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Abstract: Developing methods for autonomous landing of an unmanned aerial vehicle (UAV) on a
mobile platform has been an active area of research over the past decade, as it offers an attractive
solution for cases where rapid deployment and recovery of a fleet of UAVs, continuous flight
tasks, extended operational ranges, and mobile recharging stations are desired. In this work, we
present a new autonomous landing method that can be implemented on micro UAVs that require
high-bandwidth feedback control loops for safe landing under various uncertainties and wind
disturbances. We present our system architecture, including dynamic modeling of the UAV with a
gimbaled camera, implementation of a Kalman filter for optimal localization of the mobile platform,
and development of model predictive control (MPC), for guidance of UAVs. We demonstrate
autonomous landing with an error of less than 37 cm from the center of a mobile platform traveling
at a speed of up to 12 m/s under the condition of noisy measurements and wind disturbances.

Keywords: quadcopter; drone; Kalman filter; vision-based guidance system; autonomous vehicle;
unmanned aerial vehicle; model predictive control; aerospace control

1. Introduction

Over the last few decades, unmanned aerial vehicles (UAVs) have had significant development
in many aspects, including fixed-wing designs, hovering multi-copters, sensor technology, real-time
algorithms for stabilization and control, autonomous waypoint navigation. In recent years, Micro-UAVs
(weight ≤ 3 kg), also known as Micro Aerial Vehicles (MAVs) have had wide adoption in
many applications, including aerial photography, surveillance, reconnaissance, and environmental
monitoring, to name a few. Although MAVs are highly effective for such applications, they still face
many challenges, such as a short operational range and limited computational power of the onboard
processors, mainly due to their battery life and/or limited payload. Most MAVs currently in use
usually employ a rechargeable lithium polymer (LiPo) battery that can provide a higher energy density
than other battery types, but they still have a very limited flight endurance of about 10–30 min at best.

To overcome these issues, a number of solutions have been proposed, including integration of a
tether for power and data transmission [1], autonomous deployment and recovery from a charging
station [2], solar-powered photovoltaic (PV) panels [3], and development of batteries with high-power
density. The most straightforward approach, without a doubt, would be to increase battery capacity,
such as with a lightweight hydrogen fuel cell [4], but such batteries are still expensive and heavy
for small-scale UAVs. Alternatively, tethered flights with a power transmission line can support
hypothetically large-scale flight endurance; however, the operational range of tethered flight is
intrinsically limited to the length of the power line. The solar panel methods are attractive for
relatively large fixed-wing UAVs, but they are not quite suitable for most rotary-wing UAVs.
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Autonomous takeoff from and landing on a mobile platform with a charging or battery swapping
station offers an attractive solution in circumstances where continuous flight tasks with an extended
operational range are desired. In these scenarios, the UAV becomes an asset to the ground vehicle,
where the UAV can provide aerial services such as mapping for the purposes of path planning.
For example, emergency vehicles, delivery trucks, and marine or ground carriers could be used for
deploying UAVs between locations of interest and as mobile charging stations [2,5–7].

Other examples, especially for large-scale UAVs, include autonomous takeoff and landing on
a moving aircraft carrier or a naval ship [8–10]. Autonomous takeoff and landing also allow more
efficient deployment and recovery for a large fleet of UAVs without human intervention.

In this paper, we present a complete system architecture enabling a commercially available
micro-scale quadrotor UAV to land autonomously on a high-speed mobile landing platform under
various wind disturbances. To this end, we have developed an efficient control method that can
be implemented on an embedded system at low cost, power, and weight. Our approach consists
of (i) vision-based target position measurement; combined with (ii) a Kalman filter for optimal
target localization; (iii) model predictive control for guidance of the UAV; and (iv) integral control
for robustness.

The rest of the paper is organized as follows. In Section 2 we discuss various techniques
associated with autonomous UAV landing. In Section 3 we present the overall system architecture.
Section 4 presents the dynamic model of the UAV for this study, optimal target localization for the
landing platform, and the model predictive control for the UAV. Section 5 presents simulation results
to validate our approach, and we conclude in Section 6.

2. Related Work

The major challenges in autonomous landing are (i) accurate measurements (or optimal estimates)
of the locations of the landing platform as well as the UAV and (ii) robust trajectory following
in the presence of disturbances and uncertainties. To face these challenges, several approaches for
autonomous landing of rotary-wing UAVs have been proposed. Erginer and Altug have proposed a PD
controller design for attitude control combined with vision-based tracking that enables a quadcopter
to land autonomously on a stationary landing pad [11]. Voos and Nourghassemi have presented a
control system consisting of an inner loop attitude control using feedback linearization, an outer loop
velocity and altitude control using proportional control, and a 2D-tracking controller based on feedback
linearization for autonomous landing of a quadrotor UAV on a moving platform [12]. Ahmed and
Pota have introduced an extended backstepping nonlinear controller for landing of a rotary wing UAV
using a tether [13].

Robust control techniques also have been used for UAV landing to deal with uncertain system
parameters and disturbances. Shue and Agarwal have employed a mixed H2/H∞ control technique,
where the H2 method is used for trajectory optimization and the H∞ technique minimizes the effect
of the disturbance on the performance output [14]. Wang et al. have also employed a mixed
H2/H∞ technique to ensure that the UAV tracks the desired landing trajectory under the influence
of uncertainties and disturbances [15]. In their approach, the H2 method has been formulated as a
linear quadratic Gaussian (LQG) problem for optimal dynamic response and the H∞ method has been
adopted to minimize the ground effect and atmospheric disturbances.

Computer vision has been used in a crucial role in many autonomous landing techniques.
Lee et al. [16] have presented image-based visual servoing (IBVS) to track a landing platform in
two-dimensional image space. Serra et al. [17] have also adopted dynamic IBVS along with a
translational optimal flow for velocity measurement. Borowczyk et al. [18] have used AprilTags [19],
a visual fiducial system, together with an IMU and GPS receiver integrated on a moving target
travelling at a speed of up to 50 km/h. Beul et al. [20] have demonstrated autonomous landing on a
golf cart running at a speed of ~4.2 m/s using two cameras for high-frequency pattern detection in
combination with an adaptive yawing strategy.
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Learning-based control methods for autonomous landing have also been studied to achieve the
optimal control policy under uncertainties. Polvara et al. [21] have proposed an approach based on a
hierarchy of deep Q-networks (DQNs) that can be used as a high-end control policy for the navigation
in different phases. With an optimal policy, they have demonstrated a quadcopter autonomously
landing in a large variety of simulated environments. A number of approaches based on adaptive
neural networks have also been adopted to render the trajectory controller more robust and adaptive,
ensuring that the controller is capable of guiding aircraft to a safe landing in the presence of various
disturbances and uncertainties [22–25].

Model Predictive Control (MPC) is a control algorithm that utilizes a process model to predict
the states over a future time horizon and compute its optimal system inputs by optimizing a linear or
quadratic open-loop objective subject to linear constraints. Researchers already have it implemented
in other problems. Templeton et al. [26] have presented a terrain mapping and analysis system to
autonomously land a helicopter on an unprepared terrain based on MPC. Yu and Xiangju [27] have
implemented a model predictive controller for obstacle avoidance and path planning for carrier
aircraft launching. Samal et al. [28] have presented a neural network-based model predictive controller
to handle external disturbances and parameter variations of the system for the height control of a
unmanned helicopter. Tian et al. [29] have presented a method that combined an MPC with a genetic
algorithm (GN) to solve a cooperative search problem of UAVs.

3. System Overview

The UAV used in this work is a DJI Matrice 100 quadrotor, which is shown in Figure 1. It is
equipped with a gimbaled camera, an Ubiquiti Picostation for Wi-Fi communication, a flight control
system (autopilot), a 9-axis inertial measurement unit (IMU), and a GPS receiver. The flight control
system has an embedded extended Kalman filter (EKF), which provides the position, velocity, and
acceleration of the UAV at 50 Hz. The gimbaled camera is employed to detect and track the visual
markers placed on the landing platform at 30 Hz, which is in turn used to localize the landing platform
when the distance between the UAV and the landing platform is very close, e.g., less than 5 m.
The Picostation is the wireless access point for long distance communication between the landing
platform and the UAV. We have also integrated a DJI Guidance, an obstacle detection sensor module, to
accurately measure the distance between the UAV and the landing platform at, or right before, landing
to decide if the UAV has landed.
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with a GPS receiver, an IMU, and a Wi-Fi module that can transmit the position and velocity of the
landing platform to the UAV at 10 Hz. The visual marker used is a matrix barcode (An “AprilTag” 
to be specific) shown in Figure 2. The AprilTag is mounted on the landing platform for visual tracking
of the landing platform by the UAV. We have adopted a Robot Operating System (ROS) software 
package that provides an ROS wrapper for the AprilTag library, enabling us to obtain the position 

Figure 1. DJI M100 quadcopter. Pico Station is the wireless transmitter. Guidance module is used for
height measurements.

The mobile landing platform used in this work is equipped with an embedded system interfaced
with a GPS receiver, an IMU, and a Wi-Fi module that can transmit the position and velocity of the
landing platform to the UAV at 10 Hz. The visual marker used is a matrix barcode (An “AprilTag” to
be specific) shown in Figure 2. The AprilTag is mounted on the landing platform for visual tracking
of the landing platform by the UAV. We have adopted a Robot Operating System (ROS) software
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package that provides an ROS wrapper for the AprilTag library, enabling us to obtain the position and
orientation of the tag with respect to the camera. One of the advantages of using AprilTags in this
work is to minimize the effort in object recognition for vision-based target tracking.

With the position of the target (or AprilTag) with respect to the camera position, we can easily
obtain the desired gimbal angle for the camera to point at the target. In other words, we always want
to have the target at the center of the image plane captured by the camera to minimize the probability
of target loss. The desired gimbal angle can be obtained by

φdes = φ + tan−1
(y

z

)
and ψdes = ψ + tan−1

( x
z

)
(1)

where φdes and ψdes are, respectively, the desired pitch and yaw angle of the gimbal; φ and ψ are,
respectively, the current pitch and yaw angle of the gimbal; x and y are, respectively, the lateral and
longitudinal position of the target on the image plane coordinates; and z is the distance between the
target and the camera. Since the roll of the gimbal is only ±15 degrees, we do not use it for target
tracking. The desired gimbal angles are computed every time an AprilTag is detected (~30 Hz) and
sent to a proportional derivative (PD) controller for the gimbaled camera to track the landing platform
in a timely fashion.
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4. Modeling

4.1. Dynamic Model

The dynamic model of the UAV used in this work can be given by [18]

maW
m =

 0
0

mg

+ RW
B

 0
0
−T

+ FD (2)
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where m is the mass of the UAV, aW
m is the acceleration of the UAV, g is the nominal acceleration, RW

B is
the rotation matrix from the north-east-down (NED) reference frame to the body frame, T is the total
thrust generated by the UAV rotors, and FD is the air damping force. Here, RW

B is given by

RW
B =

 cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (3)

with the shorthand notation cx , cos x and sx , sin x. The angular positions φ, θ, and ψ denote,
respectively, the roll, pitch, and yaw angles of the UAV. Thus, (2) can be written as

m


..
pn..
pe..
pd

 =

 0
0

mg

−
 cφsθcψ + sφsψ

cφsθsψ − sφcψ

cφcθ

T − kd


.
pn
∣∣ .
pn
∣∣

.
pe
∣∣ .
pe
∣∣

.
pd
∣∣ .
pd
∣∣
 (4)

where pn, pe, and pd represent the position in north, east, and down, respectively; their first and second
derivatives are, respectively, velocities and accelerations; and kd is the friction coefficient with which
the air damping force is roughly modeled as a proportional signed quadratic velocity. Note that the
inputs to the UAV are thrust (T), roll (φ), pitch (θ), and yaw (ψ) in this model.

The longitudinal motion in the pitch plane is regulated by a PD controller to maintain (nearly)
constant flight altitude, i.e.,

.
pd ≈ 0 and

.
pd ≈ 0. By applying the thrust of T = mg/cφcθ and assuming

ψ = 0 for constant altitude, we can simplify (4) by

m

[ ..
pn..
pe

]
= mg

[
− tan θ

tan φ/ cos θ

]
− kd

[ .
pn
∣∣ .
pn
∣∣

.
pe
∣∣ .
pe
∣∣
]

(5)

Since the dynamics of the UAV in this work stays near the equilibrium point (φ = 0, θ = 0)
without any aggressive maneuvers, we can linearize (5) at the equilibrium point to obtain

m

[ ..
pn..
pe

]
= mg

[
−θ

φ

]
− kd

[ .
pn.
pe

]
(6)

which can be written as [ ..
pn..
pe

]
= − kd

m

[ .
pn.
pe

]
+ g

[
−θ

φ

]
We have now a state space representation of the linearized system given by

.
pn.
pe..
pn..
pe

 =


0 0 1 0
0 0 0 1
0 0 −kd/m 0
0 0 0 −kd/m




pn

pe
.
pn.
pe

+


0 0
0 0
−g 0
0 g

u (7)

where u =
[

θ φ
]T

is the input to the system.

4.2. Kalman Filter for Landing Platform Position Estimation

At the beginning of autonomous landing tasks, our target localization algorithm relies on the
position and velocity data transmitted from the landing platform. At this stage, the position data
are measured by the GPS receiver integrated with the landing platform. As the UAV approaches
the landing platform, the UAV still relies on the GPS data until the distance between the UAV
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and the landing platform is close enough for the landing platform to be observed by the onboard
gimbaled camera.

To localize the landing platform at this stage, a gimbaled camera on-board the UAV is used to
calculate the relative position of an AprilTag on the landing platform. This measurement occurs on a
frame-by-frame basis with some noise. We have formulated a Kalman filter to optimally estimate and
predict the location of the mobile landing platform as follows

xt(k + 1) = Atxt(k) + ω(k) (8)

zt(k) = Ctxt(k) + ν(k) (9)

where xt(k) is the state vector at time k; zt(k) is the sensor measurements; At is the state transition
matrix, representing the kinematic motion of the landing platform in the discrete time domain; Ct

is the observation matrix; ω ∼ N
(
0, Qt) is a zero mean Gaussian random vector with covariance

Qt, representing system uncertainty; and ν ∼ N
(
0, Rt) is a zero mean Gaussian random vector with

covariance Rt, representing sensor noise. The state vector is defined by xt =
[
pt

n pt
e

.
pn

.
pe
]T , where

pt
n and pt

e are, respectively, the north and east position of the landing platform and
.
pn and

.
pe are,

respectively, the north and east velocity of the landing platform. The state transition matrix At is
given by

At =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 (10)

where ∆T is the time step. The observation matrix is the identity matrix, since we can directly measure
all state variables.

In our implementation of Kalman filter, we have used a linear kinematic model for the mobile
landing platform because we assume that the landing platform, as a cooperative agent in this
application, travels in a linear path or a slightly curved path without any aggressive motion so
that the UAV can easily land on the platform. It is well known that Kalman filters are the optimal
state estimator for systems with linear process and measurement models and with additive Gaussian
uncertainties whereas common KF variants, such as extended Kalman filter (EKF) and unscented
Kalman filter (UKF), take linearization errors into account to improve the estimation performance for
nonlinear systems. It is important to note that there is no theoretical guarantee of optimality in EKF
and UKF whereas it has been proved that KF is an optimal state estimator [30]. In other words, an EKF
and UKF are extensions of KF that can be applied to nonlinear systems to mitigate linearization error
at the cost of losing optimality. Although EKF and UKF outperform linear KF for nonlinear systems
in most cases, in our application, EKF or UKF is not necessary or they can potentially degrade the
performance of linear state estimates.

4.3. Model Predictive Control of UAV

At an experimental level and as investigated in detail in [31], linear MPC and nonlinear MPC for
control of rotary wing micro aerial vehicles have more or less the same performance in the case of
non-aggressive maneuvers even in the presence of disturbances. In particular, in hovering conditions
or for step response tracking, the performance of linear MPC and nonlinear MPC are very close
to each other. However, in the case of aggressive maneuvers, nonlinear MPC outperforms linear
MPC. This is due to the fact that nonlinear MPC accounts for the nonlinear effects in the whole
dynamic regime of a micro aerial vehicle. In this work, we have employed a linear MPC scheme
for achieving non-aggressive trajectory tracking and as is demonstrated in [31], the performance of
linear MPC schemes are very close to the performance of nonlinear MPC schemes in these operating
conditions. Furthermore, at a theoretical level and as demonstrated in [32], nonlinear MPC is reduced
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to linear MPC under certain conditions. In particular, when sequential quadratic programming (SQP)
is deployed on NMPC, and the reference trajectory is used as an initial guess, the first step of a full-step
Gauss–Newton SQP delivers the same control solution as a linear MPC scheme (see Lemma 3.1 in [32]).
Since the target is moving on a path that is described by a straight line, and since the center of mass
of the drone is moving on an approximate straight line, while the drone is maintaining an almost
constant orientation; the dynamics of the drone evolve in a limited range where using a linear MPC
scheme is justified.

To apply MPC to the dynamic system given in (7), we have discretized the system with the
time step of ∆T = 0.025 s. In the remainder of the paper, x refers only to the discrete time state,
i.e., x(k) =

[
pn(k) pe(k)

.
pn(k)

.
pe(k)

]T .
Then, the prediction with the future M system inputs can be given by

x̂(k + P) = APx(k) + AP−1Bû(k) + AP−2Bû(k + 1) + · · ·+ Bû(k + M− 1)

= AP x̂(k) + AP−M
P
∑

i=1
Ai−1Bu(k + M− i)

(11)

where x̂(k + P) is the P-step prediction of the state at time k with P > M. Then, the augmented state
predictions can be given by


x̂(k + 1)
x̂(k + 2)

...
x̂(k + P)

 =


A
A2

...
AP

x(k) +



B 0 · · · 0
...

...
. . .

...
AM−1B AM−2B · · · B

AMB AM−1B · · · AB
...

...
. . .

...
AP−1B AP−2B · · · AP−MB




û(k)

û(k + 1)
...

û(k + M)

 (12)

This equation can be written in a condensed form:

x̂p = APx(k) + BPûM (13)

The future M system inputs can be calculated by the optimal solution of the following cost
function with constraints using the batch approach and quadratic programming [33].

J(k) = min {(rP − x̂P)
TqQ(rP − x̂P) + uM(1− q)RuM} (14)

subject to. − vmax ≤ x̂P3 ≤ vmax

−vmax ≤ x̂P4 ≤ vmax

−umax ≤ uM1 ≤ umax

− umax ≤ uM2 ≤ umax

where rP is the reference state of the desired trajectory; Q and R are the weight matrices for states and
inputs, respectively; and q is the weighting factor between the state cost and the input energy cost; x̂P3

is the velocity in north; x̂P4 is the velocity in east; uM1 is the desired pitch angle; uM2 is the desired roll
angle; vmax is the maximum UAV speed; and umax is the maximum tilt angle (roll and pitch) of the
UAV. In this study, we used vmax = 18 m/s and umax = 35◦.

Substituting x̂P in (13) into (14) yields

J(k) = min {uT
M(BT

PqQBP + (1− q)R)uM + 2(xT
k AT

PqQBP − rT
PqQBP)uM} (15)
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subject to

[
I
−I

]
uM ≤

 umax
...

umax


[

I
−I

]
CvBPuM ≤

 vmax
...

vmax

+

[
−I
I

]
Cv Apxk

where Cv selects all velocity estimations from x̂P, that is

Cv =


0 0 1 0 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1


5. Simulation Results

To validate our control method for autonomous landing on a moving platform, we used the DJI
hardware-in-the-loop (HITL) simulation environment. As shown in Figure 3a, the control panel of the
HITL provides the initial settings for flight simulations as well as wind disturbances.Drones 2018, 2, x FOR PEER REVIEW  8 of 15 
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5.1. Localization the Landing Platform

At the beginning of autonomous landing tasks, our target localization algorithm relies on the
position and velocity data transmitted from the landing platform. At this stage, the position data
are measured by the GPS receiver integrated with the landing platform. As the UAV approaches the
landing platform, the UAV still relies on the GPS data until the distance between the UAV and the
landing platform is close enough for the landing platform to be observed by the camera. At this stage,
we use the distance measurements from the AprilTag detection algorithm. A video stream obtained
from the camera is processed at a ROS at 30 Hz to obtain the position of the AprilTag in the camera
frame. Then, we calculate the position of the AprilTag in the reference frame.

In order to validate the performance of the Kalman filter, we introduced additive white Gaussian
noise (AWGN), with its standard deviation of 0.03 (∼ N (0, 0.032)) in the position measurements to
simulate the measurement error from the Apriltag detection and of 0.18 (∼ N (0, 0.182)) in the velocity
measurements to simulate the velocity measurement error. We found these sensor noises empirically.
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The measurement noise covariance matrix for the Kalman filter is given by

Rt =


ρ2

x 0 0 0
0 ρ2

y 0 0
0 0 ρ2

u 0
0 0 0 ρ2

v

 (16)

where ρ2
x, ρ2

y, ρ2
u, and ρ2

v are the variances of sensor noise of the lateral position, longitudinal position,
lateral velocity, and longitudinal velocity, respectively. So, we set ρx = ρy = 0.03 and ρu = ρu = 0.18.
The state transition covariance matrix is given by

Qt = qw


T4

s
4 0 T3

s
2 0

0 T4
s

4 0 T3
s

2
T3

s
2 0 T2

s 0

0 T3
s

2 0 T2
s

 (17)

where Ts is the time step and qw is the estimated variance of the acceleration of the landing platform.
In this work, we have Ts = 0.025 s and qw = 0.2. Figure 4 shows the estimated position and velocity of
the landing platform obtained from the Kalman filter. The root mean square (RMS) errors are 7.97 cm
for the position and 0.0336 m/s for the velocity of the landing platform, which are satisfactory for a
1.15m wingspan quadcopter to land on it.Drones 2018, 2, x FOR PEER REVIEW  9 of 15 

  
Figure 4. Position & velocity noisy data and estimated data. 

The startup situations are all the same: the target starts at 50 m in the north from the origin and 
moves toward east with constant 12 m/s speed, and at the same time, the UAV starts at the origin 
with zero initial speed. The UAV first enters the approach state and tracks the target until the UAV 
is on the top of target, and then enters the landing state and starts to land on the target. 

5.2. Selection of MPC Parameters 

For this study, we set 𝑃 = 12 for the prediction horizon and 𝑀 = 5 for the control horizon, with 
a sampling time of 0.025 s. Consequently, for every time step, the MPC optimizes the flight trajectory 
of the UAV for the next 0.3 s. For the state weight matrix Q, the weights for both the longitudinal and 
the lateral positions are set to 10 for the first seven prediction steps out of 12 steps, the weights for 
both the longitudinal and the lateral velocities are set to 1.5 for the last five prediction steps, and all 
the rest are set to 1. For the input weight matrix R, we simply set it to the identity matrix. The mass 
of the UAV is 2.883 kg. 

5.3. Straight Path without Wind Disturbance 

We have tested our method with various speeds set for the landing platform. In this experiment, 
we assume that the sensor outputs have been contaminated by noise, and therefore the estimates of 
the target location are obtained through the Kalman filter discussed in Section 0. Figure 5 
demonstrates the performance of the MPC for approaching and landing on the platform traveling at 
the speeds of 4 m/s, 8 m/s, and 12 m/s. The trajectories of the UAV following and landing on the 
platform travelling on a straight path are shown in Figure 5a. It is apparent that it takes more time 
for the UAV flying at 12 m/s to approach and land on the target than for the UAV flying at 4 m/s 
performing the same task. Figure 5b shows in 3D that the UAV has landed on the landing platform 
moving at 12 m/s on a straight path. Figure 5c,d show the position in north and east of the UAV along 
with the measured location of the landing platform. As shown in Figure 5e, the UAV maintains the 
altitude while it is approaching the landing platform and if the distance between the UAV and the 
landing platform becomes less than 1 m, the UAV starts descending. Figure 5f shows the distance 
between the UAV and the landing platform. In these simulations, we have used the vertical distance 
between the UAV and the landing platform to decide if the UAV has landed (DJI Guidance discussed 
in Section 0 can provide this quantity in flight experiments). 

Table 1 summarizes the performance for the three different speeds of the landing platform with 
and without measurement noise. As the speed of the landing platform increases, the approach time, 
landing time, and landing error also increase. For the noisy measurements of the platform position 
and velocity, the UAV demonstrates similar approach time and landing time as the no noise case. 
The largest landing error with noisy measurements is 26 cm from the center of the landing platform, 
which shows that the method proposed in this work can be considered as a viable solution for 
autonomous landing on a moving platform. 

Figure 4. Position & velocity noisy data and estimated data.

The startup situations are all the same: the target starts at 50 m in the north from the origin and
moves toward east with constant 12 m/s speed, and at the same time, the UAV starts at the origin with
zero initial speed. The UAV first enters the approach state and tracks the target until the UAV is on the
top of target, and then enters the landing state and starts to land on the target.

5.2. Selection of MPC Parameters

For this study, we set P = 12 for the prediction horizon and M = 5 for the control horizon, with a
sampling time of 0.025 s. Consequently, for every time step, the MPC optimizes the flight trajectory of
the UAV for the next 0.3 s. For the state weight matrix Q, the weights for both the longitudinal and the
lateral positions are set to 10 for the first seven prediction steps out of 12 steps, the weights for both
the longitudinal and the lateral velocities are set to 1.5 for the last five prediction steps, and all the rest
are set to 1. For the input weight matrix R, we simply set it to the identity matrix. The mass of the
UAV is 2.883 kg.

5.3. Straight Path without Wind Disturbance

We have tested our method with various speeds set for the landing platform. In this experiment,
we assume that the sensor outputs have been contaminated by noise, and therefore the estimates of the
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target location are obtained through the Kalman filter discussed in Section 5.1. Figure 5 demonstrates
the performance of the MPC for approaching and landing on the platform traveling at the speeds
of 4 m/s, 8 m/s, and 12 m/s. The trajectories of the UAV following and landing on the platform
travelling on a straight path are shown in Figure 5a. It is apparent that it takes more time for the UAV
flying at 12 m/s to approach and land on the target than for the UAV flying at 4 m/s performing
the same task. Figure 5b shows in 3D that the UAV has landed on the landing platform moving at
12 m/s on a straight path. Figure 5c,d show the position in north and east of the UAV along with the
measured location of the landing platform. As shown in Figure 5e, the UAV maintains the altitude
while it is approaching the landing platform and if the distance between the UAV and the landing
platform becomes less than 1 m, the UAV starts descending. Figure 5f shows the distance between the
UAV and the landing platform. In these simulations, we have used the vertical distance between the
UAV and the landing platform to decide if the UAV has landed (DJI Guidance discussed in Section 3
can provide this quantity in flight experiments).
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Figure 5. The UAV autonomously landing on a target moving on a straight path with noisy
measurements, when target speed varies among 4 m/s, 8 m/s, and 12 m/s. (a) Top-down view;
(b) 3D plot (target speed 12 m/s); (c) position in the north; (d) position in the east; (e) altitude; (f) 2D
distance error.
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Table 1 summarizes the performance for the three different speeds of the landing platform with
and without measurement noise. As the speed of the landing platform increases, the approach time,
landing time, and landing error also increase. For the noisy measurements of the platform position and
velocity, the UAV demonstrates similar approach time and landing time as the no noise case. The largest
landing error with noisy measurements is 26 cm from the center of the landing platform, which shows
that the method proposed in this work can be considered as a viable solution for autonomous landing
on a moving platform.

Table 1. Performance of autonomous landing on a target travelling on a straight path at various speeds.

Noise Condition Target Speed (m/s) Approach Time (s) Landing Time (s) Landing Error (m)

No noise
4 18.27 29.42 0.12
8 29.38 41.34 0.24

12 33.24 44.61 0.15

Position noise (∼ N
(
0, 0.32))

Velocity noise (∼ N
(
0, 0.182))

4 17.61 29.08 0.21
8 30.44 41.63 0.26

12 32.87 44.25 0.20

5.4. Straight Path with Wind Disturbance

To validate the robustness of our method under wind disturbances, we implemented an integral
controller that can be seamlessly fused with the MPC. We conducted simulations with a wind speed of
5 m/s and a target speed of 8 m/s. The integral controller is designed to accumulate the position error
to fight against the wind. Figure 6 shows that the UAV reaches the desired position in approximately 9 s
with zero steady-state error when the integral constant of ki = 0.17. If ki is too small (e.g., ki = 0.001),
the UAV cannot reach the desired target position, with a steady-state error of approximately 1.6 m.
For a large value of ki (e.g., ki = 1), the closed-loop system becomes unstable as shown in Figure 6b.
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Figure 6. System response: (a) integrator ramp response; (b) distance error between UAV and target of
integrator ramp response.

Figure 7a shows the trajectories of the UAV following and landing on the platform travelling on a
straight path in the presence of a wind disturbance with a constant speed of 5 m/s. Since the UAV
in this work can fly at a speed of up to 18 m/s, the maximum target speed we set in the simulations
is 12 m/s for a headwind speed of 5 m/s. Figure 7b–d shows the measured location of the landing
platform and the trajectories of the UAV in no wind, a 5 m/s tailwind and a 5 m/s headwind. It is
apparent that a tailwind has minimal effect on approach time, landing time, and landing error, while a
headwind makes the UAV slow down. As shown in Figure 7e,f, it is evident that the approach time
dramatically increases with a headwind.

Table 2 summarizes the simulation results under the presence of wind disturbances. The approach
time and landing time in the presence of a headwind disturbance are much greater than those in the
presence of no wind or a tailwind. However, the landing error with a headwind is just slightly larger
than the error with no wind. In case of noisy measurements, the landing error is still bounded by
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37 cm, which shows that the method proposed in this work is robust enough for wind disturbances
and noisy sensor measurements.

Table 2. Performance of autonomous landing on 12 m/s straightly moving target with varying
wind speed.

Noise Condition Wind Speed Approach Time (s) Landing Time (s) Landing Error (m)

Zero noise
5 m/s headwind 92.07 103.34 0.32

No wind 33.24 44.61 0.15
5 m/s tailwind 37.89 49.10 0.23

Position noise (∼ N
(
0, 0.32))

Velocity noise (∼ N
(
0, 0.182))

5 m/s headwind 94.01 105.24 0.37
No wind 32.87 44.25 0.20

5 m/s tailwind 38.08 49.61 0.34
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Figure 7. The UAV autonomously landing on a 12 m/s target moving on a straight path, under the
condition of measurement noise and east wind disturbance. (a) 3D plot (west wind 5 m/s); (b) top-down
view; (c) position in the north; (d) position in the east; (e) altitude; (f) horizontal distance error.

5.5. Curved Path

We also conducted simulations with the landing platform travelling on a curved path. Figure 8a
shows the UAV lading on a platform moving at 8 m/s on a curved path with a radius of 300 m. It is
shown in Figure 8b,c that it takes approximately 43 s for the UAV to approach the platform. Figure 8e,f
show that it takes an additional 9 s to land on the target, with a 35-cm error, which demonstrates that
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the proposed method is a viable solution for a landing platform traveling on a curved path as well as a
straight path.
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(e) altitude; (f) horizontal distance error.

6. Conclusions and Future Work

In this work, we propose a new control method that allows a micro UAV to land autonomously on
a moving platform in the presence of uncertainties and disturbances. Our main focus with this control
method lies in the implementation of such an algorithm in a low-cost, lightweight embedded system
that can be integrated into micro UAVs. We have presented our approach, consisting of vision-based
target following, optimal target localization, and model predictive control, for optimal guidance of the
UAV. The simulation results demonstrate the efficiency and robustness with wind disturbances and
noisy measurements.

In the future, we aim to conduct flight experiments to validate the control methods we present
in this paper. The landing platform can be a flat surface with a dimension of at least 3.0× 2.0 m for
safe landing and it will be mounted on a vehicle (for example, a truck bed or a flat root of a golf cart).
We will also develop robust recovery methods that can save the vehicle from various failures, such as
communication loss between the UAV and the landing platform, that can occasionally occur in the
real world.
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