coefficients were determined 
over a range of temperatures from 180–300 K. According to Figure 20, the Seebeck coefficient ranges 
from 0.064–0.072 (V/K) and the internal resistance ranges from 0.85–1.15 (Ω). However, the set of 
temperatures were obtained using data from one specific day each during the summer and winter. 
Consequently, to account for a certain amount of variation, a Seebeck coefficient ranging from 0.05–
0.08 (V/K) and an internal resistance ranging from 0.8–1.3 (Ω) will be used for the parametric study 
and performance analysis. Figure 21 shows a 3D plot representing the harvested power as a function 
of the external resistance and the Seebeck coefficient with a fixed value for the internal resistance 
during summer for each color configuration. Figures 21a–d are for the color configurations black–
white, black–black, white–black, and white–white, respectively. Each color configuration has a 
different time of day for which the maximum power occurs. This is because the maximum power is 
occurring when the temperature difference between the top and bottom surfaces is greatest. For the 
maximum harvested power, the time of day for each color configuration (a–d) is 10:00, 10:00, 15:00, 
and 15:00 solar time. 

  
(a) (b) 

 
 

  
(c) (d) 

Figure 21. Harvested power as a function of the external resistance and Seebeck coefficient when 
Ri=0.8Ω for (a) Black–white (10:00), (b) Black–black (10:00), (c) White–black (15:00), and (d) White–
white (15:00). 

The optimal power generation for winter and summer is shown in Figure 22. The corresponding 
time of day for each color configuration is also shown. The black–white color configuration has the 
largest power generation while the white–white color configuration has the lowest. During the earlier 
part of the day, when the top surface of the wing is black, the TEG experiences higher power 
generation. We can derive the optimal power generation Q  from Equation (26) using the 
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The optimal power generation for winter and summer is shown in Figure 22. The corresponding
time of day for each color configuration is also shown. The black–white color configuration has the
largest power generation while the white–white color configuration has the lowest. During the earlier
part of the day, when the top surface of the wing is black, the TEG experiences higher power generation.
We can derive the optimal power generation QP-Optimal from Equation (26) using the expression:
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Figure 22. Optimal harvested power as a function of internal resistance for (a) summer and (b) winter
when the Seebeck coefficient is equal to 0.08.
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The resulting optimal power generation equation is:

PTEG-Optimal =
α2
·(∆T)2

4·Ri
(30)

In Table 7, the optimal power generation along with the maximum temperature difference and
the time of day for each color configuration for both summer and winter is given. The optimal wing
color configuration that generates the most harvested power is the black–white configuration for
both summer and winter. This is due to having the highest temperature difference. The white–white
configuration has the lowest power generation and the lowest temperature difference. Overall, the TEG
performs better during the summer than during the winter.

Table 7. Optimal power comparison (Time, ∆Tmax, Power).

Black–White Black–Black White–Black White–White

Summer (10:00, 46.3 ◦C, 4.3 W) (10:00, 38.4 ◦C, 2.9 W) (15:00, 32.6 ◦C, 2.1 W) (15:00, 27.2 ◦C, 1.5 W)
Winter (11:00, 36.1 ◦C, 2.6 W) (11:00, 30.5 ◦C, 1.8 W) (15:00, 11.6 ◦C, 0.3 W) (16:00, 10.0 ◦C, 0.2 W)

6. Conclusions

To enhance the design of an efficient drone capable of flying in the Martian atmosphere, a parametric
study was performed to analyze the thermal effects of wing color on the heated boundary layer of
a wing. This study provided information on the optimal wing color configuration during different
seasons on Mars considering the color configurations of black–black, black–white, white–black, and
white–white. A model based on an energy balance, and including wing color configurations, sky,
ground, and ambient temperatures, solar energy absorption, convective heat transfer, and radiative
heat loss, was developed and discussed. The adiabatic case, which only includes the top wing surface
and drag effects, was analyzed. The effects of conduction and angle of attack on the total energy
balance were studied. They both had a negligible effect on the thermal energy balance. The drag
effects considering the color configurations on both sides of the wing were investigated. The first
method analyzed the boundary layer and the skin friction drag, while the second method included
a 3D analysis that investigated the total drag. The skin drag did not significantly change as a result
of the color configuration. However, the total drag experienced a change percent of 12.8% during
summer and 6.8% during winter. This shows that the skin drag does not play a significant role in the
total drag on Mars due to the low atmospheric pressure. The study performed on the thermoelectric
generator yielded interesting results. Due to the high temperature differences on the top and bottom
wing surfaces that occur on Mars, TEGs are capable of high power generation. The black–white
configuration had the largest temperature difference and resulted in the greatest power generation for
both respective seasons, summer and winter.
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Nomenclature

A = surface area
al = Albedo
b = Mars eccentricity
C = Sutherland′s constant
D = Drag force
f(z, τ)= Normalized net flux
Fdt= View factor top-side to the sky
Falt= View factor top-side to the ground
Fdb= View factor bottom-side to the sky
Falb= View factor bottom side to the ground
Gb= Direct beam irradiance on surface
Gbh= Direct beam irradiance horizontal surface
Gdh= Diffuse irradiance on horizontal surface
Gh= Global irradiance on horizontal surface
Gob= Beam irradiance at top of the Atmosphere
h = heat transfer coefficient
I = Current
K = Atmospheric thermal conductivity
L = Chord length
Ls= Areocentric Longitude
Nu = Nusselt number
P = Atmospheric Pressure
Pr = Prandtl number
Ph and Pc = Hot and cold sources
PConductive = Conductive heat transfer
Pconvective= Convective heat loss
Pradiative= Radiative heat loss
Psolar= Solar energy absorbed
PTEG= Electrical Power
R = Ideal gas constant
Ri = Internal resistance
Re = Reynolds number
Reff = Effective conductive resistance of the wing
RL = External resistance
T0= Reference temperature for Sutherland′s
Tamb= Ambient temperature
Tgrd= Ground temperature
Ts= Wing surface temperature
Tsky= Sky temperature
u = velocity
V = Voltage across external load resistance
ws = Wing span
α = Seebeck coefficient
αt= Top surface absorptance
αb= Bottom surface absorptance
β = Angle of attack
δ = Declination angle
εt= Top surface emissivity
εb= Bottom surface emissivity
θ = Solar incidence angle
λ = Wing azimuth angle (direction)
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µ0= Reference viscosity for Sutherland′s Formula
µ = Boundary layer viscosity
µa= Atmospheric viscosity
ρ = Boundary layer density
ρa= Atmospheric Density
σ = Stefan-Boltzmann Constant
τ = Optical depth
ϕ = Latitude
ω = Hour angle
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