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Abstract: The increasing spatial and temporal scales of ecological recovery projects demand more
rapid and accurate methods of predicting restoration trajectory. Unmanned aerial vehicles (UAVs)
offer greatly improved rapidity and efficiency compared to traditional biodiversity monitoring surveys
and are increasingly employed in the monitoring of ecological restoration. However, the applicability
of UAV-based remote sensing in the identification of small features of interest from captured imagery
(e.g., small individual plants, <100 cm2) remains untested and the potential of UAVs to track the
performance of individual plants or the development of seedlings remains unexplored. This study
utilised low-altitude UAV imagery from multi-sensor flights (Red-Green-Blue and multispectral
sensors) and an automated object-based image analysis software to detect target seedlings from among
a matrix of non-target grasses in order to track the performance of individual target seedlings and
the seedling community over a 14-week period. Object-based Image Analysis (OBIA) classification
effectively and accurately discriminated among target and non-target seedling objects and these
groups exhibited distinct spectral signatures (six different visible-spectrum and multispectral indices)
that responded differently over a 24-day drying period. OBIA classification from captured imagery
also allowed for the accurate tracking of individual target seedling objects through time, clearly
illustrating the capacity of UAV-based monitoring to undertake plant performance monitoring of
individual plants at very fine spatial scales.
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1. Introduction

Ecological restoration and other recovery activities directed at returning ecological functioning
to degraded ecosystems, is being undertaken at increasing scale around the world [1–3]. It is being
increasingly recognised that humans must achieve a net gain in the extent and function of indigenous
ecosystems in coming decades if ambitious global targets relating to sustainable development and
biodiversity preservation are to be met [1,4,5]. However, ecological restoration is a complex process and
achieving desired restoration trajectories requires significant planning, careful and targeted on-ground
activities and detailed subsequent monitoring and adaptive management over long time periods [4,6,7].
The monitoring of ecological recovery projects such as ecological restoration is particularly important,
both to ensure that predetermined goals are being met and to inform adaptive management in
situations where trajectories are unsatisfactory [4,8,9]. Many studies have utilised keystone plant
species (e.g., species of notable abundance or importance to ecological functioning) as indicators to
project restoration trajectory [9,10]. However, the demand for more rapid and accurate methods of
predicting restoration trajectory continues to grow with the increasing spatial and temporal scales
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of ecological recovery projects [1–3,11]. Unmanned Aerial Vehicles (UAVs) have increasingly been
applied to meet this demand, as they offer greater cost-efficiency and ease of use, increased spatial and
temporal resolution and improved rapidity and safety compared to traditional biodiversity monitoring
surveys [12,13].

One area of particularly strong uptake in UAV-based monitoring in in the monitoring of post-mining
rehabilitation and ecological restoration [14]. Many mining operations are located in relatively
remote regions and post-mining landforms are often steep, unstable or hazardous to traverse on
foot (e.g., waste rock landforms and tailings storage facilities). UAVs offer an effective monitoring
solution for these landforms, on which rehabilitation or ecological restoration are often regulatory
requirements [15,16], as their operation avoids human exposure to hazardous conditions, can access
areas not able to be monitored on foot and does not risk degrading or trampling sensitive or regenerating
communities [17]. Additionally, UAVs do not pose a pathogen transmission risk in areas where soil- or
water-borne pathogens such as dieback (Phytopthora spp.; [18]) represent a serious threat to ecological
recovery and to the integrity of natural communities. The ability of UAVs to fly at extremely low
altitudes, coupled with lower operating costs and minimal infrastructure requirements, yields more
accessible and cost-efficient data capture at far greater spatial resolution than can be achieved by
manned aircraft or satellites [19].

Higher spatial resolution greatly improves the accuracy of automatic image classification
techniques such as Object-Based Image Analysis (OBIA; a technique that splits each image into
spectrally similar ‘objects,’ which allows for classification not just on colour but other factors like shape,
size and relationship to surrounding objects [20]) and supervised machine learning (a process that
“teaches” a program what set classes are meant to look like by providing training examples; based off

of the given examples, the program then classifies the remaining images by their similarity to the
specified classes [21]). Very high spatial resolution is a prerequisite where monitoring goals require the
identification of small features of interest (e.g., individual plants) [20,22]. The mining industry are
increasingly seeking monitoring tools that provide accurate and reliable assessments of restorative
trajectories [14,23] and studies have identified examinations of growth, phenology and physiological
performance in restored communities at the level of individual plants as a crucial desired component
of this toolbox [16,24,25].

As UAVs can carry a variety of sensors and multiple sensors can be mounted on a single platform
to capture data simultaneously in a single flight [26], they represent an increasingly appropriate tool
for monitoring plant performance. UAVs are widely employed in the monitoring of plant health
and performance in the agricultural sector [27], with recent studies demonstrating their effective
application to the estimation of leaf carotenoid content in vineyards [28], the identification of nitrogen
stress in maize [29], the monitoring of crop pests [30], in assessments of leaf area index in wheat [31],
in the diagnosis of various ailments such as sheath blight in rice [32] and in assessments of water
stress in barley fields [33] and olive orchards [34]. Many of these applications employed multispectral
sensors, due primarily to their ability to provide early warning of plant stressors at a relatively
affordable price point compared to other, more advanced sensors such as hyperspectral or thermal
cameras [35]. Multispectral sensors can detect near-infrared (NIR) light, which affords the ability
to monitor various multispectral indices (e.g., Normalised Difference Vegetation Index, NDVI) that
can show changes in plant health before any visible signs appear [36]. The use of multispectral
imagery to improve classification accuracy has been previously demonstrated at larger scales in dry
forest and peat bogs [20,37], to classify trees and shrubs on the basis of plant health [20] and to
provide early warning of plant stress in plantation trees [38]. Indeed, the addition of multispectral
cameras to automated image classification processes broadly may represent an opportunity to markedly
increase the accuracy of target plant object classification. More advanced sensors such as thermal and
hyperspectral sensors are likely to significantly improve this capability, as multispectral sensors do
not provide adequate data to determine the reason for observed plant performance declines due to
limited spectral resolution [39]. Determining the causes of observed declines is important to action
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correct management and at least in agricultural crop species requires the spectral resolution offered
by hyperspectral sensors and classification accuracies nearing 100% have been achieved when using
hyperspectral sensors to differentiate between three different fungal diseases in sugar beets [40]
and in detecting head blight in wheat [41]. Additionally, thermal sensors offer a highly accurate
tool for assessing water stress in vegetation [33,42–44] and have also been applied variously in the
monitoring of mammalian fauna [45–47]. The use of thermal and other UAV-mounted sensors in
fauna monitoring is likely to increase to meet the growing demands for more rapid and reliable
assessments of fauna biodiversity and behaviour [11]. However, the use of more advanced sensors
remains predominantly constrained by cost [14], as thermal and hyperspectral sensors are currently
between three to twelve times more expensive than multispectral sensors [35] and translational research
from agriculture to the monitoring of ecological restoration projects has to date been broadly restricted
to the use of multispectral sensors (e.g., the identification and mapping of woody vegetation cover
in post-mining revegetation [48]). Translational research has not yet tested the potential of UAVs
to monitor heterogenous natural vegetation communities at very fine spatial scales and is yet to
demonstrate that plant health and performance can be monitored at the scale of individual plants or
that establishment and development can be reliably tracked at the seedling stage when plants are most
vulnerable to environmental stressors [49].

This study aimed to utilise the fine-scale spatial and temporal resolution offered by UAV-mounted
sensors to identify target seedlings and track and assess their growth and development from a simple
background community on representative restoration substrates. Target seedlings can be identified
with a high level of accuracy from RGB imagery using OBIA [50] and multispectral imagery works
well in automated image classification approaches as the extra information provided allows users to
split classification classes not only by species but by level of plant health based off of multispectral
indices [20]. We utilised a UAV equipped with both RGB and multispectral cameras to monitor a
juvenile plant community over a period of drying to track individual target seedling objects (Lupinus
angustifolia) through time and simultaneously gathered data to assess surrogate measures of their
ecophysiological performance using a variety of visible and multispectral indices over the course of the
drying period to contrast the performance of target seedlings with co-occurring non-target seedlings
(co-occurring grasses). Given the often remote and poorly accessible nature of post-mining landforms,
we examined whether naturally occurring reference points (local points with defining features that can
be located repeatable throughout the data series, that is, small landscape features such as rocks and soil
surface microtopography) could be used as common reference points to align orthomosaics produced
from images captured by different sensors or on different days. Our objective was to achieve high level
of accuracy in the identification, counting and tracking of individual target seedling objects through
relative referencing between image captures to facilitate monitoring of a desired area of interest, not to
achieve a high level of precision in determining the absolute spatial positioning of target individuals.
We hypothesised that target and non-target seedling objects would exhibit different spectral signatures
(e.g., different values for visible and multispectral vegetation indices, as surrogates for ecophysiological
performance) and that these signatures would respond differently over the drying period facilitating the
discrete monitoring of both groups. Additionally, we hypothesised that pre-drying plant performance
(determined from values from visible and multispectral indices) would be a significant predictor of the
speed of seedling mortality during the drying period.

2. Materials and Methods

2.1. Study Site

The study was conducted at the University of Western Australia Shenton Park Field Station,
Perth, Western Australia (31◦56′55” S, 115◦47′39” E). UAV flights were undertaken over a 400 m2

trial area divided into four experimental 100 m2 plots (10 m × 10 m) with different surface treatments
representing generalised restoration substrates in Western Australia (Figure 1). Surface treatments



Drones 2019, 3, 81 4 of 20

included a ‘control’ of undisturbed local sandy soil (smooth, homogenous texture and light background
colour) representative of typical post-mining substrate in Banksia woodland restoration [16]; a ‘textured’
treatment of undisturbed local sandy soil with scattered crushed overburden rock (2–20 cm in size,
giving increased surface heterogeneity) used to rock armour the slopes of restoration landforms [51];
a ‘dark’ treatment of undisturbed local sandy soil capped with a 1 cm layer of tailings generated from
the processing of magnetite ore [52]; and a ‘high red-ratio’ treatment of undisturbed local sandy soil
capped with a 1 cm layer of red clay loam soil from a mine site in the Midwest region of Western
Australia [51]. All capping materials were sourced from a major magnetite mining operation located
approximately 400 km northeast of Perth, Western Australia. Additionally, to examine whether seed
and seedling detection rates were affected by surface topography, half of each treatment plot was
manually ripped to a depth of 20 cm using a backhoe (Figure 1) to mimic standard ripping practices in
post-mining restoration [16].
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Figure 1. Layout of experimental plots (individual plot area 100 m2) illustrating surface treatments
(annotated lettering), ripping sub-treatments (individual rip line indicated by annotated arrow) and
broadcast seeding densities. Surface treatments included a ‘control’ of undisturbed local sandy soil
(C), a ‘textured’ treatment of undisturbed local sandy soil with scattered crushed overburden rock (T),
a ‘dark’ treatment of undisturbed local sandy soil capped with a 1 cm layer of tailings (D) and a ‘high
red ratio’ treatment of undisturbed local sandy soil capped with a 1 cm layer of red clay loam soil (R).
Broadcast seeding density treatments included low (15 seeds m−2 of target species, 50 seeds m−2 of
grasses), medium (25 seeds m−2 of target species, 250 seeds m−2 of grasses) and high (50 seeds m−2 of
target species, 1000 seeds m−2 of grasses). The image was taken from an altitude of 20 m using a DJI
Phantom 4 Pro unmanned aerial vehicle (UAV).

Plots were seeded in September 2017, split into three seeding sub-treatments representing
increasing volumes of broadcast seeds (and, correspondingly, increasing seedling density; Figure 1).
The seed mix broadcast included seeds of a target species, Lupinus angustifolia L. (Fabaceae), in a
commercial grass species mix comprising Festuca arundinacea Schreb. and Stenotaphrum secundatum
(Walter) Kuntze (Poaceae). The target species was selected as its seeds were large (ca. 1 cm) and
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distinctly coloured (white) and its distinctive large, dark green palmate leaves produced from a central
stem provided a strong comparison with the small linear leaves of non-target grasses. The seed mix
was intended to represent a potential post mining restoration scenario where monitoring was required
for a species of restoration interest with large, distinctly coloured seeds and distinctive foliage (e.g.,
Banksia species, where seeds have been polymer coated [53]) among a matrix of grassy invasive weeds
(a situation common in regional restoration initiatives [16]). The seed mix was broadcast at three
densities: low, comprising 15 L. angustifolia seeds and 50 grass seeds per m−2; medium, comprising
25 L. angustifolia and 250 grass seeds per m−2; and high, comprising 50 L. angustifolia and 1000 grass
seeds per m−2. In total, 12000 L. angustifolia seeds were broadcast. Plots were irrigated daily for
a 10-week growing season before the irrigation was turned off and soils were allowed to dry for a
further four weeks. Daily weather information, as well as daily climatic variable data used in analyses,
were retrieved from the Bureau of Meteorology’s Swanbourne station, ID 009215 (located ca. 2 km
from the study site).

2.2. Flights and Image Capture

Manual flights of the study site were conducted daily (5 metre flight altitude) for 14 weeks using
a DJI Phantom 4 Pro (Dà-Jiāng Innovations, Shenzhen, China) equipped with a 20 Megapixel RGB
camera and a Parrot Sequoia multispectral camera (only for flights in weeks 9 through 14). Flights
were conducted manually due to the small area surveyed and low flight altitudes. All flights were
conducted with front- and sidelap of 70% and at low speeds (approximately 3 kph) to avoid image
blur. Flights were conducted at the same time each day (early morning, approximately 8.30 am once
shadows from adjacent trees no longer fell over the trial area), with the exception of the last week of
the experiment when increasing aggression from local avifauna required flights to be conducted at
random times throughout the day in an attempt to avoid interactions (see Section 4.5).

2.3. Image Analysis

JPG images from all UAV flights were merged together using the Agisoft Photoscan software,
to produce RGB (from the phantom 4 pro integrated camera) and multispectral (from the sequoia)
rectified orthomosaics as well as Digital Elevation Models (DEMs) for each flight. The final resolution
of RGB orthomosaics was 1.02 mm per pixel and of multispectral orthomosaics was 4.64 mm per pixel.
Images were locally geo-referenced and naturally occurring reference points (local points with defining
features that can be located repeatable throughout the data series, that is, small landscape features
such as rocks and soil surface microtopography) were used as common reference points to align
orthomosaics produced from images captured by different sensors or on different days. Orthomosaic
alignment thus aimed to facilitate ‘identification accuracy’ of target seedling objects and the discrete
tracking of individual target seedling objects through time, rather than to attain high levels of absolute
‘spatial accuracy’ in terms of global positioning.

2.4. Monitoring of Plant Response to Water Stress

Ten weeks after seeding, the irrigation to the trial plot was switched off and the soil was left to dry
for four weeks. During this period, the plot was monitored with the Phantom 4 Pro and the Parrot
Sequoia multispectral camera in order to track response of target and non-target seedlings to water stress.
Due to operational difficulties with the multispectral camera, inclement weather and interaction with
an aggressive native raptor, successful flights were conducted on 12 out of the 24 days during the drying
period. Following all flights, orthomosaics and DEMs were generated from both the Phantom 4 Pro’s
RGB imagery and the Parrot Sequoia multispectral imagery. Orthomosaics and DEMs were created in
Agisoft Photoscan, with the Sequoia imagery requiring initial reflectance calibration from its reflectance
target (conducted in Photoscan). Orthomosaics were split into four discrete images representing the
four different surface covers and QGIS was used to manually align RGB and multispectral orthomosaics
for analysis. However, a lack of identifiable feature objects resulted in insufficient alignment for
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dark, red and control treatments, a challenge that was made more problematic by the reduced spatial
resolution of the multispectral sensor. Only the textured treatment could be aligned with an acceptable
level of accuracy, with scattered waste rock providing sufficiently distinct features for georeferencing.
While target seedling objects were generally well-aligned, occasional misalignment by a few centimetres
occasionally resulted in image objects derived from RGB imagery having minimal overlap with image
objects derived from multispectral imagery (Figure 2). Following alignment of RGB and multispectral
orthomosaics in QGIS, the orthomosaics were imported into eCognition.
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Figure 2. Three examples of target seedling objects (Lupinus angustifolia, indicated by white arrows) that
exhibited poor overlap between RGB (top) and multispectral (bottom; contrast adjusted for visibility)
orthoimages captured by a DJI Phantom 4 UAV at a flight altitude of 5 m. Red polygons indicate
the outline of the identified target seedling objects, in terms of their true location and highlight the
misalignment between different captured imagery.

Automated identification of target seedlings from captured imagery was initially undertaken
using OBIA (utilising orthomosaics and DEMs generated from RGB imagery from a single point in
time, with no post-processing alignment required) captured imagery from day 68, after a period of
seven consecutive days in which no new seedlings were scored in any treatment. Seedlings were
identified by an initial multiresolution segmentation, in which all objects with a green ratio above a
set threshold were assigned to the ‘target’ class, followed by additional refining of the rule set using
Hue-Saturation-Intensity (HIS [54]) transformations, Triangular Greenness Index (TGI), area (of the
object, in cm2), compactness [54], height (represented by the mean difference to neighbour objects in
the DEM; see Reference [50]), perimeter/width and length/width. Full rule sets used in analyses and
example outputs, are presented in Reference [50]. For each image, the total leaf cover of non-target grass
seedlings (including false positive seedling identifications) was determined for all objects not already
classified using green ratio and TGI. Following target seedling identification, a report was generated
from each orthomosaic showing key colour indices of each image object, tracking features including
green ratio, TGI, Visible Atmospheric Resistant Index (VARI), Normalised Difference Vegetation Index
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(NDVI), Soil-Adjusted Vegetation Index (SAVI) and area (of the object, in cm2). Equations and rationale
for all visible and multispectral indices are provided in Table 1.

Table 1. Equations, sensor used and rationale for each of the five visible and multispectral vegetation
indices utilised in analyses.

Index Equation Sensor Used Rationale for Inclusion Reference

Green ratio Green/(Green + red + blue) RGB Used for initial target seedling
identification

TGI Green − 0.39 × Red − 0.61 × Blue RGB Provides an estimate of
chlorophyll content [55]

VARI (Green − Red)/(Green + Red − Blue) RGB Reduces atmospheric effects [56]

NDVI (NIR − Red)/(NIR + Red) Multispectral Most widely employed
vegetation index in the literature [57]

SAVI ((1 + L)(NIR − Red))/(NIR + Red + L) Multispectral
Variant of NDVI intended to be

less influenced by soil
induced variation

[58]

2.5. Tracking of Specific Individuals

From RGB imagery captured on day 68, 25 individual target seedling objects were randomly
selected for individual plant performance monitoring. Orthomosaics from day 68 to day 92 were
trimmed to only the Textured treatment and the QGIS georeferencer plugin was used to align all future
orthomosaics to the coordinates of the day 68 orthomosaic. Target seedlings were identified initially
based off of their green ratio, with generous thresholds (see Supplementary 1 for ruleset) used to allow
for continued identification even as green ratio of plants changed in response to drying conditions.
Following identification via green ratio, each of the chosen 25 target seedlings were identified from
their GPS co-ordinates. Following the identification of a target seedling from imagery of the first
day of drying, the north-, east-, south- and west- most points were identified and GPS coordinates
of each recorded. In future imagery, seedlings were identified as being the seedling of interest if the
GPS position of the object’s centroid fell within the previously identified extremities. Full rulesets are
presented in Supplementary 1. A report was generated from each orthomosaic showing key colour
indices of each individual target seedling object, tracking features including area, green ratio, TGI and
VARI. Only visible spectrum indices were calculated for the 25 tracked individual target seeding
objects, due to georeferencing and overlap errors with multispectral imagery.

2.6. Statistics

To determine whether the spectral signature of the monitored plant community varied in response
to climatic conditions, linear regression models were fitted to determine the effect of daily climatic
variables (rainfall, solar exposure, maximum temperature and minimum temperature) on each of the visible
spectrum (TGI, VARI and Green Ratio) and multispectral (NDVI and SAVI) indices utilised. All data
were square root transformed prior to multiple linear regression analyses to meet assumptions of
normality (assessed by Shapiro-Wilk tests of normality) and homogeneity of variances (as assessed by
Levene’s test for equality of variances).

To determine whether classified target and non-target seedling object groups exhibited discrete
spectral signatures, two-way mixed ANOVA were employed to determine whether mean object area
and visible spectrum and multispectral indices varied significantly among the two groups over the
experimental period using Greenhouse-Geisser estimates of epsilon (ε) as assumptions of sphericity
were not met (SPSS Statistics 25, IBM, United States). Simple main effects among classified object
groups at each time point were determined using Tukey post hoc tests.

Two-tailed Pearson correlations were run to determine which visible spectrum or multispectral
index provided the strongest association with declines in the target seedling object community (mean
object area and number of surviving individuals).
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For analyses, the 25 tracked target seedling objects were binned into four size categories on the
basis of object area at day 68: small (<50 cm2), medium (50–100 cm2), large (100–150 cm2) and very large
(>150 cm2). To determine whether different sized target seedling objects exhibited different spectral
signatures in response to drying conditions, two-way mixed ANOVA were employed to determine
whether mean object area and visible spectrum indices varied significantly among the four groups over
the experimental period using Greenhouse-Geisser estimates of ε as assumptions of sphericity were
not met (SPSS Statistics 25, IBM, United States). Simple main effects among classified object groups at
each time point were determined using Tukey post hoc tests.

Data are presented as mean ± standard error, unless otherwise stated.

3. Results

3.1. Response of Spectral Signature to Climatic Conditions

Mean object area and both visible spectrum and multispectral indices were significantly predicted
by daily climatic variables (Table 2), with strongest effect sizes of regression models evident for
multispectral indices (NDVI and SAVI) followed by green-dependent visible spectrum indices (TGI
and green ratio). Regression coefficients and standard errors for all multiple regression analyses are
presented in Table 3. Object area, TGI, VARI and green ratio were negatively associated with daily
temperatures and solar exposure and positively associated with rainfall, while NDVI and SAVI were
positively associated with all climatic variables.

Table 2. Overall model effects for multiple regression models examining the effect of climatic variables
(rainfall, solar exposure, maximum temperature and minimum temperature) on object area and visible
spectrum and multispectral indices utilised in this study.

Factor F
(df, n) P Adj. R2 Variables Statistically Significantly Adding

to the Prediction (P < 0.05)

Object area 42.302
(4, 109, 123) <0.001 0.002

Rainfall
Solar exposure

Maximum temperature
Minimum temperature

NDVI 5628.883
(4, 109, 099) <0.001 0.17

Rainfall
Solar exposure

Maximum temperature
Minimum temperature

SAVI 5643.055
(4, 109, 123) <0.001 0.17

Rainfall
Solar exposure

Maximum temperature
Minimum temperature

TGI 4770.678
(4, 109, 123) <0.001 0.15

Rainfall
Solar exposure

Maximum temperature
Minimum temperature

VARI 95.538
(4, 109, 123) <0.001 0.003 Rainfall

Minimum temperature

Green Ratio 1112.903
(4, 109, 123) <0.001 0.04

Rainfall
Solar exposure

Maximum temperature
Minimum temperature
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Table 3. Summary of multiple regression analyses examining the effect of daily climatic variables
(rainfall, solar exposure, maximum temperature and minimum temperature) on object area and visible
spectrum and multispectral indices utilised in this study.

Factor Variable B SEB β

Object area Intercept 19.961 1.485
Rainfall * 0.016 0.014 0.004
Solar Exposure * −0.391 0.039 0.044
Minimum temperature * −0.157 0.015 −0.038
Maximum temperature * −0.023 0.008 −0.011

NDVI Intercept −1.776 0.016
Rainfall * 0.002 <0.001 0.037
Solar Exposure * 0.058 <0.001 0.542
Minimum temperature * 0.006 <0.001 0.129
Maximum temperature * 0.006 <0.001 0.232

SAVI Intercept −2.662 0.024
Rainfall * 0.002 <0.001 0.037
Solar Exposure * 0.086 0.001 0.542
Minimum temperature * 0.009 <0.001 0.129
Maximum temperature * 0.009 <0.001 0.232

TGI Intercept 1.258 0.654
Rainfall * 0.499 0.006 0.277
Solar Exposure * −0.658 0.017 −0.153
Minimum temperature * −0.108 0.007 −0.055
Maximum temperature * −0.089 0.004 −0.089

VARI Intercept −0.001 0.021
Rainfall * 0.001 <0.001 0.019
Solar Exposure −0.001 0.001 −0.006
Minimum temperature * −0.003 <0.001 −0.047
Maximum temperature 0 <0.001 −0.008

Green Ratio

Intercept 0.353 0.001
Rainfall * 0.001 <0.001 0.149
Solar Exposure * −0.001 <0.001 −0.061
Minimum temperature * 0 <0.001 −0.052
Maximum temperature * −0.001 <0.001 −0.011

Note: * P < 0.05. B = unstandardized regression coefficient; SEB = Standard error of the coefficient;
β = standardised coefficient.

3.2. Plant Performance Monitoring for Target and Non-Target Seedling Communities

OBIA classification identified 156 target seedling objects with a total area of 0.8 m2 and 10,419
non-target seedling objects with a total area of 5.2 m2 from day 68 imagery. The number and total
area of both target and non-target seedling objects declined rapidly over the 24-day drying period.
By day 92, only 14 target seedling objects with a total area of 0.04 m2 (reductions of 91 and 94%,
respectively) and 16,585 non-target seedling objects with a total area of 1.7 m2 (reductions of 47 and
68%, respectively) could be identified.

Classified target seedling objects exhibited distinct spectral signatures from that of non-target
seedling objects and these signatures responded differently to the 24-day drying period (Figure 3).
There was a statistically significant interaction between all measured indices and time among groups
(Table 4), with target objects ca. 10-fold larger than non-target objects and exhibiting higher values
for Green Ratio, Normalised Difference Vegetation Index (NDVI), Soil-adjusted Vegetation Index
(SAVI), Triangular Green Index (TGI) and Visible Atmospherically-resistant Index (VARI) over the
experimental period. Mean values for all measured spectral indices declined for both target and
non-target seedling objects over the 24-day drying period. The area, green ratio and TGI of target
seedling objects remained significantly higher than that of non-target objects, while values of NDVI,
SAVI and VARI for the two groups gradually trended to similarity (Figure 3).
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Figure 3. Average values of object area and five visible spectrum and multispectral indices for target
(filled symbols) and non-target (open symbols) seedling objects over a 24-day drought period. Error bars
indicate 1 s.e. of the mean. Asterisks indicate statistically significant differences among groups at each
time point (P < 0.05). Data for SAVI showed a near-identical trend to NDVI and are not shown.

Table 4. Two-way mixed ANOVA outputs for significant interactions between object area and visible
spectrum and multispectral indices and time among target and non-target classified seedling objects
over the 24-day experimental drought period. Partial η2 reports the effect size of each interaction,
while ε reports Greenhouse-Geisser estimates of sphericity.

Index F P Partial η2 E

Area 1054.134
(8.092, 108,141.318) <0.001 0.073 0.736

Green Ratio 68.479
(2.161, 28,878.153) <0.001 0.005 0.196

NDVI 167.570
(6.414, 85,717.123) <0.001 0.012 0.583

SAVI 167.137
(6.420, 85,800.860) <0.001 0.012 0.584

TGI 220.636
(4.965, 66,357.318) <0.001 0.016 0.451

VARI 24.311
(6.135, 81,994.764) <0.001 0.002 0.558



Drones 2019, 3, 81 11 of 20

VARI and Green Ratio were moderately positively correlated with both mean object area and the
number of target individuals over the monitoring period (Table 5), while NDVI and SAVI correlated
moderately with mean object area but poorly with the number of target individuals. TGI exhibited no
correlation with either variable.

Table 5. Pearson correlations between visible spectrum and multispectral indices for classified target
seedling objects (Lupinus angustifolius) and the mean object area and number of surviving individuals.
n = 1145.

Index
Object Area Number of Individuals

Pearson Correlation Significance Pearson Correlation Significance

Green Ratio 0.435 <0.001 0.412 <0.001
NDVI 0.408 <0.001 0.120 <0.001
SAVI 0.408 <0.001 0.120 <0.001
TGI −0.046 0.12 −0.098 0.001

VARI 0.470 <0.001 0.517 <0.001

3.3. Monitoring Individual Target Seedling Objects through Time

A total of 16 naturally occurring reference points (all small rocks) were used to align orthomosaics,
ranging in size from 4.9–161.1 cm2 (average 44 ± 11.2). Following orthomosaic alignment, OBIA
classification allowed for the tracking of the designated 25 target seedling objects (individuals) over
the 24-day drying period with a high level of accuracy and precision. The centroids of target seedling
objects exhibited global average X- and Y-axis displacement from their initial recorded position of
10 ± 0.9 mm and 14 ± 1.1 mm, respectively, over the 24-day monitoring period, with the greatest
centroid displacement being 66 mm (Table 6). No statistically significant correlation was evident
between the area of target individuals and either X- (R2 = 0.017, P = 0.937) or Y- (R2 = 0.095, P = 0.651)
centroid displacement.

Table 6. Average X- and Y- displacement of the centroid of 25 temporally tracked target seedling objects
(Lupinus angustifolius) from time-zero centroid position across 24 days of captured imagery, with the
range of centroid displacement observed for each individual indicated in parentheses.

Individual Area at Day 68 X-Displacement
(mm)

Y-Displacement
(mm)

1 170 15 ± 3.3
(4–37)

19 ± 5.1
(2–45)

2 551 3 ± 2.1
(0–9)

14 ± 5.6
(0–25)

3 144 0 ± 0
(0–0)

0 ± 0
(0–0)

4 135 12 ± 6.2
(0–28)

15 ± 7.6
(1–40)

5 109 4 ± 1.1
(0–10)

3 ± 1.0
(0–10)

6 43 12 ± 4.5
(0–23)

30 ± 8.2
(9–57)

7 186 11 ± 3.5
(2–21)

16 ± 7.8
(0–46)

8 63 8 ± 2.1
(2–21)

10 ± 3.5
(1–34)

9 218 8 ± 5.6
(2–13)

19 ± 14.4
(4–33)

10 79 7 ± 1.8
(3–19)

13 ± 3.0
(2–26)
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Table 6. Cont.

Individual Area at Day 68 X-Displacement
(mm)

Y-Displacement
(mm)

11 125 9 ± 4.2
(1–23)

28 ± 5.7
(16–50)

12 982 15 ± 11.2
(0–47)

18 ± 12.1
(0–51)

13 73 10 ± 2.8
(3–18)

12 ± 3.0
(1–18)

14 92 7 ± 1.9
(2–10)

20 ± 4.8
(10–37)

15 127 34 ± 6.5
(22–44)

17 ± 4.6
(9–25)

16 42 14 ± 3.4
(2–30)

11 ± 3.7
(1–34)

17 70 12 ± 5.9
(1–50)

9 ± 2.3
(3–20)

18 107 11 ± 2.7
(0–25)

17 ± 4.9
(1–45)

19 49 8 ± 2.7
(3–17)

28 ± 6.3
(6–44)

20 119 4 ± 1.4
(0–7)

10 ± 2.5
(3–15)

21 111 3 ± 1.3
(0–6)

5 ± 2.9
(0–17)

22 36 8 ± 8.0
(0–32)

12 ± 11.0
(0–45)

23 33 5 ± 2.7
(0–15)

8 ± 3.0
(1–18)

24 46 10 ± 2.8
(0–26)

15 ± 2.9
(4–28)

25 52 23 ± 9.3
(0–66)

10 ± 2.7
(2–25)

At the beginning of the drying period (day 68) the 25 target seedling objects ranged in Area from
33–982 cm2 (mean 150 ± 40.3 cm2; Table 6). Object area and all visible spectrum indices declined rapidly
in monitored target individuals over the 24-day drying period (Figure 4), even following a 17 mm
rainfall event over days 80–83 (Supplementary 2). The number of days until mortality ranged from
7–24 (mean 16 ± 1.3) across all classes and decreased along a size gradient from Very Large (19 ± 2.8
days; n = 5) and Large (18 ± 2.3 days; n = 6) individuals to Medium (13 ± 2.2 days; n = 8) and Small
(12 ± 2.2 days; n = 6) individuals.

Individuals from Very large and Large size classes generally exhibited higher mean values for all
metrics over the experimental period, although classes were statistically similar in all metrics by day
92 (Figure 4). There were statistically significant interactions between the area of classified groups and
time (F[3.592, 25.144] = 5.877, P = 0.002, partial η2 = 0.456, ε = 0.120) and the Green Ratio of classified
items and time (F[7.381, 51.666] = 0.1.164, P = 0.339, partial η2 = 0.143, ε = 0.246), while neither TGI
(F[6.966, 48.786] = 1.399, P = 0.227, partial η2 = 0.167, ε = 0.232) nor VARI (F[9.814, 52.516] = 0.795,
P = 0.602, partial η2 = 0.102, ε = 0.250) interacted significantly with time among groups.
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Figure 4. Daily values of object area and three visible spectrum indices for 25 target seedling objects
placed into four size classes over a 24-day drought period. Small (S): <50 cm2 at day 68. Medium (M):
50–100 cm2 at day 68. Large (L): 100–150 cm2 at day 68. Very large (V): >150 cm2 at day 68. Error bars
indicate 1 s.e. of the mean. Annotated numbering indicates statistically significant pairwise groups
among size classes at each time point (P < 0.05).
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4. Discussion

4.1. The Effect of Daily Climatic Conditions on Spectral Indices

The strong influence of daily weather conditions on spectral indices indicates that these metrics
provided a useful measure for plant response to weather conditions. Images were calibrated with the aid
of a reflectance target to control for the effect of daily climatic variance on reflectance values, as the ratio
of reflectance of various wavelengths of light determine the values of vegetation indices utilised [57].
Weather-dependent variation in indices was therefore reflective of changes in the spectral signature
of seedlings in response to factors such as moisture, wind and temperature [59]. Object area and
green-dependent visible spectrum indices (TGI, VARI and green ratio), which are considered indicators
of leaf chlorophyll content [55,56], increased in periods of higher soil moisture following rainfall
and decreased with higher daily temperatures and solar irradiance. Previous studies suggest that
higher leaf chlorophyll content during such favourable periods for growth would be expected [60–62].
NDVI and SAVI were positively associated with all climatic variables but declined towards the end
of the experiment for L. angustifolia when drought stress was likely greatest, reflecting their utility
as general indicators of plant health [57]. However, field study of plant physiological responses to
stress factors such as water limitation and temperature should ideally be conducted concomitantly to
validate the collection of spectral data [14,63]. Future studies should continue translational research to
test the utility of spectral indices currently applied in agricultural settings to assessment of the health
of non-agricultural plant species and communities and complement remote sensing data with ground
truthing examination of plant ecophysiological performance.

4.2. Classification and Tracking of Seedling Communities

Target and non-target seedlings exhibited distinctly different visible-spectrum and multispectral
signatures, differed statistically significantly in every spectral index examined and their spectral
signatures behaved differently over the course of the drying phase of the experiment (Figure 3).
These differences allowed for the discrete and accurate tracking of object groups both spatially and
temporally and for the measurement of spectral index values as indicators of plant performance
independently for each group. This study also provides the first evidence that accurate and reliable
UAV-based monitoring of plant health is achievable not only at fine scales for establishing seedling
communities but also at the scale of individual seedlings. Although our data were collected from
low-altitude flights and from a constrained spatial area, they demonstrate the significant capability
that UAVs will likely bring to the monitoring of ecological restoration and rehabilitation, as well as
other industries such as silviculture and viticulture [64,65], with further research and development.

Application of this capability to ecological recovery monitoring could dramatically improve the
accuracy and rapidity of surveys for particular species of interest in large-scale restoration plantings
(e.g., spectral discrimination of a particular rare or restoration-significant species from among a
biodiverse reinstated plant community) and improve the capacity to monitor plant performance at
individual-scale to enable early warning of declining plant health (e.g., to identify declines in high-value
or indicator species enabling early responsive restoration management). Although UAVs are likely to
represent an effective monitoring tool for many restoration and rehabilitation projects, there are two
major constraints to be overcome. The first is legislative restrictions, which cannot be discussed in depth
due to differing laws from jurisdiction to jurisdiction and the second is cost, which remains a primary
limitation to UAV application and the specific technological requirements of UAV-based remote sensing
in ecological recovery are likely to differ among projects dependent upon their ecological recovery
goals and monitoring outcomes. With adequate investment and demand-driven research UAVs almost
certainly represent the future of monitoring in ecological recovery [14].

Studies have suggested that satellite-based remote sensing may facilitate accurate and real-time
monitoring of plant health at community and landscape scale [66]. Given the more rapid turnaround
times offered by UAVs compared with satellite imagery and the current application of UAVs to plant
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performance monitoring in agricultural contexts [43,67], we suggest that accurate real-time monitoring
of plant health in ecological restoration using UAVs may already be possible with current technology
and infrastructure. As the availability of only low-resolution sensors constrained our experimentation
to low-altitude flights, future studies should also test the outcomes of multi-sensor UAV-based plant
performance monitoring at greater flight altitudes and with higher resolution sensors. Additionally,
studies should focus on testing a broader array of multispectral (and, indeed, hyperspectral) indices
and robustly testing the relevance of these indices to the physiological performance of monitored plants.

4.3. Classification and Tracking of Individual Seedlings

The use of naturally occurring reference points yielded acceptable accuracy in orthomosaic
alignment and undertaking OBIA on aligned orthomosaics allowed for precise tracking of specific
individual seedlings over the 24-day drying period. Locational errors were low, with object centroid
displacement for tracked objects averaging <15 mm across all objects over the course of the experiment.
This precision allowed individual seedlings to be tracked as they developed, while simultaneously
capturing a range of ecological data relating to their growth and performance, until mortality was
evident (confirmed by ground-truthing). To our knowledge this is the first time that UAV-based
imagery has been empirically demonstrated to offer such fine-scale spatial and temporal resolution in
monitoring plant growth and development. While we acknowledge that our study was conducted over
a small area and using imagery captured at very low altitudes, our data offer compelling evidence that
UAV-based remote sensing can generate meaningful, reliable and affordable empirical data about the
growth and development of vegetation communities and even individual plants early in their life cycle.
This capacity can only be improved by the application of more technologically advanced UAV systems
(e.g., multi-sensor platforms and sensors offering greater resolution or greater spectral discrimination)
and may revolutionize the manner in which the monitoring of environmental recovery activities such as
rehabilitation and ecological restoration are undertaken. UAV-based aerial monitoring of rehabilitated
or restored areas offers an accurate method of tracking seedling communities and even high-value
individuals (e.g., rare, threatened or commercially-important species), providing practitioners with
a robust tool for predicting the trajectory of these communities by remotely measuring growth and
development and providing early warning signs of environmental stressors such as drought.

4.4. Sensor Misalignment

One factor reducing the utility of multispectral imagery captured in this study was poor overlap for
target seedlings among captured RGB and multispectral imagery. This misalignment likely reflected a
lack of synchronisation between the drone-mounted RGB camera and the multispectral sensor; although
both sensors were capturing an image every two seconds, images were not captured simultaneously.
Images for each sensor were thus captured at slightly different points in space, causing overlap error
at the scale of several millimetres. This reduced the accuracy of individual object locations within
resultant orthomosaics, yielding internal target object misalignment within even perfectly aligned
orthomosaics. This error could be resolved through development of a combined single-unit RGB
and multispectral sensor able to be triggered simultaneously and geotagged by the same GPS unit.
Although the multispectral sensor we utilised does house an integrated RGB camera, it offered reduced
resolution (16 megapixel) and possessed a rolling shutter (rather than the global shutter used on the
Phantom 4 Pro). Rolling shutters can reduce orthomosaic accuracy and resolution by introducing
significant image distortion from imagery taken from a moving platform such as a UAV [68]. We echo
previous calls for urgent emphasis to be placed upon the development of affordable and reliable
multi-sensor pods capable of triggering all sensors simultaneously and being tagged by the same GPS
unit to eliminate or reduce error [14]. Further consistency and accuracy in image capture locations
could be achieved through the use of real-time kinematic (RTK) GPS units, which are able to hold
planned flightpaths to within centimetre-level tolerances [69]. Accuracy and precision in object location
and target overlap among imagery can also be improved through the use of numerous ground control
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points (GCPs) [42]. GCPs allow for more accurate alignment than reliance upon fixed surface features
(e.g., rocks, infrastructure) such as those employed in this study. However, in scenarios such as the
monitoring of ecological restoration on post-mining landforms the placement and use of traditional
GCPs may be impractical due to limited site accessibility, hazardous features (e.g., unconsolidated
tailings storage facilities) or rugged terrain (e.g., angle of repose slopes on waste rock landforms).
While sensor output alignment will likely be improved in the future, our data suggest that even small
naturally occurring reference points can be an effective tool for relative orthomosaic alignment.

4.5. Avian Interactions with the UAV

Studies should report significant fauna interactions during UAV use to better understand their
impact as environmental monitoring tools. Significant interactions during our experiment were
observed with multiple individuals of Australian Black-Shouldered Kites, Elanus axillaris. These raptors
conducted multiple shallow dives towards the UAV while it was in flight, beginning in early December
and becoming increasingly frequent over the latter days of the trial. Visual surveys were conducted
prior to all flights and flights did not proceed if a Black-Shouldered Kite was sighted. The UAV was
immediately landed following any approach by a bird, with flights terminated for the rest of the day
and no physical contact was made at any point between the UAV and the birds. One other interaction
of note was of Australian Magpies, Cracticus tibicen, which often flew or landed underneath the UAV
while it was in flight. These birds appeared unperturbed by the presence of the UAV and were regularly
present in imagery captured from flights undertaken at 5 and 15 metre altitude (see Supplementary
Materials).

5. Conclusions

This study provides evidence for the significant utility of UAV-based sensing of both visible and
non-visible vegetation indices in monitoring individual target seedlings within seedling communities
at fine spatial scales. OBIA classification effectively and accurately discriminated among target
and non-target seedling objects and these groups exhibited distinct spectral signatures (six different
visible-spectrum and multispectral indices) that responded differently over a 24-day drying period.
OBIA classification from captured imagery also allowed for the accurate tracking of individual target
seedling objects through time, clearly illustrating the capacity of UAV-based monitoring to undertake
plant performance monitoring of individual plants at very fine spatial scales. The strongest effect
sizes of regression models assessing among-group differences in spectral signature were obtained
for multispectral indices (NDVI and SAVI) and green-dependent visible spectrum indices (TGI,
VARI and green ratio) and these metrics were also informative for tracking individual seedlings
through time. We propose that these indices represent a useful tool for plant performance assessment
and discretionary classification in the context of rehabilitation and ecological restoration but that
they will likely require significant further development to be as informative for native plants as they
currently are in agricultural settings. With further research and investment UAV-based remote sensing
will allow industry and restoration practitioners to undertake plant performance monitoring earlier
in the community recovery process, with greater accuracy, precision and cost-efficiency and at much
finer resolution over increasingly large spatial scales, particularly when compared to other means of
monitoring such as foot surveys and manned aircraft.

Supplementary Materials: The following are available online at http://www.mdpi.com/2504-446X/3/4/81/s1,
S1: Full eCognition Rule Sets for Automated Seedling Identification from Buters et al. 2019., Table S1: Measured
spectral variables for 25 tracked target seedling objects over a 24-day simulated drought period.
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