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Abstract: Using autonomously operating mobile sensor nodes to form adaptive wireless sensor networks
has great potential for monitoring applications in the real world. Especially in, e.g., disaster response
scenarios—that is, when the environment is potentially unsafe and unknown—drones can offer fast access
and provide crucial intelligence to rescue forces due the fact that they—unlike humans—are expendable
and can operate in 3D space, often allowing them to ignore rubble and blocked passages. Among the
practical issues faced are the optimizing of device-device communication, the deployment process and
the limited power supply for the devices and the hardware they carry. To address these challenges a host
of literature is available, proposing, e.g., the use of nature-inspired approaches. In this field, our own
work (bio-inspired self-organizing network, BISON, which uses Voronoi tessellations) achieved promising
results. In our previous approach the wireless sensors network (WSN) nodes were using knowledge
about their coverage areas center of gravity, something which a drone would not automatically know.
To address this, we augment BISON with a genetic algorithm (GA), which has the benefit of further
improving network deployment time and overall coverage. Our evaluations show, unsurprisingly, an
increase in energy cost. Two variations of our proposed GA-BISON deployment strategies are presented
and compared, along with the impact of the GA. Counter-intuitively, performance and robustness increase
in the presence of noise.

Keywords: Voronoi centroids; genetic algorithm; particle swarm optimization; drones; drone swarms;
swarming; swarm intelligence; wireless sensor networks; self-organization; self-optimization; energy
aware; noise coherence; position-navigation-timing; GPS denied

1. Introduction

Drones have become an affordable consumer item. They are increasingly considered as candidates
for mobile/aerial urban sensing platforms [1]. Projected advances in cloud computing, wireless sensors
and networked unmanned systems motivate this claim further, and indeed, in the literature UAVs are
increasingly being suggested as flexible mobile platforms [2] used for applications as wide as general
monitoring [3-6], monitoring and surveillance [7-9], to provide situational awareness support [10],
detect victims or their life-signs [4] and participate in search and rescue (SAR) or aerial tracking [7].
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This is especially applicable in the direct aftermath of a natural of man-made disaster as these events often
result in partial or total loss of communication and data-collection infrastructure.

UAYV swarms [1,11]—that is, a number of individual devices cooperating to form a collective
operational unit—have been used as mobile sensor networks [2] for monitoring and tracking civilians,
personnel and victims [4] and for surveillance tasks in general [7]. A recent literature study considered a
number of surveys [12-17] identifying application areas for UAVs and UAV swarms [18]. Of all considered
wireless access networks, many emphasized the disaster response domain (cf. Table 1).

Table 1. Recommended surveys in the literature focusing on one or more application areas for
UAVs and UAV swarms, as identified by [18] and discussed in [19]. WAN = wireless access networks,
RS = remote sensing, RTM = real-time monitoring, SAR = search and rescue, GL = goods delivery/logistics,
INT = surveillance and SI = structural inspection. WAN is considered by all as a relevant area.

Reference  WAN RS RTM SAR GL INT SI

[12] v v v v
[13] v v

[14] v v v v
[15] v

[16] v

[17] v

[18] v v v v v

Drones are increasingly considered as platforms for mobile sensing and actuation [19,20]. With
cellular network coverage [21-30] and aerial sensing [2—4,7,17,29,31-43] among the most popular
applications. As a general rule, disaster response operations have to be implemented within the first
72 h [10,34,44] so as to avoid a dramatic increase in loss of life/economic damage. Any technology
that can speed up the e.g., assessment of structural damage of buildings or the localization of victims
through indoor exploration [45] can reduce the cost of life and bodily harm.

In this field, UAVs have a lot of potential [10,19]: drone based wireless sensors networks (WSNs) are
developed for a wide variety of applications (e.g., health-care and environmental monitoring [5,46-51]).
With advances in the field of autonomous intelligent systems, and given the progress made with mobile
cyber-physical systems, building and deploying mobile WSNs (where individual nodes can move and
are endowed with computational power to enable information driven self-organization and on-board
reasoning and decision making) is becoming increasingly common [17,21-43].

Due to this, a variety of challenges (such as limitations in energy, computing power and memory,
and difficulties in the deployment process) are emerging. In the design of approaches and strategies
to handle a variety self-organizing network constraints for deployment and reallocation procedures,
focus is placed on energy-consumption management and ensuring network connectivity.

Considering nature-inspired techniques to enable a WSN to operate in the real-world seems logical,
and indeed this is a popular approach in the literature. Combining a number of such approaches to
complement each other to improve network survival chances are of great interest to the community.

In the literature, Voronoi tessellations are preferred over other geometrical structures to reduce
the computational complexity [52,53]. In this paper, we augment BISON (bio-inspired self-organizing
network), our previously developed, Voronoi-based algorithm [54,55] with a genetic algorithm and
evaluate the resulting effects on network discovery rate and performance.

1.1. Motivation, Objectives and Goals

Merging Voronoi-based approaches with other nature-inspired algorithms such as particle swarm
optimization (PSO) [52,56-62], genetic algorithms (GAs) [63-77] and ant colony optimization (ACO) [78-81]
is not uncommon (cf. Table 3). There are many examples where this has been shown to potentially
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provide stability in the network with coverage optimization, distributed sensor nodes more uniformly,
and ultimately, enhance the lifetime of the network [58,59].

The literature indicates that both, PSO and GAs improve energy consumption and WSN
deployment time comparably [60]. However, as GAs are more compatible with the locally available
information that sensor nodes rely on during their deployment process (cf. Section 2.2.2), we focus our
work on a GA. A full scale comparison between hybrid BISON+GA and BISON+PSO is beyond the
scope of this paper but could be considered for future work. As initial explorations indicated that GA
is more promising, we studied different variations for augmenting BISON with a GA under varying
parameters such as population size, number of iterations and mutation rate.

e  The work presented in this paper is guided by three main goals:

1.  To design a novel hybrid collaboration between our previous BISON algorithm and a GA,
with the aim of further enhancing the performance of nodes in a WSN;

2. To evaluate and compare the WSN service and deployment performances of different
GA/BISON combinations;

3. To study the robustness and resilience of GA-BISON approaches when deployed in dynamic
environments and to compare the outcomes of this investigation with the performance of
the original BISON algorithm.

. The main contributions of this article over the state of the art are:

1.  We introduce a hybrid approach that augments the Voronoi based BISON algorithm with a
genetic algorithm (Algorithm 1 on page 8). Two variations of the new approach are proposed;
the respective algorithms (Algorithms 2 and 3 are provided on pages 10 and 11.

2. We measure and compare the effects of adding the GA to BISON in general and compared
the original to the two (new) hybrid algorithms. Our findings, indicating when and to which
end each algorithm should best be used, are summarized in Table 5 on page 20.

3. We evaluate all three approaches for simple and complex scenarios (cf. Section 4.2 for
performance measures; cf. Section 4.3 for parameter space exploration). The results are
presented and discussed in Section 5.1.

4. As the presence of noise has unexpected beneficial effects, we also performed a noise
coherence analysis, the outcome of which is provided in Section 5.2.

We close this section by providing the reader with an overview over the symbols used (Table 2).

Table 2. Symbols and notation used in this article.

Symbol Meaning/Usage Introduced/Used in
S the set of nodes in the WSN Algorithms 2 and 3 on pages 10, 11
Ny, the numbers of neighboring nodes for node i Equation (1) on page 10
r the number of nodes to consider Algorithm 1 on page 8
n; the position (location) of a node i Section 2.3 (or Figure 1 on page 7)
d(n,n") the distance between two locations 1 and n’ Equation (1) on page 10
R, the communication range of node i Section 4.1
Rs, the sensing range of node i Section 2.3 (or Figure 1 on page 7)
As, the area covered by Rg, Section 2.3 (or Figure 1 on page 7)
Ay, the Voronoi area of node i Section 2.3 (or Figure 1 on page 7)
num_sol the number of solutions to generate per node Algorithm 1 on page 8
« control parameter: number of iterations Algorithm 1 on page 8
B control parameter: mutation rate Algorithm 1 on page 8
pop_size control parameter: population size Algorithm 1 on page 8
minCoverage  threshold (coverage) to trigger the use of the GA Algorithms 2 and 3 on pages 10, 11
stopCDT termination criterion based on node movement Algorithms 2 and 3 on pages 10, 11
stopCount  termination criterion based in coverage improvement Algorithms 2 and 3 on pages 10, 11
PAC Area coverage (in %) Section 4.2
CDT The distance travelled by all nodes in the WSN Section 4.2
cnm(t) the sum of all node movements during a time step Section 4.2 (to calculate CDT, cf. Equation (3))
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2. Background and Preliminaries

2.1. Problem Statement and Outlook for the Approach

Many challenges arise when aiming to cover an indoor environment optimally with a fully connected,
drone-swarm-based WSN. This is especially the case when the deployment time is an important factor.
When the geometry of the target environment is known, then this problem does not appear to be very
difficult, with the main difficulty to be resolved being how to physically move ever smaller and versatile
mobile nodes to the geometrically derivable known optimal locations at the least energy expense, and how
to do so as quickly as possible while remaining collision-free [56,82]. However, the situation complicates
enormously when the target environment is not fully known. Yet, given the real-world application of
disaster response and recovery, this is a fundamental property of the application. In such cases the optimal
locations or the number of required nodes are not known in advance. Due to this, we can expect to deploy
the network incrementally with mechanisms in place to expand the deployment and to optimize the
locations of the deployed drones and to do so on-the-fly as the swarm discovers the environment through
local sensing. Such self-expansion poses in turn a challenge to the efficiency of deployment: even if the
network is eventually able to determine the optimal number of participating nodes and their optimal
locations, achieving this in effective (ideally minimal) deployment time is challenging. Finally, once all
these individual challenges are resolved to an acceptable degree, the challenge to define, for each node in
the WSN, the optimal communication strategies remains to be addressed.

The evidence in existing research and many natural world examples suggests that the critical
requirements for a successful deployment of the WSN should be: (a) to follow a simple, fast, cost-efficient
and decentralized self-organizing process, (b) to autonomously discover—and adapt to—the topology of
the target environment and (c) to avoid obstacles discovered, and to do so in real-time. A well-designed
WSN should allow sensors to operate autonomously based on local sensing and through the operation
policy reduced to interactions, only with the local neighbors who can sense each other. An automated
adaptation requirement forces the nodes’ policy to be completely independent of their initial positions but
be only the function of the locally-perceived structure of the space and its possible obstacles. Previous work
on Voronoi-based algorithms considered a random distribution of sensor nodes, with most algorithms
relying on prior knowledge about the environment and node locations, while assuming a guaranteed
connectivity among the sensor nodes. In contrast, our approach sets to evolve the locations of homogeneous
sensor nodes in unfamiliar and obstructed noisy environments. The proposed deployment process will
follow iterative steps at which the nodes continuously re-examine their relative positions among peers,
walls and other obstacles in order to ensure each mWatt of energy invested in changing their location is
towards the direction of the emptiest uncovered space, while maintaining connectivity in the network.

Few existing algorithms deal with handling obstacles in the coverage environment, but those that
do predominantly implement it through repulsive forces: nodes may be repelled by other nodes or by
obstacles in the environment. In many cases the environment is first scanned to determine the obstacle
location and shape before distributing the nodes. This is, however, very costly (energy expense), and
inefficient, since unknown environments might take a very long time to be discovered and mapped
exhaustively [83,84]. An approach that can interact with the environment even if it is only partially
observed can be expected to deploy faster (though without guarantee for optimal deployment).

An approach capable of using local and partial knowledge only will furthermore be able to
operate in dynamic environments. In BISON, nodes only scan their local environment and identify
nearby objects / nodes. Their obstacle-trimmed Voronoi regions are calculated using this subjective
information, as is their resulting movement (aiming to position them closer to their updated Voronoi
centroid). In the literature, this local information about the position and movement of neighbouring
nodes and obstacles is often assumed to be perfect. This is a strong simplification, as measurements in
the real world will always be subject to error and noise. Some methods propose using anchor nodes of
known locations to predict the locations of all other nodes [78,79], or by adding a (random) uncertainty
value to the measured distances between the nodes and their neighbors [65].
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In the presented work the impact of noisy localization is simulated by injecting realistic
Gaussian-distributed random noise to each sensed location and demonstrated rather strong robustness
of our deployment process to quite substantial levels of noise. In fact, on the course of a noise coherence
analysis, we demonstrate how underlying nodes’ kinematics are affected by environmental noise that
incidentally leads to improvements in the network coverage in certain scenarios. We also demonstrate
that our WSN deployment proposition code-named as BISON is sustainable with a built in mechanism
for efficient removal of dead/tired nodes and replacement of them with the new ones. A hybrid
implementation of BISON and a genetic algorithm is also considered for further improvement in
the coverage and energy consumption perspectives. Performance is evaluated in terms of several
metrics that indicate very fast convergence at the fairly small deployment cost. All the investigated
components, comparatively analyzed in terms of various performance metrics and previously unseen
properties, validate our model as a very promising WSN deployment process.

2.2. Nature-Inspired Heuristics to Improve Voronoi Tessellations

As shown in Table 3, nature-inspired approaches have been shown to provide adaptive multi-objective
mechanisms with fewer complications and demands [85-88]. As the field of nature-inspired heuristics is
large and growing, an overview is outside the scope of this paper. Therefore, we will only briefly mention
some representatives of such approaches (which we have used in the past) and refer the interested reader
or developer to [89], made available online for free by the author (http:/ /www.cleveralgorithms.com/).

2.2.1. Frequently Used Nature-Inspired Heuristics for WSN

Popular heuristics for WSN deployment and optimization are: particle swarm optimization
(PSO) [56,57,63] and genetic algorithms (GAs) [64,82] (both of which provide enhancements in nodes
positions to prolong the network lifetime through reducing energy consumption and the number
of steps required for WSN deployment), Voronoi-based approaches [78,83,84] (which can maximize
coverage by detecting coverage holes in the WSN) and ant colony optimization (ACO) [65,79] (which
can increase a network’s lifetime by optimizing routing paths between nodes, thereby reducing their
energy consumption). Table 3, below, provides a brief comparison between these approaches.

Table 3. A quick introduction to—and an overview of—the available literature on combining Voronoi
tessellations with three popular nature-inspired heuristics: ant colony optimization (ACO), genetic
algorithms (GA) or particle swarm optimization (PSO). We distinguish between how the two approaches are
applied (the method), what each does (the process) and the effect(s) they have (the impact).

Voronoi
+PSO [52,56-62]

Voronoi
+ GA [63-77]

Voronoi
+ACO [78-81]

METHOD  Voronoi tessellations are used | Voronoi tessellations are used to detect coverage holes while
to determine all possible paths | the GA/PSO is used to reduce energy consumption and to
in the network. Assuming the | maximize the lifetime of the network. Specifically, ...
cost (length) of all paths is GA achieves this by | ... PSO does generate virtual
known, ACO is then used to | generating new candidate | points, i.e., Voronoi vertices or
identify the shortest path. solutions (locations), while ... | random boundary points.

PrROCESS This works by assigning | This effectively changes the | Node location and velocity
weight values to the Voronoi | node distribution as well as | are changed and a node’s
edges to guide the search. adds extra mobile nodes. sensing range can be changed.

IMPACT This impacts node distribution, | The objective function is | Affects virtual points, node
weight values as well as the | influenced, as are coverage | location/velocity and the best
evaluation function. holes (and GA parameters). local/global solution.
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Particle Swarm Optimization (PSO)

Merging PSO with Voronoi tessellations is considered among the major processes of maximizing
the coverage and prolonging the lifetime of WSN [52,53,59,61,66]. The authors in [53,61] used PSO to
determine the next position of the sensor nodes, while Voronoi tessellations are generated to detect
the coverage holes and evaluate the fitness function. These results either rely on a centralized node
to gather information about all nodes’ locations, do the calculations and suggest new locations/new
sensing ranges for each sensor node; or consider each node to have prior knowledge about its own
location and thaose of all other nodes. Depending on the application requirements, the objective
function may focus on either minimizing the energy consumption or minimizing the gaps in coverage.

When minimizing the energy consumption, PSO diagnoses the sensor node with the highest
energy consumption and suggests changing the sensing range (as opposed to changing the node’s
location). When minimizing coverage gaps, both the sensing range and the location are considered.

Genetic Algorithms (GA)

A significant amount of literature suggests combining a GA with Voronoi tessellations to address
the WSN deployment and re-allocation problem. This has successfully been used to enhance WSN
coverage and network lifetime [58,67,68,80] but these approaches all rely heavily on the GA using a
developed objective function to evaluate the candidate solutions and to select the next positions of
nodes with the Voronoi tessellations used only to detect coverage holes. The latter is achieved using
prior knowledge about the nodes’ locations; GA-generated candidate solutions are initialized inside
the respective Voronoi regions. WSN nodes are moved away from or toward their neighbors to reduce
these holes [67,68]; new nodes are added to locations specified by the GA to cover the holes [58].

Ant Colony Optimization (ACO)

ACO has been used together with Voronoi-based approaches, mostly to optimize the path planning
for communication between nodes within the network. ACO continuously explores connection paths in a
WOSN to find and adapt to the shortest path [69,81].

2.2.2. Motivating Our Decision to Chose GAs over PSO

Both GAs and PSO are used in WSN to reduce the energy consumption in the network and
enhance the lifetime, through managing the routing paths and finding the best decisions to be taken by
nodes. We consider it to be beneficial to implement a GA with our BISON algorithm. This is because
evolutionary algorithms, specifically GAs, have the flexibility of generating new candidate solutions
inside the confined Voronoi region and to do so on the basis of information available locally to each
node [88]. In contrast, PSO often requires distributing the nodes’ best local and global solution to all
nodes, which means it relies on guaranteed connectivity and heavy communication between all the
nodes. Furthermore, a central node might be needed to collect all information, perform calculations
and then distribute the results. With this in mind, we motivate using a GA as follows:

1.  GAs generate candidate solutions based exclusively on information available to a node locally.
2. A GA only requires communication with its neighboring WSN nodes (as opposed to all).

2.3. BISON Algorithm: A Quick Review and Overview

We previously [54,55] introduced BISON (bio-inspired self-organizing network), an approach
using Voronoi tessellations to iteratively deploy homogeneous mobile nodes into unknown
environments to establish a WSN. Our approach does not rely on special injection conditions and can
maximize coverage while maintaining or re-establishing WSN connectivity automatically. Nodes draw
on locally available information only and can autonomously determine the direction to move to new
positions. The process is described in the next paragraph and illustrated in Figure 1, below. Note that
in this process, nodes only require information available locally to determine new positions to move to.
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Any node i can calculate the perpendicular bisectors for the lines connecting it to its neighbors.
As shown in Figure 1b, these lines form a polygon. In addition, n;, the drone’s location, is at the center
of a circular region (shown in Figure 1a) with the node’s sensing range Rs, as the radius.

(a) Neighbor Nodes (b) Neighbor Nodes (© Sensing Neighbor (d) Voronoi Neighbor Nodes
Range Nodes Centroid
e Y Sensing
_ g’ -d_-0 -9 Range
o 7 N ew N
. oronoi i ew
/ % Sensing . [} Vorono @ Voronoi
e R Region Region
ange (Region 1) i Region
(region 2) (Region 3)
g Perpendicular Bisectors Perpendicular Bisectors Perpendicular Bisectors

Figure 1. Simplification of the working principle behind the BISON algorithm. In a wireless sensors
network (WSN), any drone acting as a node i in the WSN can calculate two areas: the area Ag,
defined by its the node’s sensing range (Rs), shown in panel (a), and its Voronoi polygon Ay, resulting
from overlapping sensing ranges with neighboring nodes, shown in panel (b). Combining these two
results in the actual area covered by the node; see panel (c). For any such polygon we can calculate
n'; ie., the hypothetical position of the drone if it were at its center of gravity; see panel (d). In
BISON, the difference between n and n’ is used to continuously drive them to move toward their
centers of gravity [70], and through this, explore any accessible space and achieve coverage and
connectivity [54,55]. The basic algorithm, enhanced with genetic algorithms (cf. Figure 2), Section 3.2;
the BISON fixed nodes, Section 3.3; and the BISON conditional approach, Section 3.4), differ mainly in
how this is achieved.

The union of the areas shown in (a) and (b) constitutes the area covered by the drones; if this
area is not bounded by perpendicular bisectors (as it is the case in Figure 1c) the node is not at its
area’s center of gravity, as shown as n’ in Figure 1d. Moving towards n’ allows the node to explore its
environment [70]. Note that, while nodes without close neighbors remain stationary in this process,
their eventual re-connection to the WSN is ensured through the injection of additional nodes into
the environment. This is triggered whenever any of the already deployed nodes fails to report to the
injection point, which indicates that either the injection point itself is not covered by the WSN or that
a node has become disconnected by moving too far away). In a bounded (finite) environment, this
process will deterministically lead to full (as far as possible) coverage and network connectivity.

Voronoi centroid generated
using BISON algorithm Candidate solutions
\ generated using GA
_~ forarandomly
selected sensor node

Neighboring nodes
=~ applying BISON
Algorithm

Figure 2. Tllustrating the difference between movement destination in BISON and the GA: the red
crosses are randomly selected candidate locations that are evaluated by the node before one is chosen
as the new target location. For comparison, the green dots are the deterministically calculated centroids
the neighboring cells moved toward if they used BISON. Figure 3 shows this in the context of a swarm
of nodes which is partly of filling an inside area: nodes at the outer edge may not have a neighboring
(touching) node at all, but as the number of nodes increases the circular coverage becomes a polygon.

In a computer simulation, obstacle detection is trivial (if we want it to be). When engineering a
real world implementation, obstacles can be sensed based on the reflection of radiated signals [90]
from the sensor nodes toward their surrounding environment or having bumper sensors [91].
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Since we are dealing with a (simplified) circular sensing range, omnidirectional sensor nodes are
assumed to transmit signals along 360°. Any signal blocking/distorting obstacle within the sensing
range will reflect the signal to some extent, enabling the device to infer the distance to the object and
its (approximate) location. New Voronoi regions are calculated from detected obstacle boundaries and
the sensing range and the neighboring bisectors.

3. The GA-BISON Approach

BISON relies on the drives of nodes to move towards “their” center of gravity (cf. Figure 1d). In
Biology, the laws of physics provide this force but drones are not inherently aware of the equivalent of
this for their Voronoi tesselations. Instead, this has to be calculated during run-time and on-board. All
values required to do so can be measured/estimated using existing technologies.

Algorithm 1: basic Genetic Algorithm. Pseudo-code for the general genetic algorithm,
used by BISON FixedNodes (in line 9 of Algorithm 2) and conditional (in line 10 of Algorithm
3). The algorithm takes the following input: 7 (the number of nodes to consider), num_sol
(the number of solutions to generate per node), pop_size (the population size), « (the number
of iterations) and B (the mutation rate). The output of the algorithm is the solution s.

1 for each of the (selected) r nodes n; do
2 generate vy, the Voronoi region for #;;

3 Solutions < populate with num_sol random solutions (i.e., locations inside vy,);
4 | Candidates < select pop_size locations from Solutions;

5 extra = num_sol — pop_size;

6 for « iterations do
7

8

9

for node € Candidates do

find Voronoi region V., for node;

calculate area Ay, , ;
10 calculate area of sensing range Ag, . ;
11 using Equation (1), determine the value of obj fun(node) ;
12 end
13 popy < select best POPS1Z¢ andidates node € Candidates (using obj,, (node));
14 forj=1:2:size pop; do
15 offs(j) < (Xpop1(j), Ypop1(j +1));
16 offs(j + 1) = (Xpop1(j +1),Ypop1(j));
17 save offs(j) and offs(j + 1) to popa;
18 end
19 if size extra < pop_size then
20 ‘ Mt point < B X pop_size number of random points from extra;
21 end
22 else
23 ‘ Mutpoint <— B X pop_size number of random points from extra with size pop_size;
24 end
25 Mutpoint,;,, < index of mut yoins;
26 mutate pop_size(mut yoins, ,) With mut point;
27 Candidates <;
28 end
29 evaluate objy,,, for pop_size;
30 5 < maxpop_size(Objfun);
31 return s;

32 end
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As this requires calculations to be performed anyway (incurring computational cost) it stands to
reason to investigate whether these calculations can be simplified or whether using something other
than the center of gravity can yield comparable results. As it turns out, using a GA to determine good
candidate locations for the drone to move to (cf. Figure 2) does not only match the performance of
BISON, it shows the potential to discover even better locations for the nodes to move to next, resulting
in better the convergence of the network as a whole [71-74,80].

3.1. Basic Modeling Choices

3.1.1. Basic Modeling Decisions for Drone-Swarm Based Indoor WSN Deployment

With regard to using a drone swarm to explore an indoor environment, the entry point into this
environment can play a crucial role. The decision on this matter is very likely going to be dependant
on the specific environment encountered in each scenario. For our investigations we assume that
there is such an entry point given, that there is only one such point and that—for the sake of this
investigation—it is found at the coordinates (0, 0) (cf. Figure 3). We believe that this choice is fair one
to make for our use case scenario, because drone deployment will start from the entrance into the
environment and we can allocate the coordinates (0, 0) without loss of generality. As for the position in
the environment, we argue that being in a corner or along a wall makes little difference. Placement
inside the environment (representing drone injection through the floor or the roof) might make a
difference but this is not considered in our performance evaluation and left for future work.

The rate of injecting new drones is determined by the proximity of the drone added most recently
to the injection point: once this distance exceeds the sensing range (Rs) of the drone, a new drone is
powered up. The same happens when there is at least one drone that has no current connection to the
WOSN (indicating that it has drifted outside the sensing range of all its peers). Basically, by requiring (a)
the drones to form a connected network and (b) the injection point to be covered by the WSN (and due
to the fact that drones will push outwards and into other drones, in turn causing them to move away
from the injection point) we have an indicator on whether the number of drones in the swarm suffices
to provide complete coverage. Whenever this is detected we add one more drone to the swarm. See
Figure 3 for an example of drones pushing into an environment to form a connected network.

3.1.2. Basic Modeling Choices for the Generic Algorithm

With regard to the use of genetic algorithms to determine a new location for a drone to move to,
two fundamental decisions have to be made: (1) where to look for new candidate locations (since we are
not simply using the center of gravity) and (2) how to compare potential candidate solutions. In this
section, we first address these two choices (Section 3.1) and then propose a generic GA-enhanced
BISON algorithm (Algorithm 1, Section 3.2) as well as two refined versions thereof where the GA is
either applied to a initially fixed number of nodes (Algorithm 2, Section 3.3) or where this is done
conditional on the state of affairs at the moment the algorithm is run (Algorithm 3, Section 3.4).

1.  WHERE to look for (new) candidate locations: The GA will only consider locations inside the
node’s confined Voronoi region. The motivation for this is that, as shown in Figure 1, we are
certain that these locations are known to the node. Given this, we can simply generate random
points within the area as potential candidate solutions (depicted by red crosses in Figure 2).

2.  HoOW to compare the quality of candidate locations: While most objective functions in the
literature focus on a single optimization problem, such as coverage, connectivity, or energy
consumption [73-75] we use multi-objective optimization. The few multi-optimization objective
functions in the literature, e.g., combine coverage with either energy consumption (distance
traveled) or with inter-node connectivity [76,77,92]. Our objective function combines three
parameters: coverage (measured—for each candidate location—as the ratio between the area of
the Voronoi region Ay, and the area defined by the sensing range As. of node n; [93]), connectivity
(the number of neighboring nodes), and energy cost (measured as the distance to travel).
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Algorithm 2: GA-BISON (fixed nodes). The algorithm takes the following input: a set
of nodes S to which to apply the algorithm to, minCoverage (a threshold for minimum
coverage to be achieved before the algorithm is used, initially set to 50), stopCDT (a
termination criterion on the observed node movement, set to 11%50) and stopCount (a second
termination criterion on iterative coverage improvements, set to 15).

1 while (stability > termination|| count < stopCount) do
2 if (exist disconnected node || node away from injection point) then
3 ‘ inject new node;
4 end
5 for each node n; do
6 Add Gaussian noise to neighbor nodes;
7 Generate Voronoi region;
8 if n; € S then
9 L; < Algorithm 1;
10 move n; towards L;;
11 shift; < d(n;, L;);
12 else
13 Calculate Voronoi Centroid C;;
14 move n; towards C;;
15 shift; < d(n;, C;);
16 end
17 end
18 end
19 stability < YN shift;;
20 if PAC (cf. Equation (2) on page 12) > minCoverage then
21 count = count +1;
22 minCoverage <— PAC;
23 end
24 end
The objective function for each candidate solution n/ (used in line 11 of Algorithm 1):
Ay, .
Objfun(n;) - { A5; ’ W ' Nn: ; Nni (1)

where

* Ay, (used line 9 in Algorithm 1) is the node’s Voronoi area;

*  Ag, (used in line 10 in Algorithm 1) is the node’s sensing range area;

o d(n, ng ) is the distance between the new candidate (ng) and the existing (1;) location;
* N, is the number of neighbors at the new location;

o Nn; is the number of neighbors at the existing location.

See Figure 1 for a visual explanation of the parameters used.

3.2. The Genetic Algorithm—DBasic Algorithm

The basic algorithm for the GA (provided as Algorithm 1 on page 8, above) is explained below:

1. Initialization: Initially, pop_size (the GA population size) candidate solutions (locations) inside
the respective Voronoi region are generated randomly (line 3 of Algorithm 1 on page 8) and
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evaluated using the objective function (line 11). Based upon this, the best % solutions are
kept as parents for the next GA generation (line 13).

Genetic Operators: Two standard operators, cross-over (lines 15-17) and mutation (line 26) are
used. The crossover step is implemented as a single-point crossover: two parent solutions are
chosen at random and their y-axis values are switched, thereby generating two new offsprings.
This process is repeated % times (because parent and offspring generation are of the same
size). To ensure diversity, mutation is applied to the offspring generation.

Selection: the best %sm from the parent and offspring generation are kept as the next
generation (line 27); the best member of this generation becomes the new sensor position.

Algorithm 3: GA-BISON (conditional). The algorithm takes the following input:
minNeighbours (a threshold value below which the GA is used, set to 4), minCoverage
(a threshold for minimum coverage to be achieved before the algorithm is used, initially set
to 50), stopCDT (a termination criterion on the observed node movement, set to 1%) and
stopCount (a second termination criterion on iterative coverage improvements, set to 15).

1

O 0 N o G Rk W N

N N Y
JQ o a0 B W B R o©

18
19
20
21
22
23
24
25
26
27
28

29

while (stability > termination|| count < stopCount) do
if (exist disconnected node || node away from injection point) then
‘ inject new node;
end
for each node n; do
Find number of neighbors N;;
Add Gaussian noise to neighbor nodes Nj;
Generate Voronoi region;
if for n; (0 < N; < minNeighbours) then
L; < Algorithm 1;
move n; towards L;;
shift; < d(n;, L;);
nd
Ise if N; > minNeighbours then
Calculate Voronoi Centroid C;;
move n; towards C;;
shift; « d(n;, C;);
end

o o

else

n; < n;;
shift; < 0;
end

end

stability « YN shift;;

if PAC (cf. Equation (2) on page 12) > minCoverage then
count = count +1;

minCoverage < PAC;

end
end

3.3. The Genetic Algorithm—GA-BISON (Fixed Nodes)

As the name suggests, in this variation of BISON the genetic algorithm is applied to a fixed number

of nodes (we experimented with using 1, 3, 7 or 10 in our performance evaluation, cf. Section 4.3 or
Figure 5). Furthermore, as visualized in Figure 7, the genetic component of the approach is only used
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after at least 50% coverage has been achieved (as there is very limited benefit in doing so from the
start). This is the tunable parameter minCoverage in Algorithm 2.

The implementation strategy of GA-BISON fixed nodes is to randomly choose drones from the
existing swarm who will apply the GA to determine their next target location to move to (while
the remaining drones will continue to use the original BISON algorithm). The pseudo-code for the
GA-BISON (fixed nodes) algorithm is provided as Algorithm 2 on page 10.

3.4. The Genetic Algorithm—GA-BISON (Conditional)

The conditional variation of the GA approach is used from the beginning but applied only to
nodes with a small number of neighbors (three or fewer). The reasoning is that nodes which are
surrounded by neighbors are unlikely to improve the WSN performance by making large movements
(on the contrary, at this stage they are optimizing the WSN locally through small position changes).
The pseudo-code for the GA-BISON conditional algorithm is provided as Algorithm 3 on page 11.

4. Setup and Performance Measures

4.1. Simulation Setup

To compare the performances of the algorithms, we simulated an environment (square area) into
which a drone swarm was deployed to realize a WSN. As shown in Figure 3, we considered obstacle
free spaces and spaces with objects scattered though the environment. In addition, we investigated
how the approaches could handle communication noise. Obstacles block the movement of nodes;
communication noise affects how accurately a node can determine the position of neighboring nodes,
used to calculate the node’s Voronoi region. We investigated whether adding a moderate Gaussian
noise effect to the communication (noise standard deviation of 0.05, [54,55]) significantly impacted
system behavior. The simulation terminates/stops when either (a) the average shift of the nodes drops
below a threshold value (see below) or (b) the overall area coverage no longer improves.

For all simulations, the nodes’ sensing range was assumed to be Rg = 10 m (meters);
the communication range (defined relative to Rg) was R¢c = V/3Rs. The environment into which the
swarm was deployed was simulated to be 100m x 100m. Drones could only enter this environment at a
dedicated injection point, situated at position (0,0). The threshold value for the minimum average node
shift, used as a termination criterion for the algorithm, was set to % (for more details on any of these
settings/the motivation, we refer to [54,55]). The simulations were implemented in MATLAB R2017b.

4.2. Evaluation Metrics

Following the argumentation in earlier work, and in accordance with the literature, performance
of the algorithms is measured through three metrics (cf. [54,55]). The three metrics used are:

e  The number of simulation steps required to achieve optimum performance (full coverage). This
is a straight forward metric to measure the speed with which the algorithms converge on the
optimal solution. Since the execution of the algorithms is happening on each device separately
and under the assumption that the actual flying operation takes more time than the calculations,
comparing the performance on the basis of the simulation steps required to achieve full coverage
enables us to relate the approaches to one another with regard to deployment speed.

*  The percentage area coverage (PAC): following from the previous metric, the coverage achieved
is the primary measure for performance. By considering not only the moment when this is
fully achieved, but also its development over time until then, we can compare the approaches
progress during execution. For the measure PAC, the coverage of 100,000 sampling points inside
the environment into which the swarm is released is recorded. Given these, PAC is calculated:

Number of covered points

PAC =
Total number of (accessible) points

100 @)
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The sampling points are drawn from the accessible area inside the environment, meaning that
pillars/signal scattering objects are excluded. This is of relative little impact here, but for
investigations on environments with a larger number of walls and objects (not included in
this report) this makes a significant difference. The area coverage is expressed as a percentage
precisely because this allows us to compare the results from different environments.

¢ The cumulative distance traveled (CDT): after considering the steps to completion and the
evolution of coverage; until then we use CDT as a measure for comparing the physical effort
required (i.e., the cost) to do so. CDT is calculated as the sum of all node-movements over time:

CDT(n) = Z cnm(t;) 3)

i={1,...n}

with cnm the sum of the combined node movements during a time step, defined recursively as:

cnm(t) = N Ziene AL L[ > 1
N Lieny (L, L] =1

with |d(L£;l, L")| the absolute Euclidean distance between the previous location of node n; and

its current one, where L,tfi is the injection point at time #y.

A PSURVRS
Two types of environment: obstacle-free (left)
and with “scatterrers”, i.e. obstacles that block
node movement (e.g., load-bearing pillars).
Figure 3. Two different types of indoor environments were simulated: one where the swarm of drones
was dispatched into one large indoor environment (e.g., a large factory hall) and another wherein the
indoor environment was filled with obstacles (such as, e.g., pillars). In the images above, the red lines
indicate drones connected by proximity. In both cases there are drones at the outer edge of the swarm
that are temporarily not connected. As explained in Section 3.1.1, this is remedied as more drones are
added to fill the entire area (see Figure 6 on page 16 for snapshots of the process over time). Scatterers
block the passage of drones and make the problem more difficult (and the scenario more realistic).

4.3. GA Parameter Settings

Using the above performance measures, a preliminary parameter space exploration was conducted
to determine adequate parameter settings for the GA. Specifically, the population size and the mutation
rate needed to be fixed, along with the number of generations (of candidate solutions) produced
(i.e, the number of iterations before picking location to move to). Therefore, these three parameters
were investigated separately using PAC, CDT and steps as objective functions. Our parameter space
exploration was undertaken for the BISON fixed nodes algorithm, where results were generated for 1, 3,
7 and 10 nodes. Below we report on these individual investigations for population size, number of
generations and mutation rate, respectively; the results are shown in the overview in Table 4.
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Table 4. Results for the parameter-space exploration for obstacle-free environments without
communication noise, using the GA-BISON fixed nodes algorithm. Shown are: the percentage of the
area covered PAC, the cumulative distance travelled by all nodes CDT as well as the number of steps
taken st) for four different numbers of fixed nodes (1,3,7,10). For each parameters population size (p),
# iterations (#) and mutation rate (m) three values were investigated in isolation. The highlighted values
were used for the performance evaluation provided in Section 5. Figure 4 shows this graphically.

GA-BISON GA-BISON GA-BISON GA-BISON
1 nodes 3 nodes 7 nodes 10 nodes
PAC CDT st PAC CDT st PAC CDT st PAC CDT st
(%) (m) (%) (m) (%) (m) (%) (m)

p=10 93.68 15.8 426 94.00 50.03 467 82.68 81.15 307 8556 71.16 341
+ 1.2 2.69 487 34 5.1 68 22 12.1 53 3.13 26 63

p=15 95.78 22.7 526 84.64 41.06 330 8542 1085 440 80.27 1476 454
+ 1.4 327 541 23 42 52 3.1 14.8 62 2.05 32 71

p=20 96.87 23.62 545 9042 56.82 467 80.84 81.17 293 809 1216 316
+ 1.9 4.06 563 29 55 63 1.6 12.1 48 2.21 28 56

#=15 96.87 2314 545 9042 56.82 467 80.84 81.17 293 80.9 121.6 316
+ 1.7 2.5 49 4.5 14.6 77 2.58 15.9 28 0.61 27 16

#=230 93.8 1615 418 8092 2375 273 8798 9974 397 8215 59.69 273
+ 1.2 1.6 42 4.1 9.6 58 347 178 36 1.11 13 14

#=1>50 98.2 18.9 600 92.67 5631 532 833 54.65 351 8241 63.99 301
+ 1.7 1.8 70 4.7 14.4 103 292 13.7 31 1.24 16 15

m=0.06 9687 2367 545 9042 56.82 467 80.84 8117 293 80.9 1216 316
+ 1.8 1.5 71 1.2 3.65 19 1.06 9.6 30 1.16 17 34

m=0.1 93.6 2061 429 9295 5266 489 83.6 714 272 8359 1298 359
+ 1.5 1.2 66 1.3 29 23 2.04 7.4 28 1.94 19 37

m = 0.2 9269 20.09 399 9314 5599 530 81.58 97.84 351 81.06 8798 421
+ 1.3 1.2 54 1.4 361 26 1.49 10.4 33 1.57 14 39

The above table presents the results for independent evaluation of the three parameters population
size (p), # iterations (#) and mutation rate (m). These choices for the respective missing parameters were
initially guided in part by the existing values in literature (e.g., for the mutation rate) and in part by
the design of the model problems we aim to solve (such as population size), but later confirmed by the
results obtained. The values of parameters outside the ranges shown in the Table do not show promise
of better overall performance (with respect to PAC, CDT and steps).

It is likely that the changes in these parameters would impact performance similarly across
algorithms. Furthermore, the evaluated scenarios are simplifications and we fully expect to have to
perform additional analysis before deploying drones in the wild. Since the parameters for specific real
world scenarios will very likely be scenario dependent, we argue that the chosen ones suffice for our
evaluation here and we hypothesize that they are good guesses for the initial iteration.

4.3.1. Population Size (Figure 4, top row)

When fixing the population size, we can notice that when the number of nodes applying the
GA increases, the number of simulation steps and the percentage area coverage decrease, while the
cumulative distance traveled increases (cf. Figure 4). This is because with a greater number of nodes
applying the GA comes larger movements to discover the region of interest in one simulation step.

Furthermore, in Figure 4 we can also notice that for lower number of nodes, the increase in the
population size increases the number of steps; while for a larger number of nodes, higher population
sizes yield in fewer steps with a slight reduction in CDT values. In our implementation, we care
more about discovering more possible solutions when implementing a GA, to have a better and
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wider discovery process. Therefore, we have chosen population size 20 to be used during GA-BISON
implementation, to make use of its benefits on PAC and number of steps.
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120 Population size Population Size N
10 10 m o
15 15 e o
100 20 20 2600 -
_100 @
80 € S 400
g = .
o 60 o
8 g 200 .
50
40 Z 0 < S
20 1Node >
III 3Nodes . e
0 0 7Nodes . 3 ‘2;0 15
g 3e® 3e® ae® g 3e® 3e® ae® 10 Nodes Population size
o 0 0 0 o 0 0 0
ANTT T T o ANTT T T o

Obstacle-free, ND 0 Obstacle-free, ND 0

- 150
120 15 Iterations Bl15 iterations ~
B30 Iterations B30 Iterations
100 50 Iterations 50 Iterations .
80 100 Se00
2 E %
& 60 = 2400
40 © 50 €200
2
20 W ‘; < 15 lterations
lode >~ =
0 0 3 Nodes ~— y 30 It_eratlons
e 5 5 5 e 5 5 5 7 Nodes 50 Iterations
0 o o & WO o o & 10 Nodes
AW T o A AN T W
Obstacle-free, ND 0 Obstacle-free, ND 0
120 " T T 140 : T
Blm 0.05 Blim 0.05
100 lmo.1 120 | IMlIm 0.1
Blm 0.2 lim 0.2
100
80 'E ?.’_600 -
80 -
Q =
< 60 s & 400
o 8 60 o
=
20 w© 3200
€ >
20 20 z 0 m 0.05
I 1Node > -
ol ol II 3Nodes - ~ mo0.1
7 Nodes ~_ m0.2
&© ae® ae® ae® &© ae® ae® ae® 10 Nod
o 0 0 0 o 0 0 0 odes
AW N AT o IR AN G

Figure 4. Results for the parameter space exploration for the population size for the genetic algorithm.
Reported are PAC (left panels), CDT (middle panels) and generations of candidate solutions (iterations,
right panels). The numerical values are reported in Table 4, cf Section 4.3 for a discussion.

Top row: Parameter space exploration for population size (using 15 iterations and a mutation rate
of 0.05) in obstacle free environments without communication noise. Given these results, the value
population size = 20 was used. Middle row: Parameter space exploration for number of iterations
(using a population size of 20 and a mutation rate of 0.05) in obstacle free environments without noise.
Given these results, number of iterations = 15 was used. Bottom row: Parameter space exploration
for the mutation rate (using 15 iterations and a population size of 20) in obstacle free environments
without communication noise. Given these results, 0.05 was used for the mutation rate.

4.3.2. Number of Iterations (Figure 4, middle row)

Considering the final coverage achieved (Figure 4, middle row, left panel) we find that the number
of iterations doesn’t significantly alter the outcome, once we use at least 15 iterations. Therefore, to
reduce the energy consumption, simulation time, and computation complexity, we chose 15 iterations
to be processed in the system. We acknowledge that, for seven fixed nodes (the variation of BISON
fixed nodes used for our noise coherence analysis (Section 5.2, Figures 12 and 13), 30 iterations would
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result in marginally better WSN coverage (Figure 4, middle row, left panel); however, as this comes at
a greatly increased cost (Figure 4, middle row and panel) we argue that 15 is an appropriate choice.

4.3.3. Mutation Rate (Figure 4, bottom row)

The results” dependence on the mutation rate affects the number of required steps and the CDT
values, in such a way that higher mutation rates increase the number of simulation steps and CDT (cf.
Figure 4, bottom row). The percentage area coverage (PAC) is not significantly affected by the change
in the mutation rate, while the increase in the number of nodes reduces the percentage area coverage
achieved in the system when fixing the mutation rate. On balance, a mutation rate of 0.05 provides a
moderate level of CDT with the least number of simulation steps.

4.4. The Number of Fixed Nodes in BISON-GA (Fixed Nodes)

As shown in Figure 5a, in the obstacle-free environment, increasing the number of affected nodes
improves PAC until seven nodes are used. The improvement in performance with regard to PAC and
steps (cf. Figure 5a,c) seen when increasing the GA-enhanced nodes to seven is less pronounced when
there are obstacles present in the environment. Due to this, Section 5.2, which is dedicated to our
separate investigation on noise coherence analysis, compares results for an obstacle-free environment,
that were generated using seven fixed nodes in the fixed nodes algorithm. To motivate this choice
further, the investigations on the overall performance of the algorithms, Section 5.1, compare results
for 1, 3, 7 and 10 nodes (cf. Figures 8-11) and contrast the performance in an obstacle-free environment
(cf. Figures 6, 8 and 9) with the performance in an environment with obstacles (cf. Figures 10 and 11).
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Figure 5. Performance comparison over the number of fixed nodes (x-axis) in the GA-BISON fixed
nodes algorithm for both noise settings. Plotted are PAC (a), CDT (b) and number of simulation steps (c)
(cf. Section 4.2 for details on these three).

In contrast to what we observe for PAC and steps, CDT performance (cf. Figure 5b) decreases almost
always when the number of nodes using the GA is increased.

BISON Fixed Nodes Conditional BISON Fixed Nodes Conditional

obstacle-free environment environment with obstacles

Figure 6. A snapshot showing—for both scenarios—an intermediate stage of coverage using BISON
(left), GA-BISON fixed nodes (middle) and GA-BISON conditional (right). Shown are covered areas
per drone/node (circles) and inter-node connections (red lines). These images are provided here
to illustrate the difference in swarm behavior during deployment; for numerical comparison, see
Figures 7-11 (algorithm performance, measured in PAC, CDT and steps, defined by Equations (2) and
(3), respectively) and Figures 8-11 (drone movement, expressed as diffusion (D) and drift (F), defined
by Equations (4) and (5), respectively).
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Figure 7. Performance analysis of the algorithms; plotted (y-axis) are PAC (left) and CDT (right), over
the number of steps (x-axis). The shown results are for obstacle-free environments and without added
noise. As discussed in Section 3.3, the BISON fixed node algorithm starts using the GA after at least 50%
coverage has been achieved. Therefore the initial trajectory of the respective graphs (shown here in
black) is that of the original BISON, with the graphs for the different numbers of fixed nodes diverging
once BISON has achieved 50% coverage. For readability, this is omitted in Figures 8-11 by starting the
plots at the 50% mark on the y-axis (for PAC) or at the 0 mark (for CDT).

As already mentioned above, it also turns out that—maybe surprisingly—adding noise improves
performance, and happens with both CDT and the number of required steps (Figure 5(c)), but it does so
differently depending on the numbers of nodes to which the algorithm is applied to.

5. Results and Discussion

We first (Section 5.1) evaluate algorithm performance (summing up our findings in Table 5 on
page 20) and then (Section 5.2) investigate the noise coherence properties of the WSN drone swarm.
For the performance analysis we consider both obstacle-free and obstacle-rich environments separately
(Sections 5.1.1 and 5.1.2, respectively) before comparing them in Section 5.1.3. We show the impact of
noisy communication on algorithm performance (Section 5.1.4) and conclude with a summary.

Up to this point, our investigations were primarily theoretical in nature. Section 5.2 focuses on
the drift and diffusion of the members of a swarm under noisy communication channels. Combined
with the insight that some noise actually improves swarm performance, this servers as a motivation to
continue our work, with the testing of the approaches using real drones as a goal.

5.1. Performance Evaluation of the Algorithms

5.1.1. Performance Evaluation—Obstacle-Free Environment

We measure the percentage of the covered area (PAC), plotted in Figure 8; for numerical results
of the fixed node approach see Table 4. The final performances are comparable across algorithms
but the original BISON approach takes ~850 steps to terminate. Notably, we can clearly see when
comparing the left and the right panel of Figure 8 that with regard to PAC, adding noise improves
the performances across the board. With regard to the discovery rate, that is, the evolution of PAC
over time, the plots in Figure 8 show both a steeper gradient and a higher final result when noise is
added. This means that in noisy environments, the algorithms perform better faster. The CDT allows
comparison of the operational cost incurred by the algorithms. The graphs in Figure 9 clearly show that
the original approach absolutely outperforms both of the proposed algorithms using the GA. While
the original BISON continued to run for an additional 450 steps before terminating, the PAC achieved
after 400 steps is already very good (cf. Figure 8) while incurring a fraction of the movement cost
of the enhanced algorithms (cf. Figure 9). Regarding algorithm efficiency, the conditional approach
terminates after around 150 iterations, while fixed node takes significantly longer but still less than the
original approach (which requires ~2850 steps to terminate).
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Figure 9. CDT (y-axis) plotted over the number of steps (x-axis). The plots compare the algorithms

in an obstacle-free environment for perfect communication (left panel) and (right panel) when

communication is subjected to a Gaussian noise effect (standard deviation: 0.05).

5.1.2. Performance Evaluation—Obstacle-rich Environment

As before, WSN coverage is given by the achieved final PAC in Figure 10 while the evolution
thereof over time is the discovery (the steeper the better). Again, all approaches perform similarly,
with conditional approach marginally outperforming the others, and as before, the original BISON

approach taking ~850 steps. As in the obstacle-free environment, the three algorithms show distinctly
different performance behaviors with all variations of the fixed node approach performing almost the
same. Again, adding noise (Figure 10, right panel) improves performances. Regarding the discovery

rate, the conditional approach quickly gains coverage, slowing down only towards final performance
values. In contrast, the other approaches’ discovery rate only increases (almost) linearly.

As before, BISON continues to outperform the GA approaches when obstacles are added to
the environment (shown as CDT in Figure 11). Regarding the efficiency, the conditional approach

terminates around 200 iterations; fixed node takes significantly longer with noise improving on this
significantly though. The original BISON again performs worst of all.
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Figure 10. PAC (y-axis) plotted over the number of steps (x-axis). The plots compare the PAC performance
of the algorithms in an environment with obstacles for perfect communication (left panel) and (right
panel) when communication is subjected to a Gaussian noise effect (standard deviation: 0.05). Note
that the fixed nodes algorithm only starts when 50% coverage have been achieved, which is why the
respective graphs start at this mark on the y-axis; cf. Figure 7.
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Figure 11. CDT (y-axis) plotted over the number of steps (x-axis). The plots compare the CDT
performances of the algorithms in an environment with obstacles for perfect communication (left) and
(right) when communication is subjected to a Gaussian noise effect (standard deviation: 0.05).

5.1.3. Obstacle-free versus Obstacle-rich Environment

We compare the impact of different environments on the performance the algorithms,
i.e., the results for an obstacle-free environment (Figures 9 and 8) with those obtained in the
obstacle-rich environment (Figures 11 and 10). As the individual results are already discussed in the
previous sections we focus on the environment related insights here only.

When comparing the PAC in Figure 8 with those in Figure 10, the similarities are striking, both in
the absence (respective left panels) and the presence (respective right panels) of noise. Note that in
Figure 10, the x-axis shows the first 500 steps, 25% more then the plots in Figure 8. This 25% increase
is needed because adding objects affects performance consistently for both measures (PAC, CDT) and
in both environments. Adding objects or noise also improves the discovery rate, significantly. Also
in both environments With regard to the aggregated nodes” movement (i.e., the cost for the WSN
deployment), the original BISON achieves significantly better coverage with a lot less movement in
either environment. As for the efficiency of the approaches, it turns out that interestingly, adding objects
results in longer algorithm run times but adding noise has a detrimental effect in the obstacle-free
environment while it actually improves algorithm run-time in the presence of obstacles.
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5.1.4. The Impact of Noise

We investigate the impact of adding noise to the communication, i.e., the impact of imprecision in
the centroid calculations. As motivated in Section 5.2.1, estimating the neighboring nodes distances
from the time of arrival of the transmitted signal is always inaccurate in real implementations. This
is due to both internal and external factors, including the device performance, and the outside
interference with other signals. Therefore, our contribution in this work is including the effect of
noise as a randomization technique that can simulate the inaccuracy of determining the localization
of the neighboring nodes distances. In contrast to the approach in [68], where randomization was
utilized, we wanted to examine a clearly defined noise function. Having several factors affecting
a certain measurement will tend the overall behavior of the random numbers to follow normal
distribution. In addition to that, since the environment we are dealing with is unknown, it was
reasonable to consider the general form of noise distribution which is the Gaussian distribution [94,95].
Our analysis is concerned with distributing the mobile nodes inside a closed region of interest; hence
our consideration of noise is limited to indoor communication noise. An interesting note mentioned
in [96,97] is that even if the fading noise mechanisms are characterized by multiples of Gaussian
distribution or other distribution forms, the overall contribution of these mechanisms will eventually
tend toward Gaussian distribution. Therefore, we used the simplest model of Gaussian distribution
with zero mean to describe the noise affecting the sensing technique used to find the distance between
the neighboring sensors. We can compare the impact of noise by comparing the left panels (no noise)
with the right panels (noise added, standard noise deviation: 0.05) in Figures 8-11.

With regard to coverage (Figures 8 and 10), adding small amounts of noise improves the total
coverage achieved by the WSN. Similarly, PAC increases faster under noise, with larger gains achieved
at an earlier deployment stage. However, for BISON and the conditional approach (independent of
the number of obstacles) noisy simulations incurs a higher cost (cf. CDT in Figures 9 and 11). This also
holds for the fixed node approach except when only a single node is using the GA.

As far as the algorithm efficiency is concerned, we previously noted that adding objects to the
environment always slows the swarm down. This is also the reason for reporting 500 iterations in
Figures 11 and 10 (as opposed to 400 in Figures 9 and 8). Furthermore, the steeper gradients observed
for the CDT plots (representing increased node movement when adding noise) in Figures 9 and 11
clearly indicates that noise also results in the nodes moving faster.

5.1.5. Summary and Discussion

Our findings regarding the performances of the algorithms are summed up in Table 5. Given the
fact that energy can be expected to be a limited resource for many WSN and certainly for most mobile
WSN, the energy demands of the algorithms might be the most important measure. In that regard
the original algorithm clearly outperforms its GA offsprings. This is not surprising as it was designed
with simplicity in mind. Given the higher energy cost for the new algorithms it is also logical that the
increased cost seems proportional in the number of nodes using the GA.

Table 5. A brief summary and interpretation of the performances shown in Figures 5 and 7-11 above:
for both discovery rate and coverage, fast or high is preferable; for noise tolerance robust means
unaffected; the energy demands compare the requirements of the respective algorithms.

Discovery Noise Energy
Rate Coverage Tolerance Demands
BISON with GA (conditional) fast low to moderate robust high
(fixed nodes) low to moderate moderate moderate  moderate to high

BISON low high high low
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The positive impact of communication noise on performance is clearly visible across Figures 9-10
(left panels: no noise; right panels: noise). As noise causes more courageous exploration it also makes
intuitive sense that this is least beneficial for the algorithm where a fixed number of nodes use the GA
(as opposed to none or only those at the outer fringe of the network).

The benefits of augmenting BISON with a GA becomes evident when considering the deployment
speed where it again is increasingly beneficial to have more nodes use the GA (fixed nodes) and adding
this only for those nodes at the outer edge of the network (conditional). However, a high discovery
rate comes at the cost of coverage, which is inverse proportional to the deployment speed.

In Section 2.2 we discuss alternatives to using GA, however, this article only provides results
for a hybrid approach using BISON and GA. A comparative evaluation against hybrid approaches
using other heuristics is outside the scope of this paper. However, prior to embarking on our project, a
comparison with the NSVA algorithm [54,98] was performed. We found the original BISON algorithm
to be superior in the following ways: in terms of coverage and the number of nodes, BISON tends to
achieve maximum coverage at an earlier time and with fewer nodes compared to the NSVA algorithm
(with ratio of 1 to 3), under the same parameters.

5.2. Noise Coherence Analysis

As noise significantly impacts WSN deployment properties, a short investigation of the effect it
has on node movement is in order. This is further motivated by the desire to apply the theoretical work
to practical implementations for swarms of (semi)-autonomously operating drones. With that in mind,
the average device velocity and the changes of this value over time offer valuable insights with regard
to the expected behavior of a drone swarm using the proposed algorithms to deploy an indoor WSN.

5.2.1. Motivation

In any real-world deployment of robotic systems there is the potential for incurring increasing
positional errors over time [99,100]. This is a challenge addressed in various ways in the literature.
Therefore, with regard to noise and positioning error, this article focuses on the impact of noisy
measurements on the positioning of a device (where the positioning itself is expected to be error-less
in itself). Seeing the impact of noise on standard network performance parameters motivates the need
to understand this in a fundamental, Fokker-Planck formalism, i.e., a formal equation describing the
evolution of the probability density function of the velocity of a particle over time. Following the
literature [101] and with the scope of the paper in mind we use empirical kinematic data (generated by
our simulations) to estimate the diffusion and the drift coefficients of this equation (as opposed to a
formally defined theoretical (complex) model/Fokker-Planck equation to determine node-velocity).

5.2.2. Modeling Node—Diffusion and—Drift

We refer to the mean rate of change of average node velocity as diffusion (D) and to the evolution
thereof as drift (F). The coefficients for diffusion (D) and drift (F) are approximated as follows [101]:

2
D(o(t) ~ §< ot + 38— v(s) > @
F(o(t)) ~ <W> ©)

with

where v(t) is the average velocity of all the available nodes n at time t, D(v(t)) is the diffusion
coefficient, F(v(t)) the drift coefficient and Jt the chosen time step value.
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5.2.3. The impact of noise

Figures 12 and 13 show the outcome of our investigations into the impact of noise. Plotted are
diffusion (D) and drift (F), calculated using empirical data from simulations as opposed to using a
formally defined theoretical (complex) model/equation to determine node-velocity). Since the only
variable difference between the respective left (blue) and right (red) panels is the noise-level (o noise
on the left in blue, noise-level ND = 0.05 on the right in red), it is clear that the motion of the sensors is
affected by noise. The top rows in both panels shows diffusion and drift for GA-BISON fixed nodes
with seven fixed nodes. The motivation for reporting the results for seven nodes is given in Section 4.4.
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Figure 12. Noise coherence analysis: shown are (left panel) diffusion (Equation (4)) and (right panel)
drift (Equation (5)). The respective top plots show the impact of noise (arrow) incurred by the BISON
fixed nodes algorithm; the respective bottom plots show the same for BISON conditional. In the previous
section we discussed algorithm performance and noted that BISON conditional was the least affected
by noise (cf. PAC (Equation (2)) in Figures 8 and 10); this is reflected by the lower plots in both panels
above, where hardly any change can be observed in either node—diffusion or drift. In contrast, as seen
in Figures 9 and 11, when subjected to noise BISON fixed nodes showed a reduction in CDT (Equation (3))
and steps, which is visible in the reduced drift and diffusion of the swarm, shown in the upper plots of
both panels.

The Impact of Noise in General

The results in Figures 8-13 clearly show the benefit of noise for the resulting final WSN coverage
and the rapid increase thereof during swarm deployment. The most likely quantitative explanation
is that the presence of noise (of a certain kind and under the right circumstances, etc.) leads to
different directional switching that can be considered helpful in accomplishing some WSN tasks. This
is comparable to the positive impact of noise in biological systems [101].

The impact of noise: Fixed Nodes versus Conditional

When comparing the two BISON-GA approaches fixed nodes and conditional as we do in Figures 12
and 13 we see that, under the same noise level the values for the fixed node approach have a wider
distribution than for the conditional approach. This finding is an important indication for the results
revealed previously in Figures 8 and 11, where GA-BISON conditional was least affected by the
presence of noise. On the other hand, as the noise level increases, we observed an enhancement in
GA-BISON fixed nodes in terms of reducing the CDT values, which is a reflection of the reduction in the
random motion of nodes (Diffusion, shown in the left panels of Figures 12 and 13) and their change in
their average velocities (Drift, shown in the right panels of Figures 12 and 13).
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5.2.4. Summary

Neighbourhood information plays an important role [102]. The quality of this information is
impacted by the noise in the system and we discussed the impact of adding noise using the results
plotted in Figures 8-13. When comparing the impact of noise (blue, no noise, versus red, with noise)
for either Diffusion or Drift we see that the impact is more pronounced for the fixed node approach but
still noticeable for the conditional approach. This means that the presence of noise, which is a likely
occurrence in a system deployed in the real world, is not necessarily a problem. More so, for small
amounts of noise the impact can be considered beneficial.
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Figure 13. (left panel) Node diffusion in an obstacle-rich environment (compare this to the left panel
of Figure 12, comparing BISON fixed nodes (top plots) to BISON conditional). Plotted is the diffusion
coefficient D (y-axis) defined in Equation (4) versus the velocity (x-axis). Compare these results to
Figure 10, where we see that the PAC of BISON fixed node improves significantly under noise (which is
reflected in the reduced diffusion shown in the top plots here) while that of BISON conditional hardly
shows any improvement (matched by the little change between the two lower plots here). (right panel)
The drift of the WSN drone swarm in an obstacle-rich environment (compare this to the right panel in
Figure 12 for obstacle-free environments), comparing the BISON fixed node approach (top plots) to the
BISON conditional approach. Plotted is the drift coefficient F (y-axis) defined in Equation (5) versus
the velocity (x-axis). Compare these results to Figure 11 from the performance analysis, where we see
that the CDT of BISON fixed node is reduced significantly under noise (which is reflected in the reduced
diffusion shown in the top plots here) while that of BISON conditional remains virtually unchanged
(which we see here in lack of change in the lower plots).

6. Conclusions and Future Work Plan

We studied the contribution of merging two Nature-inspired algorithms on the performance
metrics of WSN deployment and reallocation in unfamiliar regions of interest. The GA was preferred
among other algorithms to be implemented with our previously developed BISON algorithm due to
its efficiency in large scale applications for maximizing the lifetime of the network, its flexibility of
being executed locally on each agent, and its objective function that can be modified by operators.

We introduced two new strategies for implementing a GA with BISON: BISON fixed nodes,
where random nodes are selected among the available agents at the intermediate deployment stage
to apply the GA for their reallocation process; and BISON conditional, where each node checks its
number of neighbors to decide whether to to make use of the GA to determine its next position.
Simulation results revealed that by discovering further locations (as opposed to the Voronoi centroids)
both GA-BISON approaches improve the execution time and discovery rate of the network.

However, such implementations require a tradeoff between coverage and the energy consumption
of the network. Higher coverage requires more movement from sensor nodes which increases the
distance traveled and the overall energy consumption of the network. In contrast, reducing the distance
traveled does not always guarantee better coverage or better energy consumption.
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We demonstrated that GA-BISON conditional has the fastest discovery rate but with highest
energy consumption, followed by GA-BISON fixed nodes with moderate performance in coverage
and energy consumption; while BISON approach has the highest regional coverage with least distance
traveled but with slowest discovery rate. We also validated that GA-BISON conditional coverage
performance is robust against noise effect, while BISON and GA-BISON fixed nodes performances are
enhanced but all have a downside on the energy consumption of the network. From these analyses,
the efficiency that we can guarantee from the developed approaches depends on the application
requirements and abilities, which are summarized in Table 5.

We discussed the change of the GA parameters (population size, number of iterations, and
mutation rate) on the performance of GA-BISON fixed nodes,to provide an analytical demonstration
on the choice of these parameters that contribute to the efficiency of the GA approach. The population
size showed an influence on PAC, CDT, and number of simulation steps required, such that the increase
in the population size reduces the PAC and the number of steps but increases the CDT. The change in
the number of iterations also reduces the number of steps and increases the CDT, but has a negligible
effect on the PAC achieved by the network. Similar behavior is adhered when changing the mutation
rate, but with a reduction in the number of steps with an increase in CDT.

Throughout the article references are made to potential future work. With regard to a comparative
performance evaluation, pitting GA-BISON against e.g., PSO-BISON or ACO-BISON (discussed in
Sections 1.1 and 5.1.5), this will constitute a significant effort, worthy of a separate project and
investigation of themselves. We would like to emphasize that while we list this here for completeness
we do so without the claim to have allocated funds and resources to address these immediately. Future
work which we are considering focuses on more complex tasks, variable sensing ranges among the
sensor nodes, and 3D environments where our algorithm is expected to self-compose or reorganize
itself based on continuously changing conditions. Furthermore, the current literature on swarm-based
emergency (cell-)communication networks still focuses mainly on (autonomous and decentralized)
swarms consisting entirely of UAVs [25]. There is, however, other work, e.g., [28], which proposes the
use of heterogeneous swarms (here UAVs and UGVs) for messaging systems. With our application
(exploration of indoor environments) in mind, including stationary locations (such as e.g., shelters
or fixed transmitters) or dedicated mobile hardware (such as e.g., mobile command centers, drone
deployment vehicles, mobile maintenance stations, etc) into the operations of the swarm will bridge
another gap to the real world and move us closer to the deployment of a real-world demonstrator of
our work and the verification of our approaches. With regard to implementing such a demonstrator
and deploying a swarm, there is a host of literature available suggesting approaches to address many
of the practical issues posed (e.g., [103,104]). However, a number of aspects, such as e.g., legal concerns,
remain. It is therefore not yet possible to report on a real-world trial but we assume that in the near
future we will see more and more swarms become available and we hope that our theoretical work,
presented here, will find its way into some of these. With this in mind, we suggest [17] for a survey of
UAV-based communication (civil use), [16] for an overview over important issues and challenges in
UAV communication networks and [105] for an overview over laws and regulations.
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Abbreviations

The following abbreviations are used in this manuscript:

ACO

CDT
GA
GL
INT
PAC
PSO
RS
RTM
SAR
SI
UAV

Ant Colony Optimization
Cumulative Distance Traveled
Genetic Algorithm

Goods Delivery/Logistics
Surveillance

Percentage Area Coverage
Particle Swarm Optimization
Remote Sensing

Real-Time Monitoring
Search and Rescue

Structural Inspection
Unmanned Aerial Vehicle

WAN  Wireless Access Networks

WSN

Wireless Sensing Networks
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