
drones

Article

A K Nearest Neighborhood-Based Wind Estimation
for Rotary-Wing VTOL UAVs

Liyang Wang , Gaurav Misra and Xiaoli Bai *

Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett
Road, Piscataway, NJ 08854, USA; liyang.wang@rutgers.edu (L.W.); gm504@scarletmail.rutgers.edu (G.M.)
* Correspondence: xiaoli.bai@rutgers.edu

Received: 28 January 2019; Accepted: 24 March 2019; Published: 30 March 2019
����������
�������

Abstract: Wind speed estimation for rotary-wing vertical take-off and landing (VTOL) UAVs is
challenging due to the low accuracy of airspeed sensors, which can be severely affected by the rotor’s
down-wash effect. Unlike traditional aerodynamic modeling solutions, in this paper, we present a K
Nearest Neighborhood learning-based method which does not require the details of the aerodynamic
information. The proposed method includes two stages: an off-line training stage and an on-line wind
estimation stage. Only flight data is used for the on-line estimation stage, without direct airspeed
measurements. We use Parrot AR.Drone as the testing quadrotor, and a commercial fan is used to
generate wind disturbance. Experimental results demonstrate the accuracy and robustness of the
developed wind estimation algorithms under hovering conditions.

Keywords: VTOL UAVs; wind estimation; learning-based model; KNN

1. Introduction

Nowadays, small rotary-wing VTOL UAVs are becoming widely used in many fields such as
urban photography [1], fire detection and control [2], and agriculture operations [3]. One limitation of
small UAVs is that they are sensitive to wind disturbance, leading to degraded flight accuracy and
safety. If UAVs could measure or estimate wind during flight, the information can be used to enhance
the control for a more robust and safer flight. Such information can also be used to build a wind field
map for a region of interest. For example, the wind field of a urban street canyon is generated by using
UAV flight data, instead of using numerical models [4].

To measure the wind velocity, airspeed sensors such as pitot tubes are usually equipped on
fixed-wing UAVs. However, due to the rotor down-wash effect [5], for rotary-wing VTOL UAVs,
the measurement from airspeed sensors is not reliable if the airspeed sensors are deployed close to
the propellers. Recently, to measure the wind speed by sensors, Watkins et al. mount a 3-D-printed
airspeed tube in front of a quadrotor by using a carbon fiber bar [6]. Since the carbon fiber bar is
long enough, the rotor down-wash effect is avoided. Although the method shows that rotary-wing
VTOL UAVs can be used as flexible wind sensing platforms, using the air tube and the bar increase
the total size and weight. Furthermore, such UAVs are not likely to have aggressive maneuverability.
Accurate wind velocity estimation method without airspeed sensors would be useful for the control
compensation or wind field generation. To achieve this goal, the relationship of the wind disturbance
and the UAV response should be generated.

Many researchers have solved this problem by building mathematical models. In general, system
identification and Kalman filter techniques are widely used. For system identification methods,
Lusardi et al. develop a gust turbulence model through flight tests in [7]. The turbulence properties are
characterized by equivalent control input and the method is derived using measurements of control
signals and inertial sensors from flight tests of a UH-60 helicopter. In [8], Nicola has developed a

Drones 2019, 3, 31; doi:10.3390/drones3020031 www.mdpi.com/journal/drones

http://www.mdpi.com/journal/drones
http://www.mdpi.com
https://orcid.org/0000-0003-1454-4618
http://www.mdpi.com/2504-446X/3/2/31?type=check_update&version=1
http://dx.doi.org/10.3390/drones3020031
http://www.mdpi.com/journal/drones

Drones 2019, 3, 31 2 of 13

method to estimate the wind velocity from the measurements of a rotary-wing VTOL UAV flight in
moving atmosphere. The wind velocity components are estimated by using a variational formulation.
The proposed method uses the air-frame and rotor model, and machine learning methods are used to
determine the model parameters. In [9], a method for aerodynamic model identification of a micro
air vehicle is proposed by J. Velasco et al. Without direct airspeed data measurement from sensors,
the authors estimate the wind velocity based on the multi-objective optimization algorithms that
use identification errors to estimate the wind-speed components that best fit the dynamic behavior
observed. For Kalman filter methods, Venkatasubramani et al. solve this problem by using Kalman
filter-based wind model identifications [10]. The approach uses only inertial, position, and control
information, without airspeed measurements. The technique is demonstrated using flight tests of an
off-the-shelf unmanned quad-rotor UAV. An accurate dynamic model of the aircraft is developed using
system identification techniques, and the model is used in a Kalman filter to estimate the external
wind disturbances. In [11], Sikkel et al. extend a drag-force enhanced quadrotor model by denoting
the free stream air velocity as the difference between the ground speed and the wind speed. The model
is used to create a nonlinear observer capable of accurately predicting the wind components. By using
low-cost MEMS IMUs and GPS-velocity measurements, wind components can be estimated by EKF.

All methods discussed above solve the problem by using equations including aerodynamic models
and wind field models. Such models need the details of the dynamics to ensure good estimation
result. However, in many cases, a dynamical model may not be available which will prevent the
use of model-based wind estimation techniques. Also, the parameters in the dynamic equations
sometimes can be difficult to be determined accurately. For human UAV pilots, when flying the UAV
outdoor, they estimate the wind speed based on their experience, and they achieve this by watching
the response of the UAV with respect to the wind and their controls. During this process, they do not
use mathematical models and they do not have to determine the parameters.

Inspired by this fact, in this paper, we propose a learning-based method for rotary-wing VTOL
UAVs to estimate the wind speed under hovering conditions, where the UAV is programmed to hover
at a certain point. The method includes two stages: a training stage and a wind speed estimation
stage. During the training stage, we design a single set of PID controllers to hover the UAV across
a range wind speeds, and record the position, attitude, and controls. Then, we extract a set of
designed features from the flight data, and save these features as well as the corresponding wind
speed. During the on-line wind speed estimation stage, we use the K Nearest Neighborhood (KNN)
strategy [12]. While several learning-based regression methods including linear/polynomial regression
are simple to implement, these methods often assign an unjustified underlying function to determine
the input-output relationship. On the other hand, the KNN methodology is purely data driven,
non-parametric, and often works well even in high dimensional spaces. When hovering in unknown
wind speed, the UAV generates the features based on the real-time flight data by using the same
method during the training stage. Afterwards, we compare the current features with the saved
features, choose the most similar cases in the database, then generate the wind speed estimation.

The key advantage of the proposed technique is that it works in situations where the aerodynamic
model cannot be developed accurately. Instead, we only use position, attitude, and control information
to extract features. Direct air flow measurement from airspeed sensors is not required, so the payload
of extra sensors is saved. We compare our results with those from the AR.Drone embedded system,
and our estimation results are more robust and reliable.

The paper outline is as follows. In Section 2, the background information including experiment
setup, coordinate system definition, and system structure is introduced. In Section 3, the data curation
of the learning method is described in detail. In Section 4, the KNN algorithm we used is presented,
including the feature normalization, distance calculation, and the method to choose parameters.
In Section 5, experiment results are demonstrated and analyzed. At last, in Section 6, the conclusions
are drawn and the future work opportunities are presented.

Drones 2019, 3, 31 3 of 13

2. Equipment and System Setup

2.1. Parrot AR.Drone

The micro UAV we used in this work is a Parrot AR.Drone. AR.Drone is a quadrotor helicopter.
It has an ARM Cortex A8 processor to handle control commands and other electronics on-board.
For sensors, it is equipped with an IMU, a magnetometer, an ultrasonic, a pressure sensor, and two
cameras [13]. There are 4 control channels to control AR.Drone: (1) channel u1 controls the roll angle
φ, (2) channel u2 controls the pitch angle θ, (3) channel u3 controls the angular velocity of yaw ψ̇,
and (4) channel u4 controls the velocity of the altitude direction ż. We denote them as:

u1 = φ (1)

u2 = θ (2)

u3 = ψ̇ (3)

u4 = ż (4)

Because of the limited capability of the ARM processor used by the AR.Drone [14], we run the
system code on a ground computer and stream commands to the UAV over a Wi-Fi connection.
Experiment results show that the delay of Wi-Fi communication has little effect on the control
performance at the low flight speeds.

2.2. Vicon Camera System

We also use a Vicon Motion Capture System (including 8 Bonita cameras capture up to 250 fps
with one megapixel of resolution) to provide state measurements for the quadrotor. Due to the high
accuracy of the Vicon system [15], in this work, we assume Vicon measurements as the ground truth,
and the obtained position and attitude data are used for the drone control.

2.3. Fan and Anemometer

In this work, a commercial fan made by MAXXAIR, model BF24TF2N1 is used to generate wind
in the lab. It has two working modes: a high level mode and a normal level mode. The diameter of
this fan is 60 cm, and the height of the center of the fan to the ground is set to be 1 m. To measure the
wind speed, an anemometer made by Extech, model 45118 is used. According to the anemometer,
the measured maximum wind speed of this fan is 6 m/s for the high level mode, and 2.7 m/s for the
normal level mode, and the wind speed is reduced when the distance to the fan is increased.

2.4. Coordinate System

The coordinate system used in this work is shown in Figure 1. The origin O is defined at the
projection of the center of the fan onto the ground. The Y axis points to the wind direction, the Z axis
points upward, and the coordinate system follows the right-hand rule.

Drones 2019, 3, 31 4 of 13

Figure 1. Coordinate system set up.

2.5. The System

In this work, the Vicon camera system captures the motion of the AR.Drone, calculates AR.Drone’s
positions x, y, z, attitude Euler angles roll, pitch, yaw (φ, θ, ψ), and sends these data to the ground
computer. Based on these data, the ground computer runs the designed controller, and sends the
calculated control commands u1, u2, u3, u4 to the AR.Drone. Figure 2 shows the system structure and
the system flow chart. In this work, the loop (show in Figure 2b) runs at 30 Hz. Since we keep sending
the control commands from ground station at 30 Hz rate, the internal vision-based position hold using
the bottom camera and sonar-based altitude hold algorithms of AR.Drone are not activated.

(a) System structure. (b) System flow chart.

Figure 2. System description: (a) System structure and (b) System flow chart.

3. Data Curation

During this stage, we design a single set of PID controllers to hover the UAV across a range wind
speeds. From the recorded flight data, we extract features that are related to the wind speed. Then, the
extracted features and wind speed are saved in a database for wind estimation stage.

Drones 2019, 3, 31 5 of 13

3.1. PID Control Law

A PID control method for discrete time systems is used in this work [16]. In general, let s(k) be
the state measured in step k, sd(k) be the desired state of step k, then the error at step k is

se(k) = sd(k)− s(k) (5)

The summation of historical errors at step k is

set(k) =
k

∑
i=0

se(i) (6)

The difference of error at step k is

sed(k) = se(k)− se(k− 1) (7)

Then the control input u at step k is defined as

u(k) = Pse(k) + Iset(k) + Dsed(k) (8)

where P, I, D are the gains of the PID controller.
In this work, we design four independent PID controllers for the four control channels by using

the PID control law. The control channel u1 (roll angle) is calculated based on the x error. The control
channel u2 (pitch angle) is calculated based on the y error. The control channel u3 (yaw angular
velocity) is calculated based on the yaw angle error. And the control channel u4 (velocity of the
altitude) is calculated based on the altitude error. For the control of yaw angle ψ, the goal is to maintain
it equal to 0◦, so the head of the drone will point along the y direction.

The four PID controllers are tuned under no wind condition. We use the Vicon data for feedback,
set one point as the desired position, and tuned the gains P, I, and D to hover the drone at the point.
The control cycle’s frequency is 50 Hz, and the unit of x, y and z error is in meters, the unit of yaw
angular velocity is in degree per second. The result’s of the tuned gains we used are listed in Table 1.

Table 1. PID gains we used.

P I D

For channel 1 0.6 0.0001 8.0
For channel 2 0.6 0.0001 8.0
For channel 3 0.08 0.0001 0.06
For channel 4 4.0 0.01 8.0

After the gains are tuned, the values are used for later experiments. The controls are sent to
AR.Drone through the SDK provided by the manufacturer. The mode of AR.Drone is set as non-hover
mode, so the controls to the drone are purely from the controllers designed.

3.2. Flight Data Collection

Based on the size of the flight area (7 m by 4 m), the maximum wind speed generated by the fan
(6 m/s), and the flight safety clearance (set to be 0.6 m to the boundary of the flight zone), we select 8
wind speeds for training. The wind speed starts from 0 m/s and reaches maximum at 4.2 m/s, with
0.6 m/s increment.

For different wind speeds, we use the same PID controllers to hover the drone at the corresponding
positions. For each flight, we command the drone hover for 30 s. Since the loop (Figure 2b) is run with
30 Hz, we collect 900 data points for each flight.

Drones 2019, 3, 31 6 of 13

In each loop, we acquire six flight states from the Vicon system and 4 control commands from
the PID controller. For the six flight states, we denote them as

[
x y z φ θ ψ

]
. And for the four

control commands we denote them as
[
u1 u2 u3 u4

]
. We denote the desired hover position as xd,

yd, and zd. Then, we can define the position error as xe = |xd − x|, ye = |yd − y|, and ze = |zd − z|.
Because the desired attitude angles are all zero, the true attitude is the attitude error in this work.
In each loop k, ten data points are recorded, and we denote them as:

X(k) =
[

xe(k) ye(k) ze(k) φ(k) θ(k) ψ(k) u1(k) u2(k) u3(k) u4(k)
]

(9)

3.3. Features

3.3.1. Features Definition

In this section we illustrate how we extract features from the flight data under each wind situation.
Figure 3 shows the comparison of the hover performance for 10 s using the same PID controllers.
In these figures, the blue dash represents the case that the wind speed is zero, the red dot represents
the case that the wind speed is 0.8 m/s, and the green dot dash represents the case that the wind speed
is 1.6 m/s. From the comparison, we can see that the wind will significantly affect the hover flight.
When the wind speed increases, the position and attitude errors are increased, and the control efforts
are also increased in order to maintain the hover flight.

Based on our experience and observation, we choose 19 features which are highly related to the
wind speed. The first seven features are related to the position error. They are the mean and variance
of xe, ye, ze, and the mean of total position error. The total position error Pe is defined as:

Pe =
√

x2
e + y2

e + z2
e (10)

Similarly, the second seven features are related to the attitude. They are the mean and variance of
the absolute values of the φ, θ, ψ, and the mean of total attitude error. The total attitude error Ae is
defined as:

Ae =
√

φ2 + θ2 + ψ2 (11)

The last 5 features are related to the control effort. For the control, in programming, the scale is set
from −1 to 1, where 0 means the control effort is zero, −1 and 1 means the maximum control efforts
for opposite directions. In this work, the control effort is defined as the absolute value of the control
commands, from 0 to 1. The five features we used are the mean control effort of u1, u2, u3, u4, and the
total control effort. The total control effort C is defined as:

C =
√

u2
1 + u2

2 + u2
3 + u2

4 (12)

For each flight with the corresponding wind speed, we can analyze the flight data and calculate
the feature vector. We denote the feature vector Fr as:

Fr =
[

f1 f2 f3 . . . f19

]
(13)

Drones 2019, 3, 31 7 of 13

where: 

f1 = mean(xe) f2 = var(xe)

f3 = mean(ye) f4 = var(ye)

f5 = mean(ze) f6 = var(ze)

f7 = mean(Pe)

f8 = mean(|φ|) f9 = var(|φ|)
f10 = mean(|θ|) f11 = var(|θ|)
f12 = mean(|ψ|) f13 = var(|ψ|)
f14 = mean(Ae)

f15 = mean(|u1|) f16 = mean(|u2|)
f17 = mean(|u3|) f18 = mean(|u4|)
f19 = mean(C)

(14)

(a) Position comparison. (b) Attitude comparison.

(c) Control comparison.

Figure 3. Hover performance comparisons: (a) Position comparison, (b) Attitude comparison and (c)
Control comparison.

Drones 2019, 3, 31 8 of 13

3.3.2. Features’ Effectiveness Validation

To validate that the designed features are effective, we check the Pearson-r coefficient [17] by
using Python’s Seaborn library. Pearson-r coefficient indicates the correlation between two variables.
It ranges from −1 to 1. The sign of Pearson-r coefficient shows the two variables are positive correlated
or negative correlated. When two variables are irrelevant, the corresponding Pearson-r coefficient is 0,
and when two variables are highly correlated, the absolute value of Pearson-r coefficient is close to 1.
It is expected for the values of the features to increase as the wind speed increases. In the tests for all
19 features respect to the wind speed, Pearson-r coefficients are observed larger than 0.5, thus proving
the positive correlation between the feature vectors and the wind speed, and it also indicates that the
19 selected features are effective. Table A1 in Appendix A shows the results of the Pearson-r coefficient
respect to the features.

3.4. Training Database Construction

For each wind speed, we conduct ten independent flights and acquire ten feature vectors. In total,
we have eight wind speeds, so we have 80 feature vectors stored. For each feature vector, we put the
measured wind speed in the end. So we have a 80 by 20 matrix stored as the model. The row index i
starts from 1 to 80, and the column index j starts from 1 to 20. When j is between 1 and 19, the data
represents the feature, and when j is 20, the data represents the wind speed. Figure 4 illustrates the
method to generate the database.

Figure 4. Illustration of the method to generate the training database.

4. Wind Speed Estimation Stage

In this section, we introduce the KNN algorithm we used, including the feature normalization,
distance calculation, and the wind speed calculation. Also, the strategy to choose the parameter K in
KNN method is discussed.

4.1. KNN Algorithms

4.1.1. Feature Normalization

As we can see, the feature vectors are of different magnitudes and units. To compare the two
features, we first normalize the features. We take feature f1 as an example. Suppose that we have n
independent experiment for training, and we have n feature f1. Now we have another flight experiment

Drones 2019, 3, 31 9 of 13

to estimate the wind for this flight, and have one more f1. In total, we have n + 1 features. In the
n + 1 feature, we find the largest one fmax, and the smallest one fmin. Take the difference, we have
frange = fmax − fmin. After that, each feature is divided by frange, and the results are the normalized
features. We denote the normalized feature vector as F.

4.1.2. Distance Calculation

To compare the distance d of two normalized feature vectors F1 and F2, we use the weighted
Manhattan distance. The weighted Manhattan distance used in this work is defined as:

d = w1 · |F1(1)− F2(1)|+ w2 · |F1(2)− F2(2)|+ · · ·+ w19 · |F1(19)− F2(19)| (15)

where w is the weight for each feature, which is equal to the Pearsonr coefficient which corresponds to
the importance of the feature. The higher importance, the larger weight will be assigned.

4.1.3. Wind Speed Estimation

When there is a new flight, we can extract a 1 × 19 feature vector using the same method as we
used during model generation. Then, we compare the feature vector with the 80 feature vectors in the
model, and record its distance to each one in the model. Among the 80 distances, we choose K smallest
ones, and get their row index i. After that, we look at the column 20, add the wind speed together
and divided by K. The results will be the wind speed estimation for this flight. Figure 5 illustrates the
method to calculate the wind speed.

Figure 5. Illustration of the method to calculate the wind speed.

4.2. Choose the Value of K

The parameter K is important for the KNN algorithm to work properly. When K is either too
large or too small, the estimation result will not be reliable. As K is reduced, the fitting is better but the
function becomes more complex, while as K increases, the function is smoother but less flexible and
the training error increases. To find the appropriate value of K, we first test the KNN algorithm by
using the model data.

For each wind speed, we randomly choose one of the ten experiments as the validation vectors,
and the rest of the 9 remain as the model. In total, we will have 8 validation vectors, and 72 vectors as
the model. For K value selection, we test it from 1 to 72, and find the best choice which leads to the
minimum total estimation error of the eight experiments. The estimation error E is defined as:

E = |ve − v| (16)

Drones 2019, 3, 31 10 of 13

where ve is the estimated wind speed, v is the wind speed reference. And the total estimation error

is
8

∑
i=1

Ei.

Figure 6 shows the total estimation error using different K. We can see that when K = 8, the total
estimation error reaches the minimum. Because the ten validation data vectors are randomly chosen,
the best value of K may not always be 8. We have repeated the experiment ten times, and the average
of the best K value is 11. So we choose 11 as the value of the K for later experiments.

Figure 6. Find the best K.

5. Experiment Results

To test the performance, in this section, we first introduce the wind field of the fan, then we
compare the wind field estimation of our proposed method and the result from the AR.Drone. Users
are allowed to subscribe a wind estimation topic directly in ROS, which is provided by the AR.Drone.

5.1. Wind Field Generation

Based on the size of our lab, we choose seven points along the wind direction, and measure the
wind speed at these points. The coordinate of these points are (0.0, 1.2, 1.0), (0.0, 1.5, 1.0), (0.0, 1.8, 1.0),
(0.0, 2.1, 1.0), (0.0, 2.4, 1.0), (0.0, 2.7, 1.0), and (0.0, 3.0, 1.0). They are along the y axis and at the height
of 1m. At each position, we use the anemometer to measure the wind speed five times, and the average
of the measurements is chosen as the reference wind speed at this point. Table 2 list the distance to the
fan and the corresponding wind speed. Figure 7 shows the measured wind speed at these points.

Figure 7. Wind speed change as the distance to the fan change.

Drones 2019, 3, 31 11 of 13

Table 2. Wind speed measurements and their corresponding distance to the fan.

Distance to the Fan (m) 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Wind Speed (m/s) 3.07 2.63 2.27 2.03 1.87 1.77 1.70

5.2. Wind Speed Estimation Results

We assign the way point over the seven positions, and hover the drone at each position for
20 s. Then, we use the saved database as the model, and choose K = 11 to calculate the wind speed
estimations. At the same time, the wind speed estimation results of from the AR.Drone embedded
system are also recorded. We note that the wind estimation algorithms of AR.Drone are not available,
so we only list the results as a reference. Table 3 and Figure 8 show the results of our proposed method
and the result from the AR.Drone.

Table 3. The comparison of our proposed method and the AR.Drone.

Wind Speed Reference (m/s) 3.07 2.63 2.27 2.03 1.87 1.77 1.70

Estimation Results (m/s) 2.99 2.41 2.34 2.15 1.89 1.74 1.71

AR.Drone Results (m/s) 0.93 0.52 0.63 0.52 0.47 0.31 0.24

Figure 8. On-line wind estimation results.

From the results, for the seven wind speeds, we calculate the estimation errors are 0.08 m/s,
0.22 m/s, 0.07 m/s, 0.12 m/s, 0.02 m/s, 0.03 m/s, and 0.01 m/s, respectively. The average estimation
error is 0.074 m/s. And the estimation relative errors are 2.6%, 8.4%, 3.1%, 5.9%, 1.1%, 1.7%, and 0.6%,
respectively. The average estimation relative error is 3.3%. At the same time, the average estimation
error of the AR.Drone’s embedded system is 1.673 m/s.

6. Conclusions

In this paper, a KNN-based wind estimation method for a rotary-wing VTOL UAV is presented.
The proposed method uses the features generated by flight data as the learning model, and does not
require the details of the aerodynamic information. Also, this method only uses flight data to generate
the designed features for the training and wind estimation stages, and does not require direct wind
speed measurements. Experimental results show that the proposed method can estimate the wind
accurately, with a 0.074 m/s average estimation error, and a 3.3% average estimation relative error,
while the average estimation error generated by AR.Drone’s embedded system is 1.673 m/s. In future,
our research will focus on wind direction estimation, and optimal selection of the features related
to the wind direction will be studied. Future work will aim to focus on validation of the proposed
algorithm in an outdoor environment.

Author Contributions: Conceptualization, L.W. and X.B.; methodology, L.W.; software, L.W.; validation, L.W. and
G.M.; formal analysis, L.W. and X.B.; resources, L.W.; Data curation, L.W.; writing—original draft preparation, L.W.

Drones 2019, 3, 31 12 of 13

Funding: The authors would acknowledge the research support from the Air Force Office of Scientific Research
(AFOSR) FA9550-16-1-0814 and the Office of Naval Research (ONR) N00014-16-1-2729.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Features and the tested Pearson-r coefficients.

Features Pearson-r Coefficient

f1 0.92
f2 0.81
f3 0.87
f4 0.67
f5 0.86
f6 0.82
f7 0.95
f8 0.90
f9 0.82
f10 0.90
f11 0.85
f12 0.73
f13 0.58
f14 0.96
f15 0.92
f16 0.87
f17 0.81
f18 0.91
f19 0.94

References

1. Galway, D.; Etele, J.; Fusina, G. Modeling of urban wind field effects on unmanned rotorcraft flight. J. Aircr.
2011, 48, 1613–1620. [CrossRef]

2. Merino, L.; Caballero, F.; Martínez-de Dios, J.R.; Ferruz, J.; Ollero, A. A cooperative perception system for
multiple UAVs: Application to automatic detection of forest fires. J. Field Robot. 2006, 23, 165–184. [CrossRef]

3. Costa, F.G.; Ueyama, J.; Braun, T.; Pessin, G.; Osório, F.S.; Vargas, P.A. The use of unmanned aerial vehicles
and wireless sensor network in agricultural applications. In Proceedings of the 2012 IEEE International
Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5045–5048.

4. Tan, Z.; Dong, J.; Xiao, Y.; Tu, J. A numerical study of diurnally varying surface temperature on flow patterns
and pollutant dispersion in street canyons. Atmos. Environ. 2015, 104, 217–227. [CrossRef]

5. Pan, C.X.; Zhang, J.Z.; Ren, L.F.; Shan, Y. Effects of rotor downwash on exhaust plume flow and helicopter
infrared signature. Appl. Therm. Eng. 2014, 65, 135–149. [CrossRef]

6. Prudden, S.; Fisher, A.; Marino, M.; Mohamed, A.; Watkins, S.; Wild, G. Measuring wind with Small
Unmanned Aircraft Systems. J. Wind Eng. Ind. Aerodyn. 2018, 176, 197–210. [CrossRef]

7. Lusardi, J.A.; Tischler, M.B.; Blanken, C.L.; Labows, S.J. Empirically derived helicopter response model and
control system requirements for flight in turbulence. J. Am. Helicopter Soc. 2004, 49, 340–349. [CrossRef]

8. Divitiis, N.D. Wind estimation on a lightweight vertical-takeoff-and-landing uninhabited vehicle. J. Aircr.
2003, 40, 759–767. [CrossRef]

9. Velasco-Carrau, J.; García-Nieto, S.; Salcedo, J.; Bishop, R.H. Multi-objective optimization for wind estimation
and aircraft model identification. J. Guid. Control. Dyn. 2015, 39, 372–389. [CrossRef]

10. Pappu, S.; Liu, Y.; Horn, J.F.; Copper, J. Wind Gust Estimation on a Small VTOL UAV. In Proceedings of
the AHS Technical Meeting on VTOL Unmanned Aircraft Systems and Autonomy, Mesa, AZ, USA, 24–26
January 2017.

11. Sikkel, L.; de Croon, G.; De Wagter, C.; Chu, Q. A novel online model-based wind estimation approach for
quadrotor micro air vehicles using low cost MEMS IMUs. In Proceedings of the 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2141–2146.

http://dx.doi.org/10.2514/1.C031325
http://dx.doi.org/10.1002/rob.20108
http://dx.doi.org/10.1016/j.atmosenv.2015.01.027
http://dx.doi.org/10.1016/j.applthermaleng.2014.01.009
http://dx.doi.org/10.1016/j.jweia.2018.03.029
http://dx.doi.org/10.4050/JAHS.49.340
http://dx.doi.org/10.2514/2.3155
http://dx.doi.org/10.2514/1.G001294

Drones 2019, 3, 31 13 of 13

12. Larose, D.T. k-nearest neighbor algorithm. In Discovering Knowledge in Data: An Introduction to Data Mining;
John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 90–106.

13. Chaves, S.M.; Wolcott, R.W.; Eustice, R.M. NEEC Research: Toward GPS-denied landing of unmanned aerial
vehicles on ships at sea. Nav. Eng. J. 2015, 127, 23–35.

14. Krajník, T.; Vonásek, V.; Fišer, D.; Faigl, J. AR-drone as a platform for robotic research and education.
In International Conference on Research and Education in Robotics; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 172–186.

15. Windolf, M.; Götzen, N.; Morlock, M. Systematic accuracy and precision analysis of video motion capturing
systems—exemplified on the Vicon-460 system. J. Biomech. 2008, 41, 2776–2780. [CrossRef] [PubMed]

16. Wang, L.; Bai, X. Quadrotor Autonomous Approaching and Landing on a Vessel Deck. J. Intell. Robot. Syst.
2017, 92, 125–143. [CrossRef]

17. McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods
1996, 1, 30. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jbiomech.2008.06.024
http://www.ncbi.nlm.nih.gov/pubmed/18672241
http://dx.doi.org/10.1007/s10846-017-0757-5
http://dx.doi.org/10.1037/1082-989X.1.1.30
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Equipment and System Setup
	Parrot AR.Drone
	Vicon Camera System
	Fan and Anemometer
	Coordinate System
	The System

	Data Curation
	PID Control Law
	Flight Data Collection
	Features
	Features Definition
	Features' Effectiveness Validation

	Training Database Construction

	Wind Speed Estimation Stage
	KNN Algorithms
	Feature Normalization
	Distance Calculation
	Wind Speed Estimation

	Choose the Value of K

	Experiment Results
	Wind Field Generation
	Wind Speed Estimation Results

	Conclusions
	
	References

