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Abstract: This paper presents a vision-based indoor scene recognition method from aerial time-series
images obtained using a micro air vehicle (MAV). The proposed method comprises two procedures:
a codebook feature description procedure, and a recognition procedure using category maps. For the
former procedure, codebooks are created automatically as visual words using self-organizing maps
(SOMs) after extracting part-based local features using a part-based descriptor from time-series scene
images. For the latter procedure, category maps are created using counter propagation networks
(CPNs) with the extraction of category boundaries using a unified distance matrix (U-Matrix).
Using category maps, topologies of image features are mapped into a low-dimensional space based
on competitive and neighborhood learning. We obtained aerial time-series image datasets of five sets
for two flight routes: a round flight route and a zigzag flight route. The experimentally obtained
results with leave-one-out cross-validation (LOOCV) revealed respective mean recognition accuracies
for the round flight datasets (RFDs) and zigzag flight datasets (ZFDs) of 71.7% and 65.5% for 10 zones.
The category maps addressed the complexity of scenes because of segmented categories. Although
extraction results of category boundaries using U-Matrix were partially discontinuous, we obtained
comprehensive category boundaries that segment scenes into several categories.

Keywords: category maps; counter propagation networks; leave-one-out cross-validation;
micro air vehicles; self-organizing maps; unified distance matrix

1. Introduction

For environmental sensing used for autonomous locomotion robots, sensors that can obtain
metric information are used not merely for laser range finders (LRFs) and stereo cameras, but also for
depth and visual sensors, such as red, green, blue, and depth (RGB-D) cameras [1]. To estimate
a self-position and to create an environmental map together from sensing signals with metric
information, simultaneous localization and mapping (SLAM) [2] has been studied widely as an effective
and useful approach for indoor environments without using a global positioning system (GPS) for
localization. Actually, SLAM is used practically and widely for cleaning robots, pet robots, and guide
robots, but ground locomotion robots in terms of unmanned ground vehicles (UGVs) using wheels
or crawlers have the effect of block-sensing from static or dynamic objects of various types in our
environments of everyday life. Therefore, the accuracy of the vertical-axis map tends to be lower than
that of the horizontal axis.

Recently, unmanned aerial vehicles (UAVs), which can fly freely in three-dimensional (3D)
environments, have become increasingly popular-not merely for use as a hobby, but also for industrial
applications [3]. Assuming its main use for indoor flight with less wind influence, small airframe
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UAVs have been designated as micro air vehicles (MAVs). Compared with UGVs, MAVs have excellent
sensing capability for the vertical axis because of their advanced locomotion capability and freedom.
Nevertheless, because of the limited payload, it is a challenging task for MAVs to equip LRFs or stereo
cameras, which can directly obtain metric information. Therefore, an approach to construct a 3D
map using a monocular camera with structure from motion (SfM) [4] has been attracting attention,
especially in combination with MAVs [5].

For the use of SfM, map construction accuracy depends strongly on the similarity of camera
movements, visual fields, and scene features [6]. Particularly, camera parameters and movements have
the greatest effect among them. For example, a MAV obtains no metric information if flight patterns
are less diverse. Moreover, 3D map creation using SfM is based on signal information that is similar to
map creation using SLAM for position estimation [7]. Semantic scene recognition is set to another task
for robot vision studies [8]. Improving autonomous flight accuracy for MAVs can be accomplished
using a combination of 3D map creation with SfM and semantic scene recognition from appearance
patterns on images with visual salience objects as visual landmarks [9]. Semantic scene recognition
has been studied widely as a subject-not merely for the advancement of computer vision studies [10],
but also for active robot vision studies, including MAV-based mobile vision studies.

As an approach based on appearance changes using machine learning algorithms, this paper
presents a vision-based indoor scene recognition method, as depicted in Figure 1 for aerial time-series
images with a feature of visualization using a category map based on supervised learning. We used
original benchmark datasets obtained in an atrium at our university building. The benchmark datasets
comprise 10 zones as ground truth (GT) on two flight routes: a round flight route and a zigzag flight
route. We evaluated the effectiveness of our method to demonstrate the recognition results of similarity
and relation in each zone for visualization as category maps and their boundaries.

Figure 1. System structure of our proposed method.

The rest of the paper is structured as follows. In Section 2, related studies are presented, especially
for monocular vision systems. Sections 3 and 4 present our proposed method based on machine
learning and our original indoor datasets obtained using a MAV, respectively. Subsequently, Section 5
presents experimentally obtained results, including parameter optimization, confusion matrix analyses,
and our discussion. Finally, Section 6 presents our conclusions and highlights our future work. Herein,
we proposed this basic method in the proceedings [11]. For this paper, we present detailed results and
a discussion in Section 5.

2. Related Studies

In computer vision studies, numerous methods to recognize semantic scene categories from large
numbers of static or dynamic images have been proposed [12]. In general, their recognition targets
were mainly in outdoor environments. Quattoni et al. [13] reported that recognition accuracy drops
dramatically if outdoor scene recognition methods are applied to indoor scene recognition. Assuming
applications for human symbiotic robots, they play actively not merely in outdoor environments,
but also in indoor environments. Improving recognition accuracy is necessary for semantic scene
recognition methods that are applicable in indoor environments, especially for MAVs. Moreover,
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the environment for MAV locomotion as aerial robots changes in real time according to human
activities and the diverse lifestyles of various people. Therefore, it must be used for MAVs not merely
for environmental recognition and understanding, but also for adaptation capability according to
environmental changes.

Numerous generalized methods using machine-learning algorithms have been proposed [14] for
environmental adaptation. Herein, machine learning is classified roughly into two types: supervised
learning and unsupervised learning. Supervised learning requires training datasets annotated in
advance with teaching signals such as GT. The burden related to teaching accompanies applying
robots due to the obtaining of numerous training datasets in real time according to the tasks and
actions. Moreover, the number of target recognition scene categories is set from teaching signals
prepared in advance. In contrast, unsupervised learning classifies input datasets without teaching
signals. After learning, semantic information is assigned from a part of datasets with GT for the use of
a recognizer. For supervised learning methods, categories are extracted from various datasets obtained
from environments. Compared with supervised learning methods, which require teaching signals
in advance, the burden for teaching is reduced substantially, irrespective of the excessive number of
learning data. Moreover, the number of categories was extracted automatically from training datasets
according to the environments. Therefore, unsupervised learning has benefits for robotics applications,
especially for robots collaborating with humans [15].

As explained herein, unsupervised learning can construct knowledge frameworks autonomously
as an intelligent robot [16]. In actuality, neurons that selectively respond to human faces or cat
faces were generated using deep learning (DL) frameworks [17], which are attracting attention as
a representative of unsupervised learning [18]. We consider that unsupervised learning is useful for
actualizing advanced communication and interaction between robots and humans.

The primary process for semantic scene recognition is to extract suitable scene features from image
pixels in terms of brightness, color distribution, gradient, edge, energy, and entropy. As a global scene
descriptor, Oliva et al. [19] proposed Gist, which has been used widely for perspective scene feature
description. However, the recognition accuracy drops dramatically in indoor environments that include
numerous small objects because Gist is used for describing comprehensive structures in terms of roads,
mountains, and buildings in outdoor environments [13]. As an alternative approach, foreground
and background features are used for context-based scene-recognition methods. Quattoni et al. [13]
proposed a method to describe features of a spatial pyramid using scale-invalid feature transform
(SIFT) [20] as foreground features and Gist [19] as background features. They evaluated their method
using a benchmark dataset for 67 indoor categories. Although the maximum recognition accuracy in
the scene category of inside a church was 63.2%, the recognition accuracies in the scene categories of
a jewelry shop, laboratory, mall, and office were 0%.

Madokoro et al. [21] proposed a context-based scene recognition method using two-dimensional
(2D) histograms as visual words (VWs) [22] for voting Gist and SIFT on a 2D matrix. They demonstrated
the effectiveness on indoor semantic scene recognition and the superiority of recognition accuracy
compared with existing methods evaluated using the KTH-IDOL2 benchmark dataset [23]. Moreover,
they proposed a robust semantic scene recognition method for human effects using histogram of
oriented gradient (HOG) [24] features [25]. However, both studies included evaluation experiments
using a unmanned aerial vehicle (UGV)- based mobile robot. Although they evaluated occlusion and
corruption among objects from the perspective of object recognition using an MAV [26], they presented
no result obtained from applying their MAV-based platform and machine-learning-based methods for
scene recognition. Anbarasu et al. [27] proposed a recognition method using support vector machines
(SVMs) [28] after describing scene features using Gist and histogram of directional morphological
gradients (HODMGs) for aerial images obtained using a MAV. They conducted evaluation experiments
using their originally collected datasets. Although they obtained sufficient recognition accuracies,
recognition targets were merely three scene categories: corridors, staircases, and rooms.
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3. Proposed Method

Our proposed method based on part-based features and supervised learning, as depicted in
Figure 1, comprises four steps:

(1) Feature extraction using AKAZE;
(2) Codebook generation using SOMs;
(3) Category map generation using CPNs;
(4) Category boundary extraction using U-Matrix.

First, part-based features were extracted from aerial time-series scene images using accelerated
KAZE (AKAZE) descriptors [29]. Subsequently, VWs based on bags of keypoints [30] were generated
using self-organizing maps (SOMs) [31] as codebooks with the integrated feature dimension,
as depicted in Figure 2. For creating category maps, VWs were presented to counter propagation
networks (CPNs) [32] as input features. For our method, scene relational features were visualized on
category maps [33] because of topological mapping of spatial scene relations, as depicted in Figure 3.
Finally, category boundaries were extracted using a unified distance matrix (U-Matrix) [34] from
weights between the input layer and the mapping layer on CPNs for extracting categories according to
scene features.

Figure 2. Procedure of generated visual words (VWs) using self-organizing maps (SOMs) as codebooks
with the integrated feature dimension.

Figure 3. Procedure of visualized scene relational features on category maps as topological mapping of
spatial scene relations.

Our method extracts scene categories for visualizing boundary depth after calculating the
similarity of neighborhood categories mapped as category maps on CPNs. Detailed procedures of our
method, which consists of three machine-learning algorithms with supervised and unsupervised modes,
were presented in an earlier report [33] For this paper, we used the network as the supervised mode.

3.1. SOMs

As depicted in Figure 2, the network architecture of SOMs comprises two layers: an input layer
and a mapping layer. Input signals are presented to the input layer. No teaching signals are presented
to the mapping layer because of unsupervised learning.
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The learning algorithm of SOMs is the following. xi(t) and wi,j(t) respectively denote input data
and weights from an input layer unit i to a mapping layer unit j at time t. Herein, I, J respectively
denote the total numbers of the input layer and the mapping layer. wi,j(t) were initialized randomly
before learning. The unit for which the Euclidean distance between xi(t) and wi,j(t) is the smallest is
sought as the winner unit of its index c as:

c = argmin
1≤j≤J

√√√√ I

∑
i=1

(xi(t)− wi,j(t))2. (1)

As a local region for updating weights, the neighborhood region Nc(t) is defined as the center of
the winner unit c, as:

Nc(t) = bµ · J ·
(

1− t
O

)
+ 0.5c. (2)

Therein, µ(0 < µ < 1.0) is the initial size of Nc(t); O is the maximum iteration for training.
Coefficient 0.5 is appended as the floor function b·c for rounding.

Subsequently, wi,j(t) of Nc(t) was updated to close input feature patterns.

wi,j(t + 1) = wi,j(t) + α(t)(xi(t)− wi,j(t)). (3)

Therein, α(t) is a learning coefficient that decreases along with the progress of learning.
α(0)(0 < α(0) < 1.0) is the initial value of α(t). α(t) is defined at time t as:

α(t) = α(0) ·
(

1− t
O

)
. (4)

In the initial stage, the learning speed is higher when this rate is high. In the final stage,
the learning converges while the range decreases.

For this module, the input features of I dimension are quantized into the J dimension, which is
a similar dimension to the number of units on the mapping layer. The module output yj(t) is
calculated as:

yj(t) =

√√√√ I

∑
i=1

(xi(t) · wi,j(t))2. (5)

This module is connected to the labeling module at the training phase. For the testing phase, this
module is switched to the mapping module. Moreover, this module is passed when input features are
used without creating codebooks directly.

3.2. CPNs

As depicted in Figure 3, the network architecture of CPNs comprises three layers: an input layer,
a mapping layer, and a Grossberg layer. The input layer and mapping layer resemble those of SOMs.
Teaching signals are presented to the Grossberg layer.

The learning algorithm of CPNs is the following. Herein, for visualization characteristics of
category maps, we set the mapping layer to a two-dimensional structure X×Y unit. For this paper,
we set one dimension of the input and Grossberg layers, although they can take any structure.
The numbers of units are I and K, respectively. ui,j(x,y)(t) are weights from an input layer unit i
to a mapping layer unit j(x, y) at time t. vj(x,y),k(t) are weights from a Grossberg layer unit k to
a mapping layer unit j(x, y) at time t. These weights are initialized randomly before learning. xi(t) are
training data to present to the input layer unit i at time t. The unit for which the Euclidean distance
between xi(t) and ui,j(x,y)(t) is the smallest is sought as the winner unit. c(x,y) is the index of the unit.
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c(x, y) = argmin
(1,1)≤j(x,y)≤(X,Y)

√√√√ I

∑
i=1

(xi(t)− ui,j(x,y)(t))2, (6)

The neighborhood region N(cx ,cy)(t) around c(x, y) is defined as:

Nc(x,y)(t) = bµ · (X, Y) ·
(

1− t
O

)
+ 0.5c, (7)

where µ(0 < µ < 1.0) is the initial size of the neighborhood region, and O is the maximum iteration for
training. ui

n,m(t) of Nc(x,y)(t) were updated to close input feature patterns using Kohonen’s learning
algorithm as:

ui,j(x,y)(t + 1) = ui,j(x,y)(t) + α(t)(xi(t)− ui,j(x,y)(t)), (8)

Subsequently, vj(x,y),k(t) of Nc(x,y)(t) were updated to close teaching signal patterns using
Grossberg’s learning algorithm.

vj(x,y),k(t + 1) = vj(x,y),k(t) + β(t)(Tk(t)− vj(x,y),k(t)), (9)

Herein, Tk are training signals obtained using ART-2. α(t) and β(t) are learning coefficients that
have decreasing values with the progress of learning. α(0) and β(0) denote the initial values of α(t)
and β(t), respectively. The learning coefficients are given as:[

α(t)
β(t)

]
=

[
α(0)
β(0)

]
·
(

1− t
O

)
. (10)

In the initial stage, the learning is done rapidly when the efficiencies are high. In the final stage,
the learning converges, although the efficiencies decrease. As the maximum number of vj(x,y),k(t) for
the k-th Grossberg unit, category Lk(t) is searched as:

Lk(t) = argmax
(1,1)≤j(x,y)≤(X,Y)

vj(x,y),k(t). (11)

A category map is created after determining categories for all units. Test datasets are presented
to the network that is created through learning. A mapping layer unit, which is the minimum of the
Euclidean distance as the similarity of test data and feature patterns, is burst. Categories for these
units are recognition results for CPNs.

4. Datasets

4.1. Experimental Environment

We obtained original aerial time-series image benchmark datasets in an atrium at our university
building. Figure 4 depicts a photograph of the atrium from the ground floor to 74 m in the longitudinal
direction. Its width and height are, respectively, 17 m and 18 m as a void space. The scene structure in
the environment is holistically simple with generic objects of chairs, tables, bulletin boards, partitions,
benches, trash boxes, desks, and posters. Occasionally, pedestrians were in the environment during
image acquisition.
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Figure 4. Overview of atrium as an experimental environment: 74 m long × 17 m wide × 18 m high.

4.2. MAV

For this experiment, we used Bebop2 by Parrot SA as depicted in Figure 5. The body size was
328 mm in length × 382 mm in width × 89 mm in height for the front side of the camera view range.
The body weight was 500 g with an attached 2700 mAh LiPo battery. Although the payload was not
disclosed by the manufacturer, a complementary metal-oxide semiconductor (CMOS) camera was
mounted for the main vision sensor. The camera resolution was 4096 × 3072 pixels for still images and
920 × 1080 pixels for full high-definition (FHD) video images. For this experiment, we used the latter
resolution for time-series images.

Figure 5. Our MAV and controller with tablet.

As flight performance, the maximum vertical and horizontal flight speeds were, respectively,
18 m/s and 6 m/s driven by four 1280 kV motors with six-inch rotors. For a measurement and
positioning system, signal-receiving modules of GPS and global navigation satellite system (GLONASS)
were embedded on the MAV. For indoor environments that are denied these positioning signals,
precision operation is necessary for a steady and safe flight. Therefore, we operated the MAV manually
using a dedicated controller and a tablet computer for avoiding a flyaway or a crash.

4.3. Obtained Datasets

In the atrium as our experimental environment, we set two flight routes: a round flight route
and a zigzag flight route. We obtained flight scene images for five rounds on each flight route with
an interval to charge the MAV battery. Figures 6 and 7 depict both flight routes with divided zones as
recognition targets. We assigned zone colors using heat maps. According to the flight patterns and the
similarity of appearance scenes, we divided flight routes into 10 zones labeled as Zones A–Z for both
flight routes.

Figure 8 portrays sample images of round flight datasets (RFDs) on the upper row and
zigzag-flight image datasets (ZFDs) on the lower row. The field of view (FOV) in RFDs includes
numerous scene images for the longitudinal direction. For ZFDs, the FOV includes numerous
scene images for the lateral direction. Table 1 presents the number of image frames in each dataset.
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We converted the original frame rate of 30 fps to 1 fps by linear downsampling. After this conversion,
the number of image frames in Figure 1 corresponds to the flight time in seconds. The number of RFD
images is greater than that of ZFD images because of the differences in flight time and distance.

Figure 6. Round flight route and zones.

Figure 7. Zigzag flight routes and zones.

Figure 8. Sample images of round flight datasets (RFDs) (upper) and zigzag-flight image datasets
(ZFDs) (lower).

Table 1. Number of images in respective datasets [images].

Dataset 1 2 3 4 5 Sum

Round flight 679 729 693 702 713 3516
Zigzag flight 595 565 554 559 537 2810

For the five datasets in each flight route, we evaluated our method with leave-one-out
cross-validation (LOOCV) [35], which means the use of one dataset for validation and other four
datasets for training [36]. Herein, we used just Dataset 1 for creating 3D environmental maps and
parameter optimization for preliminary experiments. We used all five datasets as LOOCV for the
scene recognition evaluation. Table 2 defines the combination of learning and validation datasets as
validation patterns (VPs).
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Table 2. Combination of learning and validation datasets as validation patterns (VPs).

VP Learning Datasets Validation Dataset

1 2, 3, 4, 5 1
2 3, 4, 5, 1 2
3 4, 5, 1, 2 3
4 5, 1, 2, 3 4
5 1, 2, 3, 4 5

4.4. Building Results of 3D Maps

We used PhotoScan by Agisoft Limited Liability Company for building 3D maps before the scene
recognition experiment. Because of its simple user interface with automatic inner parameter estimation,
SfM application software PhotoScan has been widely used, especially in remote sensing and civil
engineering fields [37].

Figure 9 depicts the building results of 3D maps for both FDs. The upper and lower results
respectively depict bird’s-eye-view 3D maps and estimated camera positions with the respective maps.
Although comprehensive 3D maps were generated automatically, numerous deficient pixels were
locally apparent. The flight routes comprised straight flight and 90 degree rotations with a fixed
altitude. However, the estimated camera positions included the movements of the horizontal and
vertical directions. These experimental results demonstrate the limitation of SfM for indoor images
obtained using a MAV without GPS signals. We considered that precise GPS signals are necessary for
3D map construction. Herein, indoor GPS technology using Wi-Fi is still quite costly for practical use.
Therefore, this study examines the possibility of visual position estimation.

Figure 9. Building results of 3D maps for RFDs (upper) and ZFDs (lower).

5. Evaluation Experiment

5.1. Parameter Optimization

As a preliminary experiment, we optimized three major parameters that influence the recognition
accuracy. For evaluation criteria, recognition accuracy recognition accuracy R [%] for a validation
dataset is defined as:

R =
C
N
× 100, (12)

where C and N respectively represent the total numbers of validation images and correct recognition
images that matched to zone labels such as GT.

We used RFDs for this optimization. The first optimization parameter was codebook dimensions
of input features. Whereas the size of a category map and the number of learning iterations were
set, respectively, to 50 × 50 units and 10,000 iterations, we changed the coefficient n of the codebook
dimension 2n from Steps 5 to 10 by 1. The optimization result, as denoted in Figure 10 revealed that
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the recognition accuracy increased according to increased n. The maximum accuracy was 71.7% in
n = 9, which corresponds to 512 codebook dimensions.

The second optimization parameter is the number of category map units. Whereas the codebook
size and the number of learning iterations were set, respectively, to 256 dimensions and 10,000 iterations,
we changed the category map units from 10 × 10 units to 60 × 60 units in 10 × 10 unit intervals.
The optimization result, as denoted in Figure 11 revealed that the recognition accuracy increased
according to the category map size. The maximum accuracy was 71.7% in 50 × 50 category map units,
which corresponds to the 512 codebook dimensions.

The third optimization parameter is the number of learning iterations. Whereas the codebook size
and the size of a category map were set, respectively, to 256 dimensions and 50 × 50 units, we changed
the learning iterations of five steps: 100, 1000, 5000, 10,000, 50,000, and 100,000. The optimization result,
as denoted in Figure 12 revealed that the recognition accuracy increased according to the iterations
up to 10,000. The maximum accuracy was 71.7% in 10,000, which corresponds to the 512 codebook
dimensions and 50 × 50 category map units. The results of the above three preliminary experiments
showed that we used 512 codebook dimensions, 50 × 50 category map units, and 10,000 learning
iterations as optimal values.

Figure 10. Relation between the codebook dimension and recognition accuracies.

Figure 11. Relation between the size of category maps and recognition accuracies.

Figure 12. Relation between the size of learning iterations and recognition accuracies.
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5.2. Created Category Maps

Figures 13 and 14 respectively depicts category maps created from RFDs and ZFDs. Categories
are shown using heat maps according to color temperatures of ten steps. Zones A and J are allocated,
respectively, to the lowest and the highest temperature colors. According to the progress of flight
zones, as depicted in Figures 6 and 7, categories corresponding with zones were changed from
low-temperature colored units to high-temperature colored units in heat maps. After learning, category
maps are used for recognizers.

Figure 13. Category maps created from RFDs.

Figure 14. Category maps created from ZFDs.

Category maps were divided into several categories of respective zones with categorical
representation reflected in scene complexity. The category maps of ZFDs denote higher scene
complexity than those of RFDs because of segmented categories. Moreover, the category maps denote
not merely high complexity of category boundaries, but also distributional characteristics to different
positions with similar zones. Because category maps are created from training datasets, a single unit
bursts from a test dataset based on the mechanism of winner-take-all (WTA) competition that obtains
everything by a winner neuron. The label of a WTA unit is judged in terms of recognition results.

5.3. Recognition Results

Figure 15 depicts recognition accuracies for five LOOCV patterns. The mean recognition accuracy
of RFDs was 71.7% for five datasets evaluated using LOOCV. The maximum and minimum recognition
accuracies were, respectively, 81.1% for VP 4 and 51.0% for VP 2. The accuracy gap separating them
was 27.8%. The recognition accuracy in Zone D of VP 4 is the lowest. Herein, we analyze false
recognition tendencies from scene image features and flight routes. Numerous images in Zone D
were falsely recognized to Zones E and I. Figure 6 shows that the flight route from Zone D to Zone E
comprised a passage between pillars and walls. Feature changes in these zones were slight compared
with those in other zones. Moreover, numerous similar scene features existed because green doors for
the computer rooms are lined up continuously. The flight orientation in Zone I was the same as that
in Zone D, which included salient objects in the atrium to the scene images. We consider that false
recognition occurred from objects in terms of chairs and tables that exist in Zone I as landmarks.
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Figure 15. Recognition accuracies for all LOOCV patterns in respective VPs.

As the lowest recognition accuracy, images in Zones D, E, and G of VP 2 were falsely recognized
as Zone J. Zones D, E, and G were a straight pathway between pillars and walls. False recognition
images included a partial view to the center of the atrium that can be seen from pillars. In contrast,
Zone J comprised a route, of which the MAV flew to the center of the atrium. For obtaining images of
Dataset 2, the MAV flew to the pillar side compared with other datasets. Therefore, we infer that false
recognition occurred from images between the pillars.

The mean recognition accuracy for five datasets of ZFDs was 65.5%, which was 6.2 percentage
points lower than that of the RFDs. The scene complexity of the zigzag flight route was greater than
that of the round flight route because it included numerous 90 degree rotations. The salient features
in the ZFDs were fewer than in the RFDs because the MAV flew mainly in a lateral direction to both
walls in the atrium. The maximum and minimum recognition accuracies were, respectively, 70.2% for
VP 3 and 59.2% for VP 1. The gap separating them was 11.0%, which was lower than that of the RFDs.

False recognition was high for VP 3 in Zone H. As depicted in Figure 7, the flight orientation is
similar in Zones H and G with different routes. Objects on the scene images in both zones included
pillars and doors merely because the flight route existed between pillars and walls. We infer that
false recognition occurred from numerous similar scene features and their slight changes. Numerous
images in Zone H were falsely recognized as Zone A or C. We infer that false recognition occurred
from scene feature similarity.

For VP 1, with the lowest recognition accuracy, numerous images between Zones H and G and
between Zones B and F were falsely recognized. However, falsely recognized images in Zone G were
slight, except those of Zone H. We consider that salient features of pedestrians, desks, and sign boards
are included in Zone H. In Zones B and F, the MAV flew a straight route to both walls of the lateral
side in the atrium in opposite directions. The scene images in Zone F that were falsely recognized
as Zone F included white walls, of which numerous features were overlapped in the different zones.
In contrast, false recognition images in Zone B were slightly allocated to other zones except for Zone F.

5.4. Confusion Matrix Analysis

Figures 16 and 17 respectively depict confusion matrixes as detailed results of recognition
accuracies, as presented in Figure 15. The matrices comprise 10 rows × 10 columns that correspond
to the number of segmented zones. The data existence rates on the matrixes are represented using
heat maps. Correct numbers of images are represented on the diagonal matrix elements. The false
recognition rate is high if the color temperature is high on the elements, except for the diagonal
elements. For the base of the horizontal lines, false recognition images can be specified to the positions
of vertical elements. A comprehensive tendency is that false recognition images are apparently
numerous on the elements near the diagonal elements because scene features are changed sequentially
according to the MAV flight.
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Figure 16. Confusion matrixes for the round flight recognition results.

Figure 17. Confusion matrixes for the zigzag flight recognition results.

Table 3 presents a confusion matrix of VP 4, which has the highest recognition accuracy in the
RFD. The bold numbers represent the maximum number of images in each zone. For this result,
the maximum number of images is distributed on the diagonal elements. Particularly, false recognition
images in Zone D were more numerous than in other zones. In all, 52 of 86 images in Zone D
were falsely recognized to other zones, including 16 false recognition images to Zone E. In contrast,
other zones were recognized correctly, especially in Zones B and C, which were recognized correctly
except for the numbers of images for one image in Zone B and three images in Zone C.

Table 3. Confusion matrix of VP 4 on RFDs [images].

A B C D E F G H I J

A 69 4 0 0 0 0 1 0 0 0
B 0 82 0 0 0 0 0 1 0 0
C 0 1 45 1 1 0 0 0 0 0
D 4 2 0 34 16 2 13 2 13 0
E 0 5 0 2 56 1 1 2 2 7
F 0 1 0 0 6 24 0 0 2 0
G 0 0 0 8 7 0 62 1 0 0
H 3 0 0 1 0 0 2 77 0 0
I 5 3 0 0 0 0 0 0 66 1
J 4 0 0 0 0 0 0 0 7 54

Table 4 denotes a confusion matrix of VP 2, which has the lowest recognition accuracy. The bold
numbers, which demonstrate the maximum numbers of images, are available on the diagonal elements.
The numbers of false recognition images in Zones D, E, and G were, respectively, 89 of 105 images, 61 of
82 images, and 67 of 81 images. Particularly, 27, 30, and 38 images in these zones were commonly falsely
recognized as Zone J. However, false recognition images between Zones C and F were merely six.

We obtained a similar tendency from detailed confusion matrixes in the ZFD. Therefore,
we consider that the arbitrary categories selected were not sufficiently distinct as to be separable
in image space.
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Table 4. Confusion matrix of VP 2 on RFDs [images].

A B C D E F G H I J

A 66 17 0 0 1 0 1 0 4 1
B 16 41 3 1 0 3 0 2 4 3
C 0 4 46 0 0 0 0 2 0 0
D 14 6 2 16 10 18 4 3 5 27
E 2 0 0 2 21 17 2 5 3 30
F 0 1 1 0 0 30 0 3 0 1
G 4 1 2 5 6 6 14 2 3 38
H 0 3 0 3 1 13 0 54 0 12
I 39 8 0 0 0 0 0 0 33 1
J 1 0 0 0 1 0 0 0 8 51

5.5. Extracted Category Boundaries

Based on weights between the input layer and the mapping layer on CPNs, category boundaries
were extracted with a U-Matrix that calculates the similarity of neighborhood units. Figures 18 and 19
respectively depict extraction results of category boundaries on category maps as depicted in Figures 13
and 14. The depth of category boundaries is depicted using heat maps. Category boundaries of much
weight difference among units are depicted in a high-temperature near-red color. Herein, slight output
signals shown as low-temperature near-blue color were reduced automatically using a threshold
extracted using the Otsu Method [38].

Figure 18. Extraction result of category boundaries on RFDs.

Figure 19. Extraction result of category boundaries on ZFDs.

The red ellipses on respective category maps denote comprehensive categories. The extraction
results demonstrate that up to six categories were created with discontinuity boundaries and dependent
units. The red-filled arrows denote local categories. As shown in category maps depicted in Figures 13
and 14, the first and second neighborhood regions up to 25 units correspond to the respective local
categories. In the next section, we attempt to discuss how many actual categories there are in the
image space.
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5.6. Discussion

We attempted to analyze mapping characteristics of our method using superimposed scene images
as a visual observation. As a mapping result, category boundaries were extracted using the U-Matrix.
Up to eight typical scene images are shown on independent categories segmented by the category
boundaries. Figure 20a depicts representative images in each category superimposed on category
boundaries obtained from VP 4 of RFDs. The category map was segmented to two comprehensive
categories, as shown in Figure 18d by red ellipses. We annotated numbers from the order of category
sizes as Categories 1–4 in Figure 20a. Scene images related to the longitudinal direction were mapped
to Categories 1 and 2. Numerous scene images that include objects are present in Category 1. Moreover,
several scene images in which the MAV flew the lateral direction of the center of the atrium in Zone F
were in Category 1.

Figure 20. Representative images in each category superimposed on the category boundaries of VP 4
of RFDs and ZFDs.

In contrast, Category 2 had numerous scene images without objects. Although Category 2
included images with objects, these were not merely small objects because of their distant location,
but also a part of the background, which is difficult to distinguish. We inferred that this feature
difference divided images into two independent categories. In Category 3, some images encompassed
outdoor environments through a transparent glass wall when the MAV flew in the direction of the wall
in the north part of the atrium. An independent category was mapped on the category map because
appearance features were widely different when outdoor scene features were included in the images
obtained in indoor environments. Categories 1 and 4 were partially connected without a boundary.
Therefore, Category 4 included images obtained in terminal areas in the atrium.

Figure 20b depicts representative images in each category superimposed on the category
boundaries obtained from VP 4 of ZFDs. The category map was segmented to four comprehensive
categories, as depicted in Figure 19d with red ellipses. We annotated numbers from the order of the
category size as Categories 1–2 in Figure 20b. Scene images related to the longitudinal direction of
the terminal flight routes in Zones A, C, G, and H were mapped to Category 1. Although Category 1
included flight images of the lateral direction in Zones B, D, E, F, I, and J, these were wide-view images
after a 90 degree turn from the longitudinal direction. Category 2 included images near the walls in
Zones B, D, F, I, and J of the flight in the lateral direction without images obtained from the aerial
scenes of the longitudinal direction. We regard independent categories as created from Category 1
because the feature points were fewer according to the ratio of the walls in the view range. Herein,
the effects of existing objects in these scene images were slight for this category map.

6. Conclusions

This paper presented a vision-based scene recognition method from indoor aerial time-series
images using category maps that were mapped in topologies of features into a low-dimensional space
based on competitive and neighborhood learning. The experimentally obtained results with LOOCV
for datasets divided with 10 zones for both flight routes revealed that mean recognition accuracies
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for RFDs and ZFDs were 71.7% and 65.5%, respectively. The created category maps addressed the
complexity of scenes because of the segmented categories. Although extraction results of category
boundaries using U-Matrix were partially discontinuous, comprehensive category boundaries were
obtained for scenes segmented into several categories.

As a subject of future work, we will integrate 3D maps created using SfM and scene recognition
results obtained using our method. Moreover, we expect to fly a MAV using autopilot to obtain
various datasets automatically in various environments to demonstrate the versatility and utility of
our method, particularly localization and navigation. Furthermore, we will append a DL framework
to CPNs, not merely for creating multilayer category maps according to respective layers, but also for
learning contexts and time-series features to improve recognition accuracy.
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Abbreviations

The following abbreviations are used in this manuscript:

AKAZE accelerated KAZE
CMOS complementary metal-oxide semiconductor
CPN counter propagation network
DL deep learning
FOV field of view
FHD full high definition
GLONASS global navigation satellite system
GPS global positioning system
GT ground truth
HODMG histogram of directional morphological gradient
HOG histogram of oriented gradient
LOOCV leave-one-out cross-validation
LRF laser range finder
MAV micro air vehicle
RFD round flight dataset
RGB-D red, green, blue, and depth
SfM structure from motion
SIFT scale-invariant feature transform
SLAM simultaneous localization and mapping
SOM self-organizing map
SVM support vector machine
UAV unmanned aerial vehicle
UGV unmanned ground vehicle
U-Matrix unified distance matrix
VP validation pattern
VW visual word
WTA winner-take-all
ZFD zigzag flight dataset
2D two-dimensional
3D three-dimensional



Drones 2019, 3, 22 17 of 18

References

1. Huang, A.S.; Bachrach, A.; Henry, P.; Krainin, M.; Maturana, D.; Fox, D.; Roy, N. Visual Odometry and
Mapping for Autonomous Flight Using an RGB-D Camera. Robot. Res. 2017, 235–252. [CrossRef]

2. Dissanayake, G.; Newman, P.; Clark, S.; Durrant-Whyte, H.F.; Csorba, M. An Experimental and Theoretical
Investigation into Simultaneous Localisation and Map Building (SLAM). In Experimental Robotics VI, Lecture
Notes in Control and Information Sciences; Springer: London, UK, 2000; pp. 265–274.

3. Hassanalian, M.; Abdelkefi, A. Classifications, Applications, and Design Challenges of Drones: A Review.
Prog. Aerosp. Sci. 2017, 91, 99–131. [CrossRef]

4. Ullman, S. The Interpretation of Structure from Motion. Proc. R. Soc. Lond. 1979, 203, 405–426. [CrossRef]
[PubMed]

5. Schonbergerab, J.L.; Fraundorfera, F.; Frahmb, J.M. Structure-from-Motion for MAV Image Sequence Analysis
with Photogrammetric Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 305–312.
[CrossRef]

6. Clapuyt, F.; Vanacker, V.; Oost, K.V. Reproducibility of UAV-Based Earth Topography Reconstructions Based
on Structure-from-Motion Algorithms. Geomorphology 2016, 260, 4–15. [CrossRef]

7. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM :Real-Time Single Camera SLAM. IEEE Trans.
Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [CrossRef] [PubMed]

8. Wu, J.; Christensen, H.I.; Rehg, J.M. Visual Place Categorization: Problem, Dataset, and Algorithm.
In Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems, St. Louis, MO, USA,
10–15 October 2009; pp. 4763–4770. [CrossRef]

9. Wu, J.; Rehg, J.M. CENTRIST: A Visual Descriptor for Scene Categorization. IEEE Trans. Pattern Anal.
Mach. Intell. 2011, 38, 1489–1501. [CrossRef]

10. Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; Torralba, A. Places: A 10 million Image Database for Scene
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1452–1464. [CrossRef] [PubMed]

11. Madokoro, H.; Ueda, S.; Sato, K. Semantic Indoor Scene Recognition of Time-Series Arial Images from a Micro
Air Vehicle Mounted Monocular Camera. In Proceedings of the 16th International Conference on Control,
Automation and Systems (ICCAS), PyeongChang, GangWon, Korea, 17–20 October 2018; pp. 265–270.

12. Siagian, C.; Itti, L. Rapid Biologically Inspired Scene Classification Using Features Shared with Visual
Attention. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 300–312. [CrossRef] [PubMed]

13. Quattoni, A.; Torralba, A. Recognizing Indoor Scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 413–420. [CrossRef]

14. Torralba, A.; Murphy, K.P.; Freeman, W.T.; Rubin, M.A. Context-Based Vision System for Place and
Object Recognition. In Proceedings of the IEEE International Conference Computer Vision, Nice, France,
13–16 October 2003; Volume 1, pp. 1023–1029. [CrossRef]

15. Koenig, S.; Simmons, R.G. Unsupervised Learning of Probabilistic Models for Robot Navigation.
In Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA,
22–28 April 1996; Volume 3, pp. 2301–2308. [CrossRef]

16. Tsukada, M.; Utsumi, Y.; Madokoro, H.; Sato, K. Unsupervised Feature Selection and Category Classification
for a Vision-Based Mobile Robot. IEICE Trans. Inf. Syst. 2011, E94-D-1, 127–136. [CrossRef]

17. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006,
313, 504–507. [CrossRef] [PubMed]

18. Le, Q.V. Building high-level features using large scale unsupervised learning. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013;
pp. 8595–8598. [CrossRef]

19. Oliva, A.; Torralba, A. Building the Gist of a Scene: The Role of Global Image Features in Recognition.
Vis. Percept. Prog. Brain Res. 2006, 155, 23–36. [CrossRef]

20. Lowe, D.G. Object Recognition from Local Scale-Invariant Features. In Proceedings of the Seventh
IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2,
pp. 1150–1157. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-29363-9_14
http://dx.doi.org/10.1016/j.paerosci.2017.04.003
http://dx.doi.org/10.1098/rspb.1979.0006
http://www.ncbi.nlm.nih.gov/pubmed/34162
http://dx.doi.org/10.5194/isprsarchives-XL-3-305-2014
http://dx.doi.org/10.1016/j.geomorph.2015.05.011
http://dx.doi.org/10.1109/TPAMI.2007.1049
http://www.ncbi.nlm.nih.gov/pubmed/17431302
http://dx.doi.org/10.1109/IROS.2009.5354164
http://dx.doi.org/10.1109/TPAMI.2010.224
http://dx.doi.org/10.1109/TPAMI.2017.2723009
http://www.ncbi.nlm.nih.gov/pubmed/28692961
http://dx.doi.org/10.1109/TPAMI.2007.40
http://www.ncbi.nlm.nih.gov/pubmed/17170482
http://dx.doi.org/10.1109/CVPR.2009.5206537
http://dx.doi.org/10.1109/ICCV.2003.1238354
http://dx.doi.org/10.1109/ROBOT.1996.506507
http://dx.doi.org/10.1587/transinf.E94.D.127
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1109/ICASSP.2013.6639343
http://dx.doi.org/10.1016/S0079-6123(06)55002-2
http://dx.doi.org/10.1109/ICCV.1999.790410


Drones 2019, 3, 22 18 of 18

21. Madokoro, H.; Utsumi, Y.; Sato, K. Unsupervised Scene Classification Based on Context of Features for
a Mobile Robot. In Proceedings of the 15th International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems, Kaiserslautern, Germany, 12–14 September 2011; Volume 1, pp. 446–455.
[CrossRef]

22. Li, F.-F.; Perona, P. A Bayesian Hierarchical Model for Learning Natural Scene Categories. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA,
20–25 June 2005; Volume 2, pp. 524–531. [CrossRef]

23. Luo, J.; Pronobis, A.; Caputo, B.; Jensfelt, P. Incremental learning for place recognition in dynamic
environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Diego, CA, USA, 29 October–2 November 2007; pp. 721–728. [CrossRef]

24. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the Computer
Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [CrossRef]

25. Ishikoori, Y.; Madokoro, H.; Sato, K. Semantic Position Recognition and Visual Landmark Detection with
Invariant for Human Effect. In Proceedings of the IEEE/SICE International Symposium on System Integration
(SII), Taipei, Taiwan, 11–14 December 2017; pp. 657–662. [CrossRef]

26. Kainuma, A.; Madokoro, H.; Sato, K.; Shimoi, N. Occlusion-Robust Segmentation for Multiple Objects using
a Micro Air Vehicle. In Proceedings of the 16th International Conference on Control, Automation and Systems,
Gyeongju, Korea, 16–19 October 2016; pp. 111–116. [CrossRef]

27. Anbarasu, B.; Anitha, G. Indoor Scene Recognition for Micro Aerial Vehicles Navigation using Enhanced-GIST
Descriptors. Def. Sci. J. 2018, 68, 129–137. [CrossRef]

28. Vapnik, V.; Lerner, A. Pattern Recognition Using Generalized Portrait Method. Autom. Remote Control 1963,
24, 774–780.

29. Alcantarilla, P.F.; Nuevo, J.; Batoli, A. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale
Spaces. In Proceedings of the British Machine Vision Conference, Bristol, UK, 9–13 September 2013.

30. Csurka, G.; Dance, C.R.; Fan, L.; Willamowski, J.; Bray, C. Visual Categorization with Bags of Keypoints.
In Proceedings of the International Workshop on Statistical Learning in Computer Vision, Prague,
Czech Republic, 11–14 May 2004; pp. 1–22. [CrossRef]

31. Kohonen, T. Self-Organizing Maps; Springer Series in Information Sciences; Springer: Berlin/Heidelberg,
Germany, 1995.

32. Hetch-Nielsen, R. Counterpropagation networks. Appl. Opt. 1987, 26, 4979–4983. [CrossRef] [PubMed]
33. Madokoro, H.; Shimoi, N.; Sato, K. Adaptive Category Mapping Networks for All-Mode Topological Feature

Learning Used for Mobile Robot Vision. In Proceedings of the 23rd IEEE International Symposium on Robot
and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014; pp. 678–683. [CrossRef]

34. Ultsch, A. Clustering with SOM: U*C. In Proceedings of the Workshop on Self-Organizing Maps, Paris, France,
5–8 September 2005; pp. 75–82. [CrossRef]

35. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.
In Proceedings of International Joint Conference on Artificial Intelligence, Montreal, QC, Canada,
20–25 August 1995; Volume 2, pp. 1137–1143. [CrossRef]

36. Arlot, S.; Celisse, A. A Survey of Cross-Validation Procedures for Model Selection. Stat. Surv. 2010, 4, 40–79.
[CrossRef]

37. Verhoeven, G. Taking Computer Vision Aloft– Archaeological Three-dimensional Reconstructions from Aerial
Photographs with PhotoScan. Archaeol. Prospect. 2011, 18, 67–73. [CrossRef]

38. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979,
9, 62–66. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.7210/jrsj.31.918
http://dx.doi.org/10.1109/CVPR.2005.16
http://dx.doi.org/10.1109/IROS.2007.4398986
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/SII.2017.8279296
http://dx.doi.org/10.1109/ICCAS.2016.7832306
http://dx.doi.org/10.14429/dsj.68.10504
http://dx.doi.org/10.1.1.72.604
http://dx.doi.org/10.1364/AO.26.004979
http://www.ncbi.nlm.nih.gov/pubmed/20523476
http://dx.doi.org/10.1109/ROMAN.2014.6926331
http://dx.doi.org/10.1.1.491.2400
http://dx.doi.org/10.1.1.48.529
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1002/arp.399
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Studies
	Proposed Method
	SOMs
	CPNs

	Datasets
	Experimental Environment
	MAV
	Obtained Datasets
	Building Results of 3D Maps

	Evaluation Experiment
	Parameter Optimization
	Created Category Maps
	Recognition Results
	Confusion Matrix Analysis
	Extracted Category Boundaries
	Discussion

	Conclusions
	References

