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Abstract: The sub-alpine and alpine Sphagnum peatlands in Australia are geographically 

constrained to poorly drained areas c. 1000 m a.s.l. Sphagnum is an important contributor to the 

resilience of peatlands; however, it is also very sensitive to fire and often shows slow recovery after 

being damaged. Recovery is largely dependent on a sufficient water supply and impeded drainage. 

Monitoring the fragmented areas of Australia’s peatlands can be achieved by capturing ultra-high 

spatial resolution imagery from an unmanned aerial systems (UAS). High resolution digital surface 

models (DSMs) can be created from UAS imagery, from which hydrological models can be derived 

to monitor hydrological changes and assist with rehabilitation of damaged peatlands. One of the 

constraints of the use of UAS is the intensive fieldwork required. The need to distribute ground 

control points (GCPs) adds to fieldwork complexity. GCPs are often used for georeferencing of the 

UAS imagery, as well as for removal of artificial tilting and doming of the photogrammetric model 

created by camera distortions. In this study, Tasmania’s northern peatlands were mapped to test 

the viability of creating hydrological models. The case study was further used to test three different 

GCP scenarios to assess the effect on DSM quality. From the five scenarios, three required the use 

of all (16–20) GCPs to create accurate DSMs, whereas the two other sites provided accurate DSMs 

when only using four GCPs. Hydrological maps produced with the TauDEM tools software package 

showed high visual accuracy and a good potential for rehabilitation guidance, when using ground- 

controlled DSMs. 
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1. Introduction 

The Earth’s peatlands are experiencing widespread environmental pressures, caused by climate 

change as well as anthropogenic forces. Some of the main dangers include increased frequency and 

severity of droughts, a higher wild fire frequency, drainage, and peat mining [1–3]. Another threat to 

the peatlands in Australia is created by the trampling and grazing of feral animals, which results in 

compaction and drainage and eventual desiccation of peatlands [1,4]. Little is known about the 

response of peatlands to these disturbances [2,5]. Yet peatland ecosystems play a vital role in local 

and global environmental processes. 

Peatlands are wetlands with a low mineral content (<35%) and an organic soil layer of at least 30 

cm depth [6,7]. This organic layer is sustained by a high-water table which creates anaerobic 

conditions and maintains a low decomposition rate. These conditions make peatlands a major global 

carbon sink: covering barely 3% of the Earth’s surface, boreal and subarctic peatlands function as a 
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sink for 15–30% of the global soil carbon, resulting in a net cooling effect on the Earth’s climate [6–8]. 

Apart from their global climatic importance, peatlands fulfill a hydrological function in catchments, 

acting as water flow regulators. With an exceptionally high water holding capacity, peatlands 

efficiently store surface water, thereby filtering out sediment and moderating runoff [1,9].  

In Australia, 0.14% of the total land mass is covered by peatlands [10]. This includes coastal 

peatlands and peatlands in the sub-alpine and alpine regions of south eastern Australia that occur c. 

1000 m Above Sea Level (a.s.l.) [11]. The sub-alpine or alpine peatlands are either montane mires or 

Sphagnum dominated communities, geographically constrained to poorly drained areas and therefore 

at risk of ecological collapse [1,11]. 

Sphagnum, a large colonial bryophyte, is considered to be an important contributor to the 

resilience of sub-alpine and alpine peatlands, as it can easily survive under extremely nutrient-poor 

conditions and can produce resistant organic matter which further promotes peat accumulation 

[1,8,12]. Sphagnum mires are also an important habitat for several wildlife species including 

endangered frogs, such as the Corroboree frog [10]. In Tasmania on the Central Plateau, Sphagnum 

often forms the understory of the endemic conifer pencil pine (Athrotaxis cupressoides). Pencil pines 

are endemic to Tasmania and are mainly concentrated on the broad Central Plateau, where they 

develop on open sites [13,14]. They are a long-lived species, growing up to 1000 years in age and 

contain seed productions of 5–6 year intervals. The first seed production generally sets in after the 

pencil pine has reached an age of 100 years [13,15]. 

There are numerous records of peatland damage from wildfires in Australia that result in the 

loss of peat soils and modify their drainage [16–18]. Both Sphagnum and pencil pine are known to be 

fire sensitive species (Figure 1). Post-fire conditions of Sphagnum bogs often show slow recovery, or 

conversion into grass and fern dominated lands [18–20]. Pencil Pine are very sensitive to fire, grow 

slow and episodically produce seed and typically reproduce colonially [21]. Because of these 

properties, pencil pine is rarely found to be naturally recovering after fire damage and has undergone 

a range of declines through the Holocene, and particularly since European colonization 200 years ago 

[21,22]. 

 

Figure 1. (a) Healthy sphagnum from Skullbone Plains, near Bronte Park, Central Tasmania; (b) Post-

fire conditions of burnt Sphagnum and pencil pine trees near Lake Mackenzie, Northern Tasmania. 

Two examples of severe peat fires in the last century are the 1961 fire in the Tasmanian Central 

Plateau and the 2003 fire in the Australian Alps, Victoria. The Tasmanian fire of 1961 was human-

ignited and over a period of five months it smoldered in approximately 60% of the Tasmanian Central 

Plateau, reducing 20,000 ha of peat soils into mineral soils [13,17]. The Victorian 2003 fire was 

preceded by three years of drought, leaving the peatlands in the Alps dehydrated and susceptible to 

fire [16]. As a result, almost all the alpine, subalpine and montane mires and fens in Victoria were 

burnt, causing a loss of approximately 15% of the functional plant communities [16].  

Clarkson et al. [10] stated that the relatively small peatland extent of Australia and low levels of 

research funding have contributed to limited peatland restoration programs and research 

publications. However, with Sphagnum as the dominant contributor to continuing accumulation of 
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organic matter in peatlands, recovery of Sphagnum is essential for subalpine and alpine peatland 

communities [16]. In Tasmania, rehabilitation of Sphagnum has never been extensively trialed, thus, 

post-fire peatland management is of increasing importance here [19].  

To make peatland rehabilitation methods more efficient and effective, an improved knowledge 

of the response of peatlands to disturbances is required [1,7,22]. Current physical mapping and 

monitoring techniques of Australia’s peatlands, such as described by Whinam et al. [18] and Clarke 

and Martin [23], are often labor intensive, time consuming, and can further damage peatlands by 

stepping on this delicate vegetation. Additionally, the use of sample areas (quadrats and transects) 

generally covers only 1–4% of the peatland being studied, hence, are vulnerable to sampling bias. 

Alternatively, conventional remote sensing techniques such as satellites and aerial photography are 

inefficient for peatland monitoring due to the fragmented nature and typically small areas (<1–2 ha) 

of individual peatlands in Australia [11]. Moreover, to capture the detailed information of peatlands 

such as species composition and vegetation health, sub decimetre resolution imagery is required, 

which traditional remote sensing techniques cannot provide. Ultrahigh spatial resolution (<10 

cm/pixel) images are also required to capture the micro-topography of peatlands, which is essential 

for the monitoring of hydrological pathways and peat bog volumes.  

Surveying the fragmented areas of Australia’s peatlands can be achieved by capturing ultra-high 

spatial resolution imagery from unmanned aerial systems (UAS, UAVs, or drones). A small UAS is 

ideal for mapping areas of <10 ha with an ultra-high resolution where 1–2 cm/pixel is feasible for the 

typical areas that Sphagnum mires cover. Also, UAS have previously proven their suitability for 

environmental mapping and monitoring of micro-topography and species composition including 

moss beds [24–26]. To map and monitor Sphagnum mires over a larger geographical area that contains 

hundreds of individual mires, it would be necessary to select a representative sample of Sphagnum 

mires. The spectral information provided by the high-resolution images from a UAS, has the potential 

to provide a better insight into different health states of the Sphagnum moss. Additionally, digital 

surface models (DSMs) can be created by generating very high-resolution 3D point clouds with 

photogrammetric software and computer vision techniques. High resolution DSMs, can be used for 

hydrological modelling to provide detailed information about flow directions of surface water and 

suitable locations for rehabilitation methods within each Sphagnum mire, such as channel blocking 

[10]. 

Images captured by a UAS are typically geotagged with the camera location at the time of image 

capture, the position being supplied by the onboard global navigation satellite system (GNSS). 

However, with a potential error of several meters, these positions do not have a geometric accuracy 

that is compatible with the ultra-high resolution UAS imagery [26]. Furthermore, DSMs generated 

from UAS imagery with low accuracy geotagging and lack of high accuracy ground control can be 

artificially tilted or have a more complex form of geometric distortions, such as doming or twisting, 

resulting in inaccurate hydrological models. To create a reliable DSM, a more accurate method of 

image georeferencing is required. A commonly applied method to remove these distortions is the use 

of ground control points (GCPs). The markers are laid out in the mapped area and their geographic 

coordinates are measured using a differential GPS (DGPS) real time kinematic (RTK) system with an 

accuracy of approximately 2 cm in the horizontal and 4 cm in the vertical directions. The markers are 

later manually identified in the images and used during structure from motion (SfM) and multiview 

stereopsis (MVS) algorithms. This enhancement of the photogrammetric model accuracy corrects 

many model distortions and translates the model into an accurate real-world co-ordinate frame. 

However, the use of GCPs during fieldwork is time-consuming and labor intensive, especially for 

areas that are not easy to access [27]. Furthermore, for vulnerable areas such as peatlands, manual 

placement, and retrieval of GCPs can damage the delicate vegetation within the study site. 

Minimizing the amount of GCPs will minimize the amount of damage caused by trampling. 

A few studies have documented the distribution of GCPs in relation to DSM accuracy [28–30]. 

Harwin et al. [29] found that accuracy mostly decreased in vertical direction when reducing the 

amount of GCPs, and highlighted the importance of precise control. Gindraux et al. [30] stated that 

DSM accuracy is further influenced by factors such as camera focal length, flying height, and image 
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quality. Along with varying sizes and complexity of the topography of study areas, comparisons 

between studies are difficult to make. Tonkin and Midgley [28] came to the conclusion that for an 

area of irregular topography, the use of four or more GCPs is acceptable, with a vertical RMSE of 

0.064 m, compared to a vertical RMSE of 0.059 with 101 GCPs. The spatial distribution of the GCPs 

was highlighted, where vertical errors increased significantly after 100 m distance between GCPs 

with a flight altitude of 280–330 m above sea level (ASL).  

The objective of this study is to test the viability of hydrological modelling of peatlands covering 

approximately 1 ha and to determine the amount of GCPs that are required to create reliable DSMs.  

2. Materials and Methods  

2.1. Study Area 

On 13 January 2016, a dry lightning storm ignited more than 80 bushfires across western 

Tasmania [19]. The ignition points at Dove River, February Plains, Lake Bill, and the Mersey Forests 

combined to form the Mersey Forest Fire Complex, burning an area of ~25,000 ha over a period of 

approximately three months (Figure 2). Prior weather conditions, a cold and dry winter followed by 

a dry and warm spring, were a critical factor for this event to occur. The final trigger was the absence 

of significant rainfall leading up to the event. The fire was largely under control by February, however 

peat soils continued to burn until early May [19]. Approximately 85 ha of Pencil Pine (Athrotaxis 

cupressoides) woodland were present in the burnt area, which is a little over 1% of the currently 

mapped distribution in Tasmania [19]. Due to their fire sensitive nature, it was expected that there 

would be a high rate of mortality amongst the Pencil Pines. Mapping of Sphagnum mires after the fire 

indicates that there are upwards of 200 individual patches of Sphagnum totaling approximately 40 ha, 

which is merely a small fraction of the total plateau area. However, the extent of Sphagnum peatlands 

in the burnt area is estimated to be approximately 1% of the nationwide coverage. Observations made 

after the fire estimated that 71% of the surveyed Sphagnum sites were burnt to the point of significant 

damage.  

Field campaigns for this study were carried out in late 2017, from 21 to 23 November and from 

7 to 10 December. During these visits, five different sites of Sphagnum dominated peatland 

communities were mapped on the Central Plateau, within the fire boundary of the Mersey Forest Fire 

Complex (Figure 2). The area of the mapped sites are typically around 1 ha and their altitude ranges 

between 1120 m and 1260 m above mean sea level (AMSL). Study sites were named based on local 

features and their topographic characteristics. The sites Eagle Valley (EV), Basin (BN), and Flat Valley 

(FV) are rectangle-shaped basins surrounded by rocky ridges, where surface water easily collects in 

pools. All three sites contain several patches of burnt Pencil Pine trees, which are the most abundant 

in Eagle Valley. The Jack’s Lagoon (JL) site consists of a Sphagnum dominated community and is 

almost absent of Pencil Pines. It comprises the largest area and the highest altitude of all sites. The 

most northern area, named Heath (HT), consists of Sphagnum mires situated on a gently easterly 

sloping area. 
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Figure 2. (a) Fire boundary of the Mersey Fire Complex (2016) in Tasmania; (b) Ignition points at 1. 

Dove River, 2. February Plains, 3. Mersey Forests, 4. Lake Bill; (c) Locations of the study sites are 

shown and the location of the RTK DGPS Base station, placed on marker ST_478. 

2.2. UAS Platform 

A DJI Phantom 4 Pro (DJI, Shenzhen; https://www.dji.com/phantom-4-pro) was used to map all 

five sites in the study area. The DJI Phantom is equipped with a CMOS active pixel sensor camera, 

which is mounted on a gimbal to stabilize it during the flight. The camera collects 20-megapixel 

imagery at a rate of one image every two seconds. The DJI Phantom contains a navigation-grade 

global navigation satellite system (GNSS) receiver that is used by the autopilot to follow a predefined 

flight plan and to geotag the imagery captured during flight. For each site, the positions of the four 

corner GCPs were marked and stored in the ground control software, Ground Station Pro (GS Pro), 

to help delineate the flight boundaries. This allowed GS Pro to automatically calculate a flight pattern 

consisting of a series of way-points that would provide coverage of the site at the desired overlap 

settings. Two grids were flown at the same elevation above the ground (Figure 3a and Figure 3b), 

these two grids were then combined to create what is referred to as a double grid (Figure 3c). Flying 

heights varied between sites depending on spatial extent, but commonly started at 30 m above 

ground level (AGL). For UAS mapping of 3D structure, high overlaps (>70%) are required [31], and 

this for this study we used a forward image overlap of 80% and a side overlap of 75%. Flight details 
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of each site can be found in Table 1. This table also includes the ground sample distance (GSD) and 

the altitude range. Because the Sphagnum mires develop on generally flat areas, the effect of GSD is 

not significant for this study and the main variations in altitude are caused by the rocky edges at the 

borders of the study sites.  

 

Figure 3. Different flight patterns used for each site at lowest altitude with (a) a single grid (Grid 1), 

(b) a second single grid (Grid 2), and (c) a double grid consisting of patterns a and b combined. 

Table 1. Details about each study site including the number of photos acquired by DJI Phantom and 

the ground sample distance (GSD) of the orthophotos and digital surface models 

    
Jack’s Lagoon Eagle Valley  Flat Valley  Basin Heath 

(JL) (EV) (FV) (BN) (HT) 

Area (m²)  10,280 7044 3805 5250 4928 

Altitude range ASL (m)  1258–1266 1202–1206 1206–1222 1177–1201 1119–1141 

Flying height AGL (m)  40 30 30 30 30 

Number of Images Grid 1 364 243 140 274 134 
 Grid 2 357 271 160 292 169 

 Double Grid   721 514 300 566 303 

GSD (cm) Orthophoto 2 1 1 1 2 

 DSM 3 2 2 2 3 

2.3. Georeferencing 

The markers that served as GCPs for this study were made of laminated A3 size sheets of paper 

and contained a black dot indicating the center. The markers were kept in place on the ground with 

metal pegs. For each site, four control points were laid out at the corners, after which a remaining 12 

to 16 markers were distributed randomly over the study area such that they were evenly distributed 

within the rectangle formed by the corner points. There was not method used for this, it was simply 

based on years of experience in GCP distribution (see Figure 4). The 3D geometric positions of the 

GCPs were measured with accuracies of 2–4 cm in horizontal and 4–8 cm in vertical directions with 

a real-time kinematic dual frequency Leica 1200 DGPS system (Leica Geosystems, Heerbrugg, 

Switzerland). The receiving antenna (the rover) was held by the operator on the marker (with the 

assistance of a tripod to keep the antenna level) whilst receiving corrections from a local base station, 

situated within 6.2 km radius (see ST_478 marker in Figure 2c).  

The photogrammetry software, Agisoft Photoscan (Agisoft, Saint Petersburg, Russia) 

Professional version 1.4.1, was used to generate 3D models from the photographs. Photoscan utilizes 

modern structure from motion (SfM) and multiview stereopsis (MVS) algorithms to process multiple 

UAS images and thus enables the creation of an orthophoto and DSM of the area over which imagery 

was captured. Detailed descriptions of typical Photoscan workflows can be found in Verhoeven [32]. 

In a typical workflow, GPS coordinates from the cameras are used to identify the 3D position of each 

keypoint and a sparse point cloud of the area is created. The image alignment was initially executed 

in Photoscan using a low accuracy to arrange the images into an approximated position to assist with 

the identification of GCPs. Manual georeferencing was applied by identifying the GCPs in as many 

images as possible, after which camera calibration parameters (f, cx, cy, k1-k4, b1, b2, p1, p2) were 

optimized and all images were re-aligned using a high accuracy setting. The alignment in high 

a b c
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accuracy was run with no restriction on the maximum number of keypoints and tie points. The 

second phase, MVS, searches for additional points and densifies the point cloud, which in this study 

resulted in an increase in the number of points by an approximate factor of 10. For the point cloud 

densification in Photoscan, quality was set to high and depth filtering was kept at default (aggressive) 

as it was found that this option filters out the anomalies, hence creates smoother and more reliable 

surfaces for open sites. 

Three scenarios were created and applied to each site (see Figure 4). For one of the scenarios, 

only the approximate GPS locations of the cameras (geotags) were used to generate a DSM and 

orthophoto. This scenario is referred to as Sky_GCP. In the second scenario, Four_GCP, only the four 

GCPs located in the corners of the site were used for georeferencing. The third scenario uses all GCPs 

(16–20) for model georeferencing and is referred to as All_GCP. Models that have not been controlled 

with accurate position data can often contain distortions, which are normally corrected via the use of 

accurate GCPs. The DSM based on the model that used all GCPs was used as the reference scenario 

as it was the most accurate and robust DSM for each site. For the Sky_GCP scenario, where no manual 

GCP identification was applied, the image matching phase was directly executed in high accuracy. 

 

Figure 4. The three scenario’s (a) Sky_GCP, (b) Four_GCP, and (c) All_GCP for the study site Flat 

Valley. The figure simultaneously gives an indication of the distribution of the GCPs. 

2.4. Accuracy Assessment 

Two different approaches were used to analyze the DSM accuracy. First, the vertical error of 

each DSM was quantified by using the GCPs as checkpoints. For each site, the DSMs and orthophotos 

of the different scenarios were exported from Photoscan. The orthophotos were required to visually 

assess the locations of the GCP markers. For the SKY_GCP scenarios, all GCPs could be used as 

checkpoints to calculate the root mean square error (RMSE) and standard deviation (STDEV) of the 

absolute error. For the Four_GCP scenarios, all but the corner GCPs were used as checkpoints. For 

the third scenario, All_GCP, no checkpoints were available as all points were used as GCPs (see 

Figure 4). The vertical errors of these points provided by Photoscan were used to obtain the RMSE 

and STDEV. This does not provide a true accuracy assessment, but rather the residuals of the process 

to fit the point cloud model to the GCPs. However, these values were necessary as a comparison to 

analyze the performance of the other two scenarios. Additionally, it could give an indication of the 

internal precision of the GCP based DSMs which were used as the reference scenario for later stages 

of our analysis. 

The second accuracy assessment technique quantified the amount of artificial slope (i.e., slope 

that was not present in the real world) that could be found in the poorly controlled DSMs. The DSM 

from each scenario was compared to the reference DSM, which was assumed to be corrected from 

any tilting and sloping effects since all the GCPs were used to control the photogrammetric model. 

The first step of the slope analysis was to shift the planimetric location of the SKY_GCP DSMs to the 

same location as the reference GCP controlled DSM. This was done by identifying and matching the 

center of five GCPs from the respective orthophotos and using ENVI 5.4 (Harris Geospatial, 

Broomfield, CO, USA; https://www.harris.com/solution/envi) to apply a polynomial transformation 

a b c 
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with nearest neighbor resampling. The Four_GCP based DSMs did not require this transformation 

as the use of the four corner GCPs meant that they were already in the same planimetric location as 

the reference DSMs. Once alignment was complete, the SKY_GCP and Four_GCP scenarios were then 

subtracted from the reference DSM, which resulted in a difference map. Transects were then extracted 

at all angels of the compass (i.e., 0°–360° at 1° steps) from the difference map. The slopes of these 

transects were calculated, and the maximum tilt of the DSM could then be identified from the set of 

extracted transects.  

2.5. Hydrological Surface Models 

The primary objective of this study was to create reliable DSMs of Sphagnum peatlands such that 

they could be used to create hydrological surface models. Broad-scale hydrological modelling 

algorithms are designed for large catchments (>100 km2) and are generally not suitable for 

microtopography surface models with a high spatial resolution. This study implemented a similar 

hydrological modelling technique that was used by Lucieer et al. [33] to simulate snowmelt runoff in 

Antarctic moss beds. The Sphagnum peatlands have a similarly complex microtopography to the 

Antarctic moss beds thus it was hypothesized the same hydrological modelling process would be 

suitable. This technique makes use of the TauDEM command-line tools (Utah State University, 

Logan, UT, USA) [34] and requires a DSM as input to allow simulation of water flow and surface 

wetness. TauDEM uses the D-infinity contributing area algorithm to compute the relative flow 

accumulation. The D-infinity algorithm is an adaption to the D-8 algorithm, which assigns the value 

of the center grid cell to one of its eight neighboring cells with the steepest slope [35]. The D-infinity 

approach uses a continuous angle to calculate the direction of flow, providing more possibilities for 

flow directions and thus a more realistic model [34]. For detailed information about the TauDEM 

tools, see Tarboton and Mohammed [36]. 

The hydrological model was applied to the Heath study site, as during the accuracy assessment 

this site was found to have low vertical errors. The reference DSM, the Four_GCP and Sky_GCP 

scenario DSMs were used for hydrological modelling testing and comparison. This was repeated for 

an additional site, Basin, which showed a lower DSM accuracy compared to the Heath site. The pencil 

pine trees needed to be removed from the DSM prior to hydrological modelling, which was done 

using the Photoscan “classify ground points” algorithm with default settings (max. angle 15 degrees, 

max. distance 1m and cell size 50m). Otherwise, the pencil pines could add an extra uncertainty to 

the eventual hydrological models. Additionally, a Monte Carlo simulation was applied to each DSM, 

to account for the relative vertical error in the model. The Monte Carlo simulation created slightly 

different realizations of the DSM, by adding a predefined amount of random noise to the height 

values of the DSM. The range of noise is defined by the standard deviation of the error derived from 

GCP validation of the DSM. In this study we used the same value for random noise (0.044 m) as found 

by Lucieer [33] as this is a typical value when conducting an RTK based ground controlled UAS 

survey. The outputs of 150 DSM derivatives were used as inputs for the hydrological model. To 

improve the speed of the DSM error computations, the spatial resolution of the DSMs was reduced 

from 2 to 10 cm. The simulation of the reference DSM was run in full resolution as well, showing no 

obvious visual difference in the final output.  

The Monte Carlo simulation was implemented in Python and was used to run three TauDEM 

command line tools for each DSM iteration: pitremove (removal of pits), dinfflowdir (D-infinity flow 

directions), areadinf (D- infinity contribution area or flow accumulation). The outputs of these three 

steps were then used to calculate a topographic wetness index (TWI), which is described by the 

inverse relation between the contributing area and the slope [37]. 

3. Results 

3.1. DSM Accuracy Assessment 

The absolute accuracy and artificial slopes for each scenario were analyzed and the results are 

shown in Table 2. From the five study sites, the sites Heath and Jack’s lagoon performed best for both 
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the error assessment and slope analysis. The vertical errors of the Four_GCP scenarios for both Heath 

and Jack’s Lagoon remained almost equal to the GCP scenarios. For both these sites an artificial slope 

was evident in the Four_GCP DSMs, but did not exceed 0.05 degrees. For the other sites (BN, EV, FV), 

DSM vertical errors significantly increased in the Four_GCP DSM scenarios. For Flat Valley, an 

artificial slope of 0.1 degrees was found for the same scenario. For Basin and Eagle Valley, the DSM 

difference map showed doming effects instead of slopes and due to an extreme amount of noise in 

the point clouds used to generate the DSMs, no maximum slope could be determined. Comparing 

the Four_GCP scenarios to the Sky_GCP scenarios, a significant improvement is visible in both the 

vertical error and sloping effects for all sites (Table 2). For the Sky_GCP scenarios, sloping effects 

exceeded 1 degree for BN, EV, and FV, but remained below 1.0 degrees for HT and JL.  

In addition to the shown scenarios, more scenarios for each site were created using imagery from 

one or two additional flying heights consisting of single grids, with the aim to make the 

photogrammetric model alignment more robust especially in terms of topography. However, no 

(significant) improvement of using multiple flying heights could be found for any of the scenarios, 

whilst processing time increased exponentially as extra flying heights were introduced. The All_GCP 

scenarios from multiple flying heights did indicate that the reference scenario (All_GCP) remained 

relatively stable, as no artificial slopes became apparent during subtraction of DSMs. 

Table 2. Results of DSM accuracy assessment, showing the root mean square error (RMSE) of the 

DSM in vertical direction, measured with vertical GCP values as reference, the standard deviation 

(STDEV) of the absolute errors and maximum slope measured from the DSM difference maps for each 

scenario, for the five study sites. Note that the values of the All_GCP scenarios are solely based on the 

vertical errors provided by Photoscan, as no checkpoints were available. 

    All_GCP Four_GCP Sky_GCP  

Basin - BN 
RMSE (m) 0.03 0.58 0.28  

STDEV (ABS error)  0.02 0.41 0.32  

  Max slope (°) 0.00 domed 1.50  

Eagle Valley - EV 
RMSE (m) 0.03 0.83 1.20  

STDEV (ABS error)  0.03 0.33 0.45  

  Max slope (°) 0.00 domed 1.25  

Flat Valley - FV 
RMSE (m) 0.09 0.19 0.73  

STDEV (ABS error)  0.04 0.07 0.35  

  Max slope (°) 0.00 0.10 1.10  

Heath - HT 
RMSE (m) 0.02 0.03 0.21  

STDEV (ABS error)  0.01 0.02 0.14  

  Max slope (°) 0.00 0.05 0.35  

Jack's Lagoon - JL 
RMSE (m) 0.02 0.02 0.31  

STDEV (ABS error)  0.01 0.01 0.19  

  Max slope (°) 0.00 0.04 0.75  

3.2. Hydrological Surface Model Assessment 

The Heath study site was used to assess the quality of the hydrological surface models from the 

three main scenarios. Figure 5 displays the orthophoto and DSM of the site and the two end products 

of the hydrological modeling process (Section 2.5) derived from the reference DSM. These are the 

average flow accumulation and topographic wetness index, averaged from 150 iterations of the 

Monte Carlo simulation. The damaged Sphagnum mires are situated approximately in the center and 

are indicated in Figure 5a. The DSM clearly shows the natural slope in easterly direction, where the 

largest altitude difference is caused by the rocky ridge in the West. There is a maximum elevation 

difference of 22 m, which implies an average slope of approximately 6.5°.  

The flow accumulation map shows the distribution of water accumulation over the study site. 

The streams indicated in the south eastern corner (Figure 5c-i) coincide with streams that were 

present at the study site and can also be seen in the orthophoto. The larger stream is fed from smaller 
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streams northeast of the map, which coincide in the orthophoto with the location of a small pool 

complex (Figure 5a-ii). The streams formed on the western side most likely originate from 

accumulation caused by the sloping edge in the northwestern part of the map. It can be further 

noticed that the major stream lines do not flow over the Sphagnum, although some of these channels 

gain their water partially from the smaller streams generated in the Sphagnum mires. The topographic 

wetness index map shows wet patches that overall, coincide well with the pools in the orthophoto 

(Figure 6). The pool complex in the northeast is however not well represented by the TWI map, as it 

shows smaller and fewer pools than were actually present (Figure 5a-ii and 5d). Additionally, several 

tiny wet patches are created in between the Sphagnum mires, which were not present during field 

survey. Overall, the Sphagnum is represented as relatively dry in the TWI map as well as in the flow 

accumulation map. 

After processing the reference scenario, the hydrological models were run using the DSMs of 

the Four_GCP and Sky_GCP scenarios at one height. These DSMs contained a maximum artificial 

slope of 0.05° and 0.35° respectively compared to the reference scenario (Table 2). There were no 

significant visual differences found between the reference model outputs and Four_GCP and 

Sky_GCP scenarios. Small differences in streamlines can be seen in the flow accumulation map, 

however, the most significant streamlines were similar in all three scenarios. No visual differences 

were found between the TWI maps of the different scenarios.  

 

Figure 5. (a) Orthophoto of the Heath study site with a dashed circle indicating the position of 

Sphagnum peatlands; (b) DSM from the reference scenario; (c) flow accumulation model derived from 

reference DSM; and (d) topographic wetness index map derived from the reference DSM. 

i 

ii 
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ii 
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Figure 6. The left image shows a zoomed part southeast of the TWI index of Heath (All_GCP) and the 

right image shows the same part from the orthophoto. The size of the area is approximately 50 × 50 

m. 

The hydrological model process (Section 2.5) was repeated for the Basin study site, using the 

reference DSM and Sky_GCP DSM. The Basin site differs topographically from Heath as it is a 

relatively flat area, surrounded by steep rocky ridges, instead of sloping in one direction. During the 

accuracy assessment, the DSM subtraction of these two scenarios showed significantly larger artificial 

slopes than for the study site Heath. In Figure 7a, the DSM of the reference scenario is overlain on the 

orthophoto, showing the rocky ridges in the Southeast. The TWI maps of Sky_GCP and reference 

scenario can be seen in Figure 7b and 7c respectively and visual comparison demonstrates one major 

difference. Where the TWI map of the reference scenario captures the positions of the pools as is 

shown in the orthophoto, for the Sky_GCP scenario, a large pool was created right below the steep 

rocky ridges. This large feature was not present during field survey and is also not visible in the 

reference TWI map. The maximum artificial slope for Sky_GCP of 1.5° (see Table 2) is directed 

towards this pool (SE). There was no artificial doming created for this scenario. 

 

TWI Sky_GCP: Smax 1.5° 

TWI Reference Scenario 

a 

b 
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Figure 7. (a) DSM of the Basin reference scenario overlain on the orthophoto; (b) a zoomed part of the 

topographic wetness index map of Sky_GCP scenario; and (c) a zoomed part of the topographic 

wetness index map of the reference scenario. 

4. Discussion 

4.1. DSM Accuracy Assessment  

Five different Sphagnum dominated study sites in northern Tasmania were surveyed with a UAS, 

and DSMs were generated using different georeferencing scenarios. Overall, the vertical errors that 

were computed by Photoscan for the All_GCP scenarios (16-20 GCPs) were similar to findings of 

other studies that used ground control for UAS derived DSMs and found to be in the range of ~0–5 

cm [28,33,38–40]. For the Four_GCP scenarios, the errors remained similar to the All_GCP scenarios 

for the Heath and Jack’s lagoon sites, but increased to exceed 10 cm for the remaining scenarios. 

Additionally, doming in the DSMs occurred in the Four_GCP scenarios for Eagle Valley and Basin. 

It should be noted that the topography of Eagle Valley was naturally doming (altitude was highest 

towards the center of the site), which could have been an underlying reason for the doming effect 

that occurred for Eagle Valley Four_GCP. As previously mentioned, Tonkin and Midgley [28] found 

errors below 10 cm when using four ground control points, whereas the study conducted by Clapuyt 

et al. [26] revealed larger errors when using four corner points, with a mean of 0.31m, compared to a 

mean of 0.02m when using 15 GCPs, for a similar sized area. Clapuyt et al. [26] came to the conclusion 

that georeferencing errors increase proportionally with distance between GCPs, resulting in larger 

errors and weak reproducibility with irregularly scattered GCPs. Additionally, James et al. [41] stated 

that control precision, i.e., the effect of underestimation or overestimation of control point accuracy, 

is equally important as the GCP distribution. Harwin and Lucieer [27] commented that variation in 

terrain should be considered with GCP distribution, where steeper terrain requires a higher GCP 

density. 

A few hypotheses are presented that could explain the overall higher accuracy performance of 

Heath and Jack’s Lagoon, compared to the other sites, Basin, Eagle Valley, and Flat Valley. First, the 

DSMs of Heath and Jack’s lagoon differed from the other sites, as they were relatively square in shape, 

whereas the areas of the other sites were an elongated rectangle. Additionally, Basin, Eagle Valley, 

and Flat Valley were surrounded by steep terrain that was (partially) captured by the UAS and pencil 

pine trees were distributed over the area. These factors increased the amount of DSM variation in 

vertical direction and might have added a complexity factor to mapping the topography. 

This study has highlighted that for reliable DSM production GCPs are required. Whilst using as 

few as four GCPs did produce accurate results for some trial sites, this method did not work in all 

cases (see Table 2) and thus cannot be used confidently. An alternate method for removing the need 

for GCPs was tested during this study. That is, for one site (Basin) we collected imagery on two 

separate field trips, under different lighting conditions (one late in the evening, one during the 

afternoon). The afternoon imagery contained GCPs and was processed and aligned based on camera 

reference with Photoscan to create an orthophoto and DSM. The late evening imagery was then 

imported into the Photoscan job and aligned with the already controlled afternoon imagery. The 

original afternoon images were then disabled, and the orthophoto and DSM created based on the 

now accurately aligned evening imagery.  

The aim of this methodology was to effectively control the second image dataset based on the 

first, if this were successful it would mean that once there is an accurately controlled model of a site, 

subsequent image collections would not need control as they could be matched to the earlier dataset. 

This method requires the scenes to have sufficient elements that remain unchanged over time, such 

that features can be matched between the two datasets. It was hypothesized that this would work for 

the peatlands as they contain a lot of rocks that will not change over relatively short time frames.  

The method of aligning new images to a controlled model was not successful. Whilst the 

orthophoto produced with this methodology had an accuracy of 1–2 pixels in comparison to the fully 

controlled orthophoto, there were issues with the DSM. The DSM exhibited a significant artificial 
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slope (>1°) similar to the Sky_GCP scenarios (see Table 2). Thus, for the purposes of this study, which 

relies on accurate DSMs for hydrological surface modelling, this method also fails to eliminate the 

need for GCPs.  

Therefore, future steps will focus on efficient ways for georeferencing areas that are to be 

monitored over time. Prospects for future approaches include using objects that stay consistent over 

time—e.g., exposed rocks—that can function as permanent GCPs. This could be achieved by painting 

markers on the rocks and collecting their position with a RTK DGPS. However, this method would 

still require extensive field campaigns for any new sites in which markers would have to be 

established and measured with a RTK DGPS. Also painted markers will have to be upkept to ensure 

they remain visible for future campaigns, and of course it will be necessary to ensure that the method 

used to mark the rocks does not introduce any harmful substances into the environment. 

Alternatively, onboard, accurate RTK GPS units and post processed kinematic (PPK) solutions are 

now becoming a populate and more cost-effective option of geotagging UAS imagery. It is yet to be 

seen if they can achieve a high absolute accuracy in a repeatable fashion and thus if they would be a 

viable option for creating accurate DSMs of Sphagnum peatlands. 

4.2. Hydrological Models 

The results of the hydrological modelling provide a good qualitative indication of flow 

accumulation in Sphagnum dominated peatlands and are in line with the study by Lucieer et al. [33], 

where the same TauDEM tools were used to simulate snowmelt in Antarctic moss beds. The 

topography of the study area of Lucieer et al. [33] is similar to these study sites, as they both consist 

of low vegetation cover and rocks, with a complex hydrological micro-topography. For the Monte 

Carlo simulation, a vertical error had to be defined. In reality, this error spatially varies as it is related 

to geometry of the camera [33]. Additionally, the accuracy assessment demonstrated the variability 

of the DSM vertical error between study sites and scenarios. However, as this study aimed to compare 

the performance of the DSM regarding the different scenarios, all other variables were kept constant. 

The results from the Basin site showed that if the artificial slope present in the DSM is too large 

it is not possible to derive reliable hydrological maps. However, for the Heath site, the DSM generated 

without any ground control did not deviate significantly from the reference model, possibly because 

the Sky_GCP scenario contained artificial slopes (~0.35°) that were much less than the natural slope 

of the site (~6–7°). Small differences for the Heath site in streamlines became visible between the flow 

accumulation map of the GCP and Sky_GCP scenarios, which are mainly caused by the difference in 

size between the DSMs. The Heath reference DSM was built with photos covering a larger area than 

the Sky_GCP scenario. As the hydrological model input values of surface water are defined as the 

size of each pixel (10 cm), a DSM with a larger area results in higher accumulation values and can 

influence the flow direction.  

This study has demonstrated the best methodology for the creation of accurate hydrological 

models of Sphagnum mires. This methodology will now be used to map and monitor the hydrology 

of Sphagnum mires in a representative selection of sites throughout the effected landscape as part of 

an ongoing restoration program. The ultra-high resolution DSM data is essential to detect the micro-

topographic changes in the damaged mires and also to model the potential locations for restoration 

intervention. 

The hydrological models could be further improved by including vegetation variables, such as 

water infiltration. However, because the Sphagnum sites that were visited during this study were 

largely damaged by fire, their water holding capacity is uncertain, hence this factor will be difficult 

to include. An overall objective of this project is to inform peatland rehabilitation, therefore the next 

step will focus on quantifying hydrological changes when artificial restoration interventions (e.g., 

dams) are added to the hydrological surface models with the aim to increase water availability to 

areas with damaged Sphagnum. Another approach that could be of significant importance to peatland 

rehabilitation, is the use of spectral signatures gained from high-resolution multispectral UAS 

imagery to identify different health states of Sphagnum, which is planned for future field campaigns. 
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5. Conclusions 

The objective of this study was to generate reliable digital surface models (DSMs) of Sphagnum 

dominated peatlands from UAS, for the purpose of creating hydrological surface models, thereby 

assessing efficient ways for accurate georeferencing. This has been achieved by generating three 

different scenarios for five study sites in northern Tasmania. Sites Heath and Jack’s Lagoon presented 

the lowest vertical errors. The errors of All_GCP and Four_GCP scenarios were within a range of 0.03 

m and for the Sky_GCP scenarios, errors remained below 0.5 m. For these two sites, artificial slopes 

in the DSMs were found for the Four_GCP scenarios, however these did not exceed 0.05°. DSMs 

without ground control showed a strong increase in artificial slope for both sites, reaching up to 

around 0.8°. The DSMs from the sites Basin, Flat Valley, and Eagle Valley resulted in significantly 

larger vertical errors for the Four_GCP scenarios and often exceeded 10 cm. Slopes for the Sky_GCP 

scenarios often exceeded 1°. Additionally, the slope assessment revealed doming of the Four_GCP 

scenarios for sites Basin and Eagle Valley. Basin, Eagle Valley and Flat Valley differed from Heath 

and Jack’s Lagoon by shape (elongated rectangle vs. square) and complexity of topography, where 

for the first three sites the trees and steep rocky ridges increased the amount of variations in the 

vertical axis of the DSMs.  

After the DSM accuracy assessment, hydrological surface models were created for Heath and 

Basin, using the reference scenario with all ground control points (16–20) and the Sky_GCP scenario, 

where no ground control points were used. After a visual comparison with the orthophoto, the 

reference scenarios suggested to provide good qualitative representations of flow accumulation and 

topographic wetness. The artificial slope of the DSM for Heath for the Sky_GCP scenario (0.35°) was 

too small to cause significant changes in the hydrological models. For Basin, the Sky_GCP scenario 

contained an artificial slope that resulted in a false representation of water accumulation in the 

topographic wetness index model. The use of regularly distributed GCPs are necessary to generate a 

reliable topography from UAS for Sphagnum dominated peatlands. However, for areas where 

Sphagnum is badly damaged and further damage needs to be minimized, the use of at least four GCPs 

around the edges and potentially an additional GCP in the center of the area, would suffice. DSMs 

that are generated without any ground control method are not reliable enough to be used for 

hydrological surface models, hence the use of GCPs is strongly advised. Further research should 

demonstrate whether other approaches could be used to easily facilitate accurate georeferencing of 

UAS imagery. 
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