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Abstract: Jack pine (pinus banksiana) forests are unique ecosystems controlled by wildfire. 

Understanding the traits of revegetation after wildfire is important for sustainable forest 

management, as these forests not only provide economic resources, but also are home to specialized 

species, like the Kirtland Warbler (Setophaga kirtlandii). Individual tree detection of jack pine saplings 

after fire events can provide information about an environment’s recovery. Traditional satellite and 

manned aerial sensors lack the flexibility and spatial resolution required for identifying saplings in 

early post-fire analysis. Here we evaluated the use of unmanned aerial systems and geographic 

object-based image analysis for jack pine sapling identification in a region burned during the 2012 

Duck Lake Fire in the Upper Peninsula of Michigan. Results of this study indicate that sapling 

identification accuracies can top 90%, and that accuracy improves with the inclusion of red and near 

infrared spectral bands. Results also indicated that late season imagery performed best when 

discriminating between young (<5 years) jack pines and herbaceous ground cover in these 

environments. 
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1. Introduction 

Post-fire remote sensing applications aim to provide timely spatial and spectral information 

regarding forest structure, composition, and vigor during regeneration [1]. Moderate resolution 

satellite imagery does not provide optimal spatial resolution for individual tree detection (IDT), or in 

cases where high-spatial resolution is available, and may be costly [2]. Satellite remote sensing also 

suffers from a lack of flexibility in temporal resolution and is susceptible to atmospheric noise [3]. In 

contrast, aerial remote sensing provides flight planning that is more flexible and provides increased 

spatial resolution, but still suffers from atmospheric interference. Given these critical issues, 

unmanned aerial systems, hereafter referred to as UAS, have gained interest by forest ecologists for 

understanding patterns, processes, and forest structures [4]. 

Unmanned aerial systems provide an excellent alternative to satellite imagery, providing higher 

spatial resolution and temporal frequency at a much more cost-effective rate than manned aircraft 

and satellite sensors [2,5]. Limitations to their use include small payload capacity, limited battery life, 

and a lack of professional standards for their use [2,5]. There is a critical need to establish standard 

protocols to produce reproducible, repeatable workflows. Individual tree detection (IDT) is one 

application of UAS that is imperative for forest management [6,7]. 

Several methods exist for ITD using remotely sensed data, many use 3D data, like Light 

Detection and Ranging (LiDAR). New methods of generating structural data have arisen like 
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structure from motion (SfM). Using UAS imagery to generate SfM multi-view stereo (MVS) is now 

widely recognized as a valid and low-cost method to generate both orthomosaics and digital surface 

models (DSMs) derived from 2D image sequences [5,6]. In their study of SfM derived IDT, Reference 

[7] performed ITD using UAS-SfM derived canopy height models based on algorithms designed for 

LiDAR data processing. The authors achieved the most accurate results for smoothing window size 

(SWS) at 3 × 3 irrespective of the fixed window size (FWS). In their assessment of models utilizing 

SWS and FWS of 3 × 3, the authors achieved a statistical F-scores greater than 0.80. Reference [8] 

reconstructed poplar saplings using digital photographs and terrestrial LiDAR (T-LiDAR), finding 

that T-LiDAR was more accurate at 3D construction than digital photographs, but at a much higher 

cost. Reference [9] examined the potential contribution hyperspectral imagery makes to IDT, 

achieving accuracies between 40% and 95% in tree detection. A comparison of LiDAR and SfM 

technology by Reference [10] indicated achieved accuracies of 96% and 80%, respectively, and the 

authors concluded that the technologies were capable of producing equally acceptable results for plot 

level estimates. These studies indicate that photogrammetric methods can provide accurate results 

for identifying tree crowns; however, none of these studies addressed sapling identification in natural 

environments. Additionally, processing photogrammetric datasets like SfM and LiDAR are 

computationally intensive for large areas. Finally, Reference [11] developed a land cover classification 

using multi-view data using a conditional random field (CRF) model, leading to accuracy 

improvements between 6% and 16.4% for a variety of classification methods. While these methods 

show promise of integrating multiple image view points for constructing classifications, we posit that 

there is still a need to develop robust low-cost (computationally and fiscally) methods for IDT; 

furthermore, there is a need to assess our ability to identify saplings in natural environments using 

these methods.  

An alternative to structure-based methods of IDT is spectral analysis. Near infrared (NIR) and 

red (R) spectral brightness values can provide important indictors regarding vegetation. Green leaves 

exhibit maximum chlorophyll absorption at 0.69 µm (red) and show optimal reflection in the adjacent 

near-infrared region (0.85 µm) [12]. The reflectance values in these two regions are exploited in a 

number of vegetation indices such as the Normalized Difference Vegetation Index (NDVI) [13]. The 

NDVI is used for a wide range of applications including land cover classification, deforestation, 

change detection, and monitoring [14]. It also serves as an indicator of biophysical parameters, like 

leaf-area index (LAI), biomass, and absorbed photosynthetically active radiation (fAPAR) [15]. Using 

the ratio method, NDVI reduces noise due to cloud shadowing, atmospheric attenuation, and 

illumination differences [16]. The NDVI has several shortcomings as well, including oversaturation 

of signal in high-biomass regions and background sensitivity [17]. 

More recently, multispectral sensors aboard remote sensing platforms have begun to include a 

red-edge (RE) band, a sensor recording reflectance of the segment of the electromagnetic spectrum 

between the R and NIR bands. One such sensor is the MicaSense RedEdge 3, that includes an RE 

Band ranging from 0.701 µm and 0.724 µm. Similarly, the Rapid-Eye multispectral imager acquires 

RE data between 0.69 µm and 0.73 µm [14]. These RE sensors are sensitive chlorine and nitrogen 

concentrations [18–20], land cover classification [18], and to improve detection of damage to tree 

foliation [21]. Given the relative novelty of these sensors, there is some debate about how much they 

can improve accuracy achievable with combinations of the R and NIR bands. 

This paper is also motivated by broader ecological and management objectives. Jack pine 

ecosystems, like those across Northern Michigan, are particularly influenced by fire [22]. Modern fire 

rotation in Michigan’s jack pine forests have extended an order of magnitude longer than historical 

fire rotations [22]. Forest fire suppression due to human settlement has led to a decrease in the extent 

of jack pine ecosystems within the state [23]. Understanding disturbance regimes within these forests 

is important for the assessment and design of management practices, like natural disturbance 

emulation [24]. Earlier research suggests that burned sites lead to greater species richness than clear-

cut sites, which may affect species of interest, like the endangered Kirtland Warbler (Setophaga 

kirtlandii) [25]. To understand more clearly how fire regimes affect early regeneration of jack pine 

ecosystems, timely, high-resolution data are needed. 
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According to Reference [26] there is still limited understanding of how UAS data are acquired, 

processed, and used. The aim of this research is to understand the spectral and seasonal requirements 

necessary for ITD of jack pine (Pinus banksiana) saplings in a post-fire environment through the use 

of multispectral imagery. We evaluate (1) which spectral band combinations provide the best 

accuracy in the detection of jack pine saplings and (2) which period in the vegetation growing season 

is the most suitable to properly identify jack pine saplings. 

2. Methods and Materials 

2.1. Study Area 

Started on 23 May 2012, the Duck Lake Fire scorched nearly 8900 ha of forest north of Newberry, 

Michigan (46°39’20.84” N, 85°26’11.59” W). The Michigan Department of Natural Resources (MDNR) 

manages the site, located in the Lake Superior National Forest. A subsection of the fire-affected area 

was used in this analysis, as shown in Figure 1. 

 

Figure 1. Duck Lake study area in UP of Michigan, USA. The NAIP image was acquired in 2008, prior 

to the fire. Plot A is on the eastern edge while Plot B is in the southwestern corner of this image. 

The sandy nature of soils in this area are likely the result of being covered by Glacial Lake 

Algonquin, which extended over much of the Eastern Upper Peninsula circa 11,000 B before present 
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(BP). This glacial lake deposited a wide variety of sediment from the sands found around Seney, 

Michigan to the south west of the study site to heavy clay in Chippewa County, to the east of the 

study site [27]. This study area is characterized by having sandy, well-drained soils [28] with reduced 

nutrient content. 

The Upper Peninsula of Michigan is categorized as having a humid continental climate. The 

highest average temperature occurs during the month of July at 78 °F (25.7 °C). The lowest average 

temperature during the year occurs in January at 24 °F (−4.5 °C). August and September have the 

highest average precipitation at 3.5 inches per month; February is the driest month on average with 

only 1.18 inches of precipitation. There is a fair amount of cold weather with temperatures below 

freezing, leading to a change in precipitation from rain to snow. This usually occurs in late November 

or early December when the average temperature drops below freezing at 29 °F (−1.8 °C). Snow 

usually continues until March when the average temperature returns to the mid-30s (37 °F, 2.5 °C). 

The vegetation cover is characterized by a mixture of coniferous and deciduous tree species such 

as white spruce (Picea glauca), jack pine (Pinus banksiana), balsam fir (Abies balsamea), Black spruce 

(Picea mariana), tamarack (Larix laricina), maple (Acer), hemlock (Tsuga), American beech (Fagus 

grandifolia), white birch (Betula papyrifera), and aspen (Populus tremuloides) [29]. The landscape is 

characterized by sparse woody vegetation, framed by older unburned stands as shown in Figure 2. 

Stand density and age varies across the study area; however, both study sites used here were burned 

in the 2012 fire. 

 

Figure 2. Current landscape highlighting the devastation to the jack pine forest and the vegetation 

recovery as of summer 2017. 

2.2. UAS Image Acquisition 

Image collection took place during three field trips (T1 = 30 June 2017, T2 = 5 August 2017, T3 = 19 

August 2017) using a 3DR IRIS quadcopter UAS platform. Attached to the IRIS was a MicaSense 

RedEdge 3 multispectral camera, a 5-band sensor capable of simultaneously capturing images in the 

red (R), green (G), blue (B), red edge (RE), and near infrared (NIR) spectral bands. While other studies 

have used low-cost RGB sensors to engage in classification analysis with UAS data, the sensor array 

on lower-cost cameras does not have the bandwidth resolution or the narrow field of view (FOV) that 

is ideal for remote sensing applications dealing with structured vegetation. Additionally, the five 

bands on the sensor provided more options, allowing for identification and classification of sapling 

growth. Details of this instrument are provided in Table 1 while spectral specifications are also 

available in Table 2. Prior to, and after each flight, images were collected using a MicaSense 

reflectance tile for calibration of the imagery during the processing phase using Pix4D software [30]. 
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Table 1. Specifications of MicaSense RedEdge 3 multispectral camera [31]. 

Spectral Bands Blue, Green, Red, Read Edge, NIR 

Ground Sample Distance 8.2 cm/pixel (per band) at 120 m Above Ground Level 

Capture Speed 1 capture per second (all bands) 

Format 12-bit Camera RAW 

Focal Length/Field of View 5.5 cm/47.2 degrees FOV 

Image Resolution 1280 × 960 pixels 

NIR—Near Infrared, FOV—Field of View. 

Table 2. Spectral specifications of MicaSense RedEdge 3 multispectral camera [31]. FWHM is short 

for full-width half maximum. 

Band Number Band Name Center Wavelength (nm) Bandwidth FWHM  

1 Blue 475 20 

2 Green 560 20 

3 Red 558 10 

5 Red Edge 717 10 

4 Near IR 840 40 

Mission Planner software [32] was used to plot the flight path and altitude for autonomous data 

collection (Table 3). Images were collected every two seconds with a flight altitude of 80 m (240 ft) 

above the ground. Similar lighting conditions and saved mission paths (Figure 3) increased data 

consistency, while a side lap of 80% and end lap of 70% assured sufficient plot coverage. At the onset 

of the project, a dual frequency survey topcon High Precision GPS receiver was utilized to establish 

ground control points (GCPs). Due to the remote location of the study, and limited cellular network 

availability, gathering data with real-time kinematic (RTK) accuracy was not possible. The 3–4 h 

needed to establish ground control by setting up the GPS for static data collection at each of the plots 

for post-processing correction also proved too time consuming given the time constraints of 

fieldwork. Therefore, after careful consideration, it was determined that use of GCPs would only 

diminish the spatial accuracy of the imagery geotagged by the platform mounted GPS attached to the 

Micasense Red Edge. This decision was also rendered after taking into consideration that no temporal 

analysis between datasets was being conducted, so therefore survey grade accuracy was unneeded, 

and would only serve to limit the number of study sites.  

 

Figure 3. Example of data collection flight path. For scale, flight covers a one-hectare plot. 
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The RGB, RE, and NIR images were processed with the agriculture mosaic option in Pix4D 3.3 

[30]. This software uses Structure from Motion with Multi-View-Stereo (SFM MVS) technology to 

generate a point cloud, which was then used to generate a series of orthomosaics, based on objects in 

the imagery, and image location from geotagged images that contain latitudinal and longitudinal 

position [33].  

Table 3. Image acquisition campaign specifications. 

Plot Flight Images Altitude (m) Ground Resolution (m px−1) 

A 

T1 200 

80 

0.05505 

T2 200 0.05441 

T3 200 0.05513 

B T3 190 80 0.05561 

Pix4D created five orthomosaics, one for each of the spectral bands captured by the Mica Sense 

Red Edge camera. Next, ArcMap Desktop 10.5 [34] was used to create two multispectral stacked 

mosaics from each original Pix4D individual band orthomosaic output. One multiband composite 

contained the R,G,B, RE, and NIR bands and the other R,G,B,(NIR-R) band combination. The mosaics 

were then clipped to the plot boundary using the extract by mask tool in ArcMap Desktop 10.5 [34]. 

A sample of the image bands for Plot A are provided in Figure 4. 
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Figure 4. Sample of imagery derived for Plot A. 

2.3. Geographic Object-Based Image Analysis 

Geographic-object based image analysis (GEOBIA) is a method of image analysis whereby the 

image is segmented into candidate objects prior to classification [35]. The method is particularly 

useful for cases where individual objects, such as trees, are comprised of multiple pixels. This 

characteristic has made GEOBIA a common choice for UAS image analysis of vegetation [36]. A 

variety of classification methods can be implemented in a GEOBIA workflow. Here, we chose to use 

the random forest (RF) classification method [37]. Random forest is an ensemble classification method 

whereby multiple individual decision trees are built and merged to get an accurate predication. 

Random forest classification has become a popular technique within the remote sensing 

community due to its ability to achieve robust results with high-dimensional data, simple 

implementation, and faster performance over support vector machines (SVMs) [38]. Additionally, RF 

is robust against outliers [37]. Random forest is sensitive to several conditions. Training and 

validation samples must be statistically independent, training classes must be balanced and 

representative, and the sample size must be large enough to overcome the Hughe’s phenomenon of 

dimensionality [39]. This analysis combined GEOBIA and random forests to locate jack pine saplings. 

The current workflow is provided in Figure 5 below. 

 

Figure 5. Workflow for all processing and analysis. 

2.3.1. Image Segmentation 

Geographic-object based image analysis (GEOBIA) was applied to locate jack pine saplings on 

two 100 m2 plots. The pre-processed plot images were analyzed in eCognition Developer 9.2 [40]. To 
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segment the image, eCognition’s multi-resolution segmentation was implemented to divide the 

images into candidate objects or polygons (scale = 100, shape = 0.8, compactness = 0.8). This 

segmentation algorithm uses spectral, textural, shape, and size of image objects when segmenting the 

image with the expectation that those objects would vary in size depending on the image scale but 

still recognizable as objects by the classifier [41]. 

2.3.2. Random Forest Classification 

Once the image was segmented, classification of image objects was carried out using the random 

forest (RF) classifier in eCognition. For this classification we followed suggestions put forward by 

Reference [42]. For an RF classification, two parameters must be set. First, Ntrees defines the number 

of decision trees within the RF. This parameter is often set at 500 trees, as indicated by Reference [38]. 

The other parameter is the number of features, or variables, to use per classification tree, we denote 

as Nfeatures. 

A training data set was created using manual sampling (40 tree samples, 200 not tree samples) 

and saved in eCognition as Test and Training Area (TTA) masks for application in all RF 

classifications. The RF classifier was trained on eight features: mean brightness, max brightness, band 

mean spectral reflectance for R,G,B,RE,NIR bands, mean texture (gray-level co-occurrence matrix 

(GLCM)) in all directions, and textural dissimilarity (GLCM dissimilarity) in all directions. For the 

eCognition RF classification, the maximum tree number was set to 500, and active variables default, 

zero, was used. The remaining default parameters were used. This classification was then applied to 

each of the plots for each band combination (RGB+RENIR, RGB+NIR, RGB+RE, RGB+NIR-R). Next, 

“Tree” polygons greater than 150 pixels were set as “Not Tree” because none of the classified Tree 

polygons were greater than 150 pixels. 

2.4. Accuracy Assessment 

A reference data set was created by integrating the visual interpretations of three persons with 

trainee, intermediate, and expert levels of knowledge about image interpretation. A consensus-based 

approach, similar to methods used by medical image analysts was performed [43]. The use of such a 

method may be affected by “groupthink” when analysts’ answers are shared prior to interpretation, 

or by expert-bias if an expert’s opinion is given priority. In this case, the interpretation was carried 

out individually and then assessed for consensus. Agreement of two interpreters was required for a 

tree identification. For Plot A, a total of 369 tree points were identified, and a set of 369 points 

representing locations where no trees were located identified for Plot A’s reference data set, and 21 

points for “Not Tree” and 21 “Tree” points for Plot B’s reference set. The discrepancy in these values 

is due to the difference in sapling density between the two plots. In ArcGIS, the RF classification’s 

resulting thematic map polygons were merged so that two polygons were created, one for all “Not 

Tree” polygons and one for all “Tree” polygons. The results of this sampling effort can be seen in 

Figure 6. 
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Figure 6. Location of reference points for tree identification for T1 and T2 for plot A. Polygonal results 

of classification using Red-Edge images are also shown. 

Next, the validation points were joined to the image objects and each object was labeled as True 

Positives (TT), False Positives (TP), False Negative (FN), or True Negatives (TN). In order for a 

polygon to receive a True Positive assignment, the point must fall completely within a “Tree” 

polygon. This process led to all 738 points assigned to one of the four classes. These classifications 

were then used in an entity detection accuracy assessment, as described in References [42,44]. 

Four equations were used to summarize the accuracy of a binary entity detection [44], user 

accuracy (UA), producer accuracy (PA), count accuracy (CA), and F-score was then the weighted 

average of the UA and PA [44]. The UA accuracy measures errors of commission, Equation (2), (areas 

that were classified as class X but in reality should not be). The PA accuracy measures errors of, 

Equation (3), (areas that were not classified as class X when in reality they should be). Finally, F-

measure (F) was calculated using the UA and PA values. 

CA = (TP + TN)/(TP + TN + FP + FN) (1) 

UA = TP/(TP + FN) (2) 

PA = TP/(TP + FP) (3) 

F = (UA∗PA)/(UA + PA) (4) 

3. Results 

The results of this UAS GEOBIA was assessed with respect to (1) count accuracy; (2) user 

accuracy; (3) producer accuracy; (4) F-measure. These results are found below in Table 4. Plot A was 

used to analyze the seasonal effects on accuracy, while Plot B was used to demonstrate the 

applicability of this method in lots where the density of saplings was much lower. Accuracies were 

measured for the two study plots for four band combinations (RGB+RENIR, RGB+NIR, RGB+RE, 

RGB+NIR-R) and three dates (T1 = 30 June 2017, T2 = 5 August 2017, T3 = 19 August 2017). 
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Table 4. Accuracy results for Plot A and Plot B. 

Plot A 

Date Bands UA PA F-Score CA 

T1 

RE + NIR 0.46 1.0 0.63 0.72 

NIR 0.57 0.98 0.72 0.78 

RE 0.43 0.96 0.60 0.70 

NIR − R 0.60 0.94 0.73 0.78 

T2 

RE + NIR 0.50 1.0 0.66 0.75 

NIR 0.50 1.0 0.66 0.75 

RE 0.54 1.0 0.82 0.69 

NIR − R 0.79 0.97 0.71 0.88 

T3 

RE + NIR 0.64 0.96 0.78 0.81 

NIR 0.65 0.97 0.78 0.81 

RE 0.57 0.97 0.72 0.78 

NIR − R 0.79 0.97 0.87 0.88 

Plot B 

Date Bands UA PA F-Score CA 

T3 

RE + NIR 1.0 0.86 0.91 0.93 

NIR 1.0 0.86 0.91 0.93 

RE 1.0 0.80 0.889 0.90 

NIR − R 1.0 0.95 0.79 0.98 

User accuracy (UA), producer accuracy (PA), count accuracy (CA), and F-score. 

Accuracies achieved through this method were compared to determine the effects of seasonality 

and spectral band selection. In order to determine the effects of seasonality on accuracy, a comparison 

of the accuracies achieved for the three flight dates at Plot A were completed. In the case of the 

average F-score and count accuracy for each date, there was an increase in the level of accuracy 

achieved (Plot A CA: T1 = 0.75, T2 = 0.77, and T3 = 0.82). 

Next, a comparison of accuracies was conducted to determine which spectral feature was most 

useful for improving accuracy assessment. Since it was determined in the first analysis that T3 was 

the most optimal for identification of jack pine samplings, a second plot was added to the analysis to 

determine if the results were also applicable to locations with fewer trees. 

Across all times the case where the difference between the NIR and R spectral responses were 

most accurate in the identification of saplings. This was also evident in Plot B, at an even higher 

accuracy than those calculated for Plot A. This is likely due to the far fewer number of trees on the 

plot (N = 42). 

4. Discussion 

The results indicate that inclusion of the RE band had little positive impact on the overall 

classification accuracy (CA). It was also determined that the inclusion of RE was only beneficial when 

added with NIR data. The highest CA was achieved using RGB values with a NIR-R band 

combination at both second and third acquisition dates for plot A. Similar results were achieved on 

Plot B. The minimal impact of the RE band is similar to results found by Reference [45]. In that study, 

the authors found that the inclusion of the RE band and other new WorldView-2 bands were 

inconsequential to the accuracy of classification of sparse forests. However, in that study the main 

objective was classification of species. A study by Reference [46] found that the RE alone was not 

enough to improve classification accuracy for trees in semi-arid environments, and that inclusion of 

R and NIR were also necessary to improve accuracy. Thus, further research considering the potential 

benefits of using RE in classification. 

The results also suggest that seasonality has important implications for detectability of saplings. 

Seasonal changes in evergreen species are not as easily detected using greenness indices like 
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deciduous vegetation, but instead are better traced using Light Use Efficiency (LUE) [47]. Previous 

research conducted by [20] has shown that jack pine needle growth (length, thickness, and area) peak 

by the end of July. Additionally, while young jack pine needle length and width ratio increased from 

late May and the end of July, the values remained relatively stable across the same time period for 

old jack pine needles. This correlates with our consistent classification accuracies of the two August 

acquisition dates, and may explain the improved separability of jack pine saplings from 

undergrowth. Finally, seasonal changes in wetness and temperature throughout the data collection 

period also had an impact on the vegetation, as indicated in Figure 7, more consecutive dry days 

occurred in the later period while temperatures decreased. These changes likely influenced the 

spectral curves. In Figure 8 there is a noticeable increase fluctuation in the R to NIR reflectance values, 

potentially causing confusion between the coniferous trees and ground cover.  

 

 

Figure 7. Precipitation and Temperature recorded between 1 June 2017 and 31 August. Flights were 

performed on the 30th, 66th, and 80th dates, indicated by blue lines in the graphs above. 
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Figure 8. Spectral Response Curve for jack pine saplings on Plot A at Time 1 and Time 3. 

A number of individual tree detection methods have been developed [48], but standardized 

application of these methods to the problem of tree identification has not been achieved [49]. In this 

case, we applied RF classification to high-resolution multispectral UAS imagery to classify image 

objects based on their spectral signatures. While this study did not include 3-dimensional data from 

SfM or LiDAR, the use of spectral data for the analysis provides the analyst with additional 

information regarding tree characteristics such as insect infestation [50] and species differentiation 

[45]. Previous studies considering the use of LiDAR and SfM methods of crown detection have 

resulted in similar accuracies. Using a maxima filtering approach, [10] achieved 80% overall accuracy 

for identifying conifer species with SfM data derived from UAS. This study, like others utilize these 

three-dimensional data for adult crown detection, and do not consider the applicability to small 

crowns like those found on saplings. One study by [49] considered young 4-year old eucalyptus trees 

achieved 98% accuracy when applying SfM with UAS data. However, eucalyptus tends to be a faster 

growing species than jack pine, despite jack pine being the fastest growing conifer. Jack pine seedlings 

grow slowly during their first three to four years and then speed up around age five [51]. Saplings in 
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the study area ranged in height from one to five feet. We did not locate studies using these methods 

on such small trees. 

The application of this method resulted in acceptable accuracies when identifying jack pine 

saplings from multispectral UAS imagery. Its application here was also limited in several ways. First, 

ground data was not collected during the season due to budgetary and time limitations, as this was 

a pilot study. The use of visual interpretation of the UAS imagery to create a reference dataset has 

been used in similar studies, as indicated by a literature review performed by [48]. Additionally, the 

classification accuracy is based on comparing classification objects to reference points, this could have 

inflated classification accuracy if multiple points corresponded to individual objects, but this was 

considered and corrected for. Finally, the lack of external GPS orthorectification led to mismatches 

between images captured at each of the time intervals, limiting our ability to perform any type of 

temporal analysis. In the future high precision GPS will be used to generate more robust reference 

data for individual trees across the entire plots, including crown delineation to expand our accuracy 

assessment to include other dimensions of accuracy such as edge similarity [52]. 

This analysis is applicable beyond jack pine barren environments as well. Sapling identification 

is critical for understanding successional attributes in other coniferous forests, like the lodgepole pine 

forests in [53], the influence of grazing and human impacts on oak regeneration [54], and fire 

influence on oak savannah complexes [55]. The often-sparse distribution of fire-tolerant trees 

throughout these grasslands makes them ideal for individual tree identification after a fire 

disturbance. 

5. Conclusions 

Monitoring the effects of wildfire is essential to sustainable management of jack pine ecosystems. 

Satellite and aerial-based imaging systems are not able to provide data at spatial resolutions or 

temporal frequencies to evaluate jack pine sapling regrowth adequately. Multispectral UAS imagery 

in combination with GEOBIA provide spatial resolution and temporal control that allows for on-

demand capture and analysis for identification of individual saplings. This research has shown that 

optimal accuracies for these cases are obtained using late-summer imagery consisting of NIR and R 

spectral data. Conversely, the use of RE bands, and imagery acquired earlier in the season do not 

improve classification results. 
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