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Abstract: Physical Habitat Assessments (PHA) are useful to characterize and monitor stream and
river habitat conditions, but can be costly and time-consuming. Alternative methods for data
collection are getting attention, such as Unmanned Aerial Vehicles (UAV). The objective of this work
was to evaluate the accuracy of UAV-based remote sensing techniques relative to ground-based
PHA measurements, and to determine the influence of flight altitude on those accuracies. A UAV
quadcopter equipped with an RGB camera was flown at the altitudes of 30.5 m, 61.0 m, 91.5 m and
122.0 m, and the metrics wetted width (Ww), bankfull width (Wbf) and distance to water (Dw) were
compared to field PHA. The UAV-PHA method generated similar values to observed PHA values,
but underestimated distance to water, and overestimated wetted width. Bankfull width provided
the largest RMSE (25–28%). No systematic error patterns were observed considering the different
flight altitudes, and results indicated that all flight altitudes investigated can be reliably used for
PHA measurements. However, UAV flight at 61 m provided the most accurate results (CI = 0.05)
considering all metrics. All UAV parameters over all altitudes showed significant correlation with
observed PHA data, validating the use of UAV-based remote sensing for PHA.

Keywords: Physical Habitat Assessment; Unmanned Aerial Vehicles; Structure from Motion; image
processing; flight planning; stream restoration; stream monitoring

1. Introduction

It is well documented that streams and rivers are negatively impacted by anthropogenic activities,
including (but not limited to) agriculture, mining, forestry, energy, and transportation development.
These development activities often include deforestation, pollution, channelization, expansion of
impervious surfaces (e.g., roads, parking lots), and many others [1,2]. These impacts frequently
result in water quality deterioration and loss of aquatic habitat [3]. Efforts in recent years to address
these anthropogenic impacts to streams and rivers have generated innovative techniques to detect,
characterize, and restore impaired aquatic habitats [1]. One of the most informative methods for
evaluating stream and riparian condition is the Physical Habitat Assessment (PHA) [4]. PHA is based
on field measurement of metrics pertaining to stream physical characteristics at intervals along the river
corridor [4,5]. Physical attributes measured in PHA are related to channel dimensions, gradient and
substrate, vegetation community status, habitat complexity, anthropogenic alterations, and interactions
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with riparian areas [6,7]. PHA provides quantitative evidence of habitat availability, types and causes
of degradation, and the capacity of the channel to adjust to changes [1,4,5]. Additionally, it can be used
as a tool to monitor conditions following restoration practices to evaluate success [2,3,8]. While PHA
has been demonstrated to be an effective stream and riparian habitat characterization method, there
remain challenges in efficiency to be addressed, particularly in projects of large spatial extent, areas of
limited accessibility, and assessments requiring repeated surveys over time.

The remaining challenges in PHA are associated with data collection costs, in terms of money
and time [1,4,5,9], difficulties in repeated data collection over time (i.e., replicability) [1,4,10],
and accessibility of remote areas [11]. The time, and labor cost, are among the most important
considerations in PHA studies, and are dependent on channel characteristics and selected variables [6].
A method for rapid physical habitat assessment in mixed-land-use watersheds was developed using
field measurements and integrated GPS coordinate systems [4], and validated as a relatively fast
and economical process of evaluation for restoration projects. Despite success of previous methods,
both traditional and adapted PHA methods would benefit from classifications of land use information,
from which the causes of degradation can be inferred [4], and additional remote-sensing-derived
products and metrics [5,12], including time series of repeated measurements [13,14], mapping areas of
limited access [15], evaluations in large area projects [1,16], and reductions in overall time and labor
costs [5,16]. Adapting traditional PHA field techniques with remote sensing and GIS methods offers
the potential to improve stream habitat characterization and monitoring through efficient collection of
robust and comprehensive data.

Remote sensing techniques are becoming increasingly common in aquatic habitat assessments.
Examples of such applications include: (a) use of hyperspectral and aerial imagery to map in
stream habitats [17,18]; (b) optical imagery to model water depth [19]; and (c) characterization of
structural stream features using LiDAR combined hyperspectral imagery [12], infra-red LiDAR [20],
and vision-based photogrammetry [21]. However, these technologies are not without challenges,
the most important of which is limitations in resolution necessary for accurate measurement of stream
features [12,17,22]. While developments in manned, airborne high-resolution imagery and LiDAR
acquisition are producing data resolutions required to support PHA metrics, the associated equipment,
labor, flight, and processing costs are often prohibitively expensive, and thus limiting, particularly
for smaller area projects [5,23,24]. To address these challenges, the use of Unmanned Aerial Vehicles
(UAV) for remote sensing applications has become increasingly popular.

The advantages of UAV remote sensing are not limited to low costs in the acquisition of
high spatial resolution imagery, but also include the ability to produce surface models (e.g.,
DSMs, TINs, DTMs) from the same images [14,16,23]. UAVs also offer high spectral and temporal
data resolutions [5,13], a high degree of automation in the process of image acquisition and
processing [14,25,26], and less influence of specific weather conditions, such as the presence of
clouds that affect data collection from manned aircrafts and satellite imagery [22,27]. Moreover,
many advantages of UAV imagery are related to recent developments in computer vision-based
algorithms for processing. The primary source for the UAV imagery processing is called Structure
from Motion (SfM). SfM is a group of algorithms that identify and track the position of features in
images with overlap [28,29]. From the “movement” of these features along the images in a flight-line,
SfM algorithms estimate the camera’s position and calibration parameters to reconstruct a 3D model of
the scene [28–31]. UAV with SfM modeling is dependent on having requisite overlap between pictures
and texture in the images that allow the recognition of features [23,32,33]. In addition, the collection
of high-precision coordinates of ground control points (GCPs) are important to the accuracy of UAV
SfM output [32]. Although UAV methods have great potential to overcome some of the challenges
associated with other remote sensing technologies, there exist singularities and limitations of UAV
methods that need to be fully understood and evaluated.

Current applications of UAV imagery in wetland and stream assessments involve feature
detection/extraction to support hydrologic and hydraulic modeling, such as water depth and
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velocity [13]; topographic modeling of exposed and submerged stream characteristics [14,23];
and aquatic vegetation mapping [34]. Limitations of UAV imagery in PHA studies include the presence
of vegetation obstructions and shadows that can obscure the view of important features [13,17].
However, these problems can be reduced with adjustments in the flight plans and use of different
sensors [17,35,36]. These studies suggest benefits of UAV technology to wetland and stream
assessments in general; however, the application of UAV technology to PHA, specifically, has not
been completed.

Despite the recent surge of UAV imagery and SfM techniques in environmental monitoring, there
remains a need for validation of the application of the method in support of PHA measurements [5].
Furthermore, there is a dearth of guidance on optimal flight parameters for effective stream
measurement, such as altitude, overlap, flight direction and position, and number of ground control
points. Reference [37] evaluated parameters such as flight altitude, overlap and weather conditions for
application in forest structure, and observed influence of overlap and light conditions on the canopy
height estimate. Reference [33] evaluated height, overlap, speed and GCP number and distribution,
and noted that higher elevations provided larger errors in terms of geo-referencing. Reference [38]
presented how systematic errors in the DEM due to distortions in consumer-grade cameras can be
minimized by variations in flight plan, use of convergent images, different camera points of view,
and variations in altitude. Yet, the results of [38] are based on simulations, and the inclusion of ground
control was not completely evaluated. Reference [39] observed the importance of distributing GCPs
along the vertical range of the area using three GCPs and noted reduced error when an off-nadir
flight facing a cut slope was performed, in comparison with traditional nadir flights. The results
from these previous works indicate that flight planning is important to the accuracy of SfM derived
outputs, but parameters like overlap, altitude, view angle and others can be variable according to
the application goal. Such parameters are important, because low altitudes and higher degrees of
overlap require significantly longer flight times and produce larger datasets, which are more difficult
to process and store [37,39]. Therefore, the optimal flight plan comprises the least amount of flight time
(i.e., minimizes labor time, battery usage, weather interruptions, and poor sun angles), the smallest
data volumes to be processed and analyzed, but adequate resolution to maintain the necessary level
of detail. An evaluation of image acquisition parameters, and the effects of these parameters on the
accuracy of remote PHA measurements, has yet to be performed.

The overarching objective of this study was to evaluate the accuracy of deriving PHA metrics
from UAV imagery. A sub-objective included comparing four distinct altitudes to observed stream
geomorphological measurements. The goal was to validate the use of UAV imagery and SfM methods
to support PHA by reducing related field time and labor costs, while also providing an answer to one
of the most important and practical questions in the application of this technology: What is the optimal
relationship between flight altitude (and consequently, resolution) and measurement accuracy?

2. Materials and Methods

2.1. Study Area and Experimental Design

The investigation was conducted on the JW Ruby Research Farm (Ruby Farm) located in
Reedsville, WV, USA. The Ruby Farm is owned and operated by West Virginia University located in
nearby Morgantown, WV, USA (Figure 1), and consists of over 364 ha of mixed-land-use, including
pasture, forests, and farming infrastructure. The current and primary use of the Ruby Farm is for beef
cattle production and grazing research; however, it was historically used for horse rearing and training,
and is under renovation to once again be a center for equine research and education. Ruby Run is one
of several streams draining the farm and is approximately 750 m in length within the farm property,
with elevations ranging from 1790 to 1692 m above sea level [40]. Ruby Run has been impacted
by years of cattle grazing and removal of riparian vegetation and trees. As part of the Ruby Farm
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redevelopment, plans have been made for the restoration of the Ruby Run stream channel, as well as
associated riparian wetlands. PHA for Ruby Run is the first step in restoration planning.Drones 2018, 2, x FOR PEER REVIEW  4 of 15 
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Figure 1. Location and study design. Details of location in the country and state (top left), surface
elevations obtained the USGS 3 m DEM above flight lines (bottom left), and position of ground and
check control, and cross sections (right).

2.2. PHA Field Measurements

The PHA comprised 58 cross sections along the stream, each 10 m apart. At each cross section
Wetted Width (Ww), Bankfull Width (Wbf), and Distance to Water (Dw) was physically measured by a
field crew (observed data).

Bankfull width was measured as the distance at bankfull level from one bank on the other side of
the channel, accomplished with an extension pole, 1.5 m level, and measuring tape. The bankfull level
was identified visually by the field crew and was considered as the lowest vertical distance from the
surface of the water, as described by reference [4]. Wetted width is the distance separating the points
of contact between the streambank and water surface on opposite sides of the streambank and was
measured using a measuring tape. Distance to water was measured using a meter stick, as the depth to
bankfull from water surface. For further information pertaining to these metrics the reader is referred
to [4,41] and citations within, and Figure 2. Measurements utilized the described equipment instead of
GPS, given the method is simple, precise, and commonly used.

For each cross section, the initial position (every 10 m) was flagged and marked with orange paint.
It is this location where channel measurements were collected.
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Figure 2. PHA cross section measurements. Where: (a) Bankfull Width (Wbf); (b) Wetted Width (Ww);
(c) Distance to Water (Dw).

2.3. UAV Data Collection and Processing

Aerial images were collected using a DJI Phantom 4 Professional UAV. The UAV had a RGB
camera FC6310, which has 9 mm focal length, 20 MP of resolution, and 5472 × 3648 pixel array.
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The flights were performed using an 80% lateral and longitudinal overlap [33,42] and included a
double collection flight plan, where the area is flown twice with perpendicular flight lines to increase
the number of possible camera views [42,43]. The image collection was performed on the same day,
at the same time as the field PHA measurements, therefore there were no differences in the creek and
water level.

Image collection was completed at four altitudes: 30.5 m (100 ft), 61.0 m (200 ft), 91.5 m (300 ft),
and 122.0 m (400 ft). Each altitude required at least two flights (one for each opposing flight
direction). The UAV has a GPS/GNNS onboard system with accuracy of ±0.5 m horizontal and
±1.5 m vertical [44]. Despite these published nominal accuracy values, experience suggests that
Phantom altitudes values are less reliable in practice, given they are calculated based on an Altitude
Above Ground Level (AGL) basis as opposed to a vertical coordinate system, and they are not generated
by the GNSS sensor, but rather calculated from a barometer [33].

13 painted plywood targets measuring 70 × 70 cm were distributed around the stream area before
the image acquisition, to be used as ground control and check points. Accurate ground control is critical
in geo-referencing images and creating SfM models, even with the presence of onboard GPS [14,32,45].
Ground control targets must be well-distributed in the interest area [33,39]. The targets’ positions
were collected using a SP80 GNSS receiver using a network base RTK with horizontal and vertical
accuracies of 8 and 15 mm. The network RTK was connected with the West Virginia, USA, Real Time
Network, which collects information from many Continuously Operating Reference Stations (CORS)
across the state. Nine plywood targets were used as ground control during the image processing (as
calibration), while the other four were used as check points (validation—therefore not included in the
image adjustment) to assess the positional accuracy of the processing results [33]. The position of the
beginning of each field-measured cross section was also collected with the GPS, to assist locating cross
section positions (i.e., field data collection points) in the imagery.

The images were processed using Agisoft Photoscan professional edition 1.3.4, used in many
UAV applications with accurate results [29,46,47]. Each dataset (flight altitude) was processed
separately. The processing settings were chosen based on high accuracy, since those provided more
detailed geometry [29,33,47]. Images were aligned using high accuracy, and reference preselection.
Ground control points were included in the model, and GCP coordinates were also used in the
alignment. The dense point cloud was processed using high density and the depth filter was disabled.
The DSM was created based on all the points in the dense point cloud, and the orthomosaic was created
using the DSM as elevation base. The interpolation method used to create the DSM was the Inverse
distance weighting (IDW). The DSM and orthomosaic resolutions were set to the highest possible for
each flight altitude.

2.4. UAV PHA Measurements

Each flight altitude provided a DSM, an orthomosaic, and a 3D dense point cloud, which were
used to digitally measure the same cross section dimensions as collected in the field. Each dataset was
imported in Global Mapper 19 (Blue Marble Geographics, Hallowell, ME, USA), where the approximate
position of the cross section was identified by the coordinate collected with the GNSS/GPS receiver.

At each stream cross section, the wetted width, bankfull width, and distance to water were
digitally measured. These measurements were made based on the same metrics applied in field.
However, digital observations were extracted entirely from the imagery (orthomosaic), DSM, and point
cloud. To observe elevations in the cross sections, terrain profiles were created for each cross section,
and the distances were measured in these profiles. Ww was visually observed in the orthomosaic,
since the water was spectrally distinct from the other classes. The Wbf was identified visually in each
cross-section terrain profile, considering the elevation difference and as described by reference [4].
The Dw was also manually measured in each cross-section terrain profile, as the elevation difference
between bankfull and water surface, again as per reference [4] and references therein. The decision
to make the measurements manually in the imagery was based on the need to adapt the current
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automatic methods for use in UAV-derived elevation profiles, since those are affected by vegetation
presence. Therefore, the use of current, unadapted automatic methods could increase the error due
to vegetation presence, which could be identified as terrain. It is less challenging to visually identify
differences in elevation caused by vegetation; however, automatic methods still need to be developed.

The UAV imagery measurements required some digital processing to simulate field measurements.
For example, in digitally measuring the wetted width parameter, one or both sides of the stream were
often obscured by vegetation. In those cases, the exact position for the distance measurement needed to
be approximated by considering nearby positions along the stream without vegetation occlusion [48].
Similarly, for bankfull width measurements, UAV-generated profiles with elevations obscured by
vegetation were easily identified by analyzing the associated RGB-colored point cloud. In those
cases, the elevation of vegetation or woody debris were ignored, and again, nearby positions of terrain
elevations were used in the measurement. In measuring distance to water, a few outliers were observed
(e.g., a few points much higher than neighboring points) and were considered noise and ignored.
Therefore, the distance to water is an approximation, since it is unknown whether the point cloud is
reflecting the water surface or the stream bottom (Figure 3).

Since the UAV PHA measurements were made manually, each dataset (flight altitude) took
approximately 5–6 h to be completed. Besides this process being time consuming, it is important to
note that the timing depends on the experience of the person performing the manual measurements,
and that this could be automatized in a future process.
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measurement of wetted width where the position was estimated due to vegetation cover; (b) example
of bankfull width measurement where there is an obstruction caused by a dead tree; (c) example of
position where the water surface was not well-defined.

2.5. Statistical Analysis

Statistical analyses were performed to compare PHA observed values with the UAV digital
estimations, considering the wetted width, bankfull width, and distance to water metrics. Furthermore,
UAV estimates were compared to observed (measured) data according to the different flight altitudes.

Statistical analyses included generating descriptive statistics of observed and UAV altitude (n = 4)
comparative measurements (i.e., bankfull width, wetted width, distance to water), calculating the Root
Mean Square Error (RMSE) and Spearman’s correlation coefficient, and via a graphical analysis of the
values. The RMSE is calculated as follows (Equation (1)).

RMSE (m) =

√
∑n

i=1(yi − xi)
2

n
, (1)
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where: yi and xi are the measured variable in the field and in the UAV data, respectively; n is the
number of observations.

Spearman’s correlation coefficient is a non-parametric method to measure the strength of the
relationship between two variables [49]. The correlation was calculated using the software R [50] and
the package pspearman [51].

3. Results

3.1. UAV Products

Each of the four flight altitudes provided distinct parameters (Table 1). As anticipated, the number
of images increased exponentially at lower altitudes. Yet, as the number of images increased,
the covered area decreased. The higher altitude pictures have a larger footprint, and thus, cover
a larger extent individually [52–54].

The resolution of the orthomosaic and DSM increased with the lower altitudes, with the lowest
flight (30.5 m) displaying approximately four times more detail than the highest flight (122 m).
The point density also increased in the lower altitudes, with more than 400 thousand points per m2 in
the 30.5 m flight. However, the processing time practically doubled with each reduction in altitude.
Flight time also increased substantially in the lowest altitude flight, probably because at this altitude it
was necessary to perform two flights in each direction to complete the mission, necessitating a total of
four flights at the 30.5 m altitude, while the other three altitudes required only two.

Table 1. Data acquisition and processing.

Flight
Altitude (m) Pictures (n) Area (km2) 1

Resolution (cm/pix) Density
(points/m2)

Time (h:m) 2

Ortho DSM Processing Flight

122.0 100 0.156 3.13 6.25 256 4:01 0:16
91.5 158 0.125 2.31 4.62 468 7:01 0:20
61.0 364 0.0996 1.54 3.08 105,000 16:22 0:31
30.5 828 0.0587 0.786 1.57 404,000 33:15 1:07

1 the area refers to the surface covered by all the images together. 2 the processing time only includes the processing
performed in Agisoft Photoscan.

The positional accuracy of each flight altitude was also recorded (Table 2). There was no clear
influence of flight altitude on this parameter. The largest errors were observed in the Z coordinate,
and the maximum error total observed was 3.77 cm for the 61 m flight. Therefore, all flight heights
obtained an adequate positional accuracy.

Table 2. Geolocation RMSE errors based on the check points.

Flight Altitude (m) X (cm) Y (cm) Z (cm) Absolute Error (cm)

122.0 2.12 0.43 2.49 3.30
91.5 1.67 1.01 1.98 2.78
61.0 1.94 1.00 3.08 3.77
30.5 1.05 1.41 2.97 3.45

3.2. Observed and UAV Data Description

One orthomosaic, one DSM, and one 3D dense point cloud were generated from each flight
altitude and used in the UAV digital cross section measurements. Descriptive statistics for the metrics
measured are presented in Table 3. Wetted and bankfull width UAV measurements displayed a larger
range than the observed data, except for the 61 m UAV flight (Figure 4). In both UAV and observed
data, some points were observed above the 90% percentile. For wetted width, it is important to
note that the observed values were concentrated below the mean (i.e., right-skewed), while the UAV
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data showed a more even distribution. For bankfull width, the distribution of UAV and observed
data was similar. Distance to water showed the largest difference between UAV and observed data
distributions, with observed data displaying left-skewness and UAV data well-distributed across
the range. For wetted width, the majority of UAV data points were overestimations, relative to
observed values, yet the values were similar. Bankfull width presented a similar tendency, but the
UAV method estimated lower minimum values in some cases. For distance to water, most UAV data
points comprised underestimations, relative to observed values, although results of the 30.5 m altitude
flight indicated slight overestimation.

The relationship between field-measured values and UAV measurements along the stream
corridor are presented in Figure 5. The figure further illustrates overestimation of wetted width by
UAV measurements, while distance to water was generally underestimated. Wetted width displayed
larger values upstream, generally decreasing downstream, excepting the cross sections at the end
of the corridor. Distance to water showed the opposite trend, with values consistently increasing
downstream. Bankfull width exhibited small values at the beginning of the stream corridor, with the
rest of the corridor presenting a larger range of values. Collectively, longitudinal patterns of measured
metrics indicate a representative incised (decreasing wetted width, increasing depth to water) stream,
consistent with results from previous PHAs conducted on streams subject to agricultural land uses [41].
Importantly, parameter values estimated by the UAV method did not exhibit consistent overestimation
or underestimation, or systematic increases or decreases in accuracy with changes in altitude.
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Table 3. Descriptive Physical Habitat Assessments (PHA) statistics of wetted width, bankfull width
and distance to water from the PHA and UAV measurements.

Statistic Observed UAV 122.0 m UAV 91.5 m UAV 61.0 m UAV 30.5 m

Wetted Width (m)

Mean 1.41 1.59 1.64 1.51 1.54
Maximum 3.13 3.36 3.28 2.92 3.48
Minimum 0.65 0.73 0.76 0.64 0.70

Median 1.21 1.43 1.63 1.49 1.50
SD 0.56 0.63 0.61 0.58 0.67

Bankfull Width (m)

Mean 7.07 7.58 7.43 7.62 7.65
Maximum 14.00 14.97 16.08 14.75 15.05
Minimum 2.20 1.46 1.98 2.35 2.22

Median 6.96 7.39 7.44 7.40 7.23
SD 3.08 3.22 3.37 3.19 3.42

Distance to Water (m)

Mean 0.84 0.71 0.75 0.81 0.87
Maximum 1.40 1.26 1.30 1.34 1.59
Minimum 0.14 0.12 0.28 0.23 0.26

Median 1.01 0.69 0.76 0.84 0.91
SD 0.39 0.29 0.28 0.27 0.33
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3.3. Statistical Comparison

Table 4 presents RMSE values between observed and UAV data for each metric, as well the
correlation. Wetted width was the metric with the lowest error, ranging from 7.1–10.8% RMSE,
while bankfull width showed the largest error, ranging from 25.0–28.7% RMSE. UAV estimates of
both wetted and bankfull widths displayed high correlation with observed values (SCC ≥ 0.85).
Despite differences, error and correlations were not strongly influenced by flight altitude for wetted
and bankfull widths. Distance from water showed the largest variation between the different UAV
flight altitudes and showed smaller error in the two lowest flights. However, correlations of observed
and UAV data were statistically significant (p < 0.05).

Table 4. RMSE and Spearman’s correlation coefficient between observed and UAV data for wetted
width, bankfull width and distance to water.

Value 1 Value 2
RMSE (m) RMSE (%) SCC

Wetted Width

Observed UAV 122.0 m 0.34 7.99 0.90 *
Observed UAV 90.5 m 0.39 10.79 0.88 *
Observed UAV 61.0 m 0.32 7.09 0.85 *
Observed UAV 30.5 m 0.32 7.29 0.87 *

Bankfull Width

Observed UAV 122.0 m 1.33 25.01 0.92 *
Observed UAV 90.5 m 1.38 26.83 0.91 *
Observed UAV 61.0 m 1.33 25.00 0.93 *
Observed UAV 30.5 m 1.42 28.70 0.93 *

Distance to water

Observed UAV 122.0 m 0.34 13.35 0.59 *
Observed UAV 90.5 m 0.31 11.54 0.62 *
Observed UAV 61.0 m 0.27 8.37 0.67 *
Observed UAV 30.5 m 0.27 8.61 0.66 *

SCC: Spearman’s correlation coefficient; * significant correlation at 95% probability.

4. Discussion

Collectively, results of the current work highlight the utility of UAV imagery for PHA. From this
imagery, high spatial resolution data can be obtained to generate spectral and 3D information for
efficient and cost-effective aquatic habitat measurements, even at the highest flight altitudes permitted
by US FAA. The lowest spatial resolution generated was 3 cm for the orthomosaic and 6 cm for the
DSM at the highest flight altitude, which required only 16 min of flight time and 4 h of processing
time. It is important to note that similar conclusions were observed in related works [23,34]. Also,
the UAV geolocation accuracy observed in this research was high, compared to other studies [33,53],
and a relationship between positional error and flight altitude as observed in other studies was not
detected [33,37,53]. This validates the method of acquisition in this study as reliable (in terms of
flight-line overlap, GCP number and position, UAV and GNSS sensors applied).

UAV-estimated PHA values have a similar trend to values observed via traditional methods.
In general, UAV data displayed a similar distribution to field measurements. However, UAV data were
characterized by a larger range, which may be due to slight differences in measurement positions to
adjust for vegetation and woody debris in the digital data. Bankfull width displayed large RMSE values.
However, considering high observed correlations between UAV and observed values (SCC > 0.9), error
could likely be improved in the future via more stringent data post-processing and methodological
refinement. Notably, RMSE values were not strongly influenced by flight altitude, suggesting errors
were not related to spatial resolution for this parameter. Importantly, the lack of altitude impact on
UAV estimate accuracy suggests that increased expenditures in terms of labor (e.g., flight time, data
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processing requirements) associated with lower altitude UAV flights may not produce more accurate
estimations of stream physical parameters, and thus are likely not justified.

Given point clouds used in generating DSMs included all surface features, such as tall grass and
shrubs, Wbf and Ww error could also be attributable to the presence of vegetation and occlusions
caused by shadows [13,48,55]. Vegetation interference is one of the main sources of error in digital
models derived from UAV imagery [13,23], whereas in areas with no vegetation it is possible to obtain
DSMs with comparable precision to LiDAR [23]. Reference [55] notes the possibility of classifying and
excluding vegetation by interpolating from adjacent cells, but this process may introduce large errors
if adjacent cells are not in the same plane (e.g., channel edges). Shadows are known to interfere in both
radiometric image aspect [56,57] and 3D reconstruction [58], and comprise a challenge to the detection
of match points in the alignment process [36,59].

The distance to water parameter showed the lowest correlations and RMSE values between
observed and UAV estimated values. For distance to water, it was also observed that most of the errors
were underestimates, a common problem in remotely sensing streams [13,14]. A primary source of this
error stems from differential refraction of light between air and water which affects water depth and
topographic measurements in submerged areas [13,14,55]. References [14,55] observed larger error
in the DSM with increasing water depth. This may explain smaller differences in distance to water
values between observed and UAV measurements in shallower, upstream segments of the reach in
the current work. Also, distance to water errors could be related to problems in the photogrammetric
reconstruction of areas with water in the surface, since the reflection of the water can present challenges
finding matches in the SfM algorithms due to the presence of low texture in deep water, sun reflection,
and water turbidity [21,23,54]. Lastly, errors in the distance to water measurement may be related to
erroneous measurements in the bankfull width from which they are derived. Difficulties encountered
in estimating distance to water provide impetus for continued work regarding the refinement of UAV
PHA methodology.

Despite differences between UAV and field-observed bankfull width, it is possible that UAV
estimates are more precise, given the comprehensive 3D view of the stream corridor on which they are
based, and which may facilitate the visual recognition of channel limits difficult to spot in the field.
Moreover, unlike PHA reliance on a discrete and limited number of cross sectional observations, UAV
data provides information for the entire stream reach, affording essentially limitless cross sectional
data for analysis [20]. Data collected by UAVs are versatile, supporting a variety of stream-based
surveys in addition to or in combination with PHA, including hydrologic and hydraulic modeling,
stream restoration design, flood mapping, and planning for fish habitat improvements [13,17,19,23].
While current UAV technology may be most useful in small study areas [23,34], results of the current
work confirm that UAV data collected at even the highest legal altitudes offer an efficient and effective
alternative to traditional methods of PHA data collection.

It is important to consider that there are additional options to perform PHA measurements,
such as the use of GPS presented in [4,41]. The use of GPS to measure the metrics evaluated in this
study would require four positions for each cross section (both limit sides of bankfull, and both
limits of wetted area). In the current study, the collection of one position in each cross section took
approximately 2 h, therefore it is reasonable to expect that the collection of four points would take
at least twice as long (since there is no need to walk between points in the same cross section). Thus,
for the experimental stream reach of approximately 750 m, the GPS collection could take approximately
four hours, although the time would also be constrained by the number of individuals in the field
crew. Therefore, the data collection process may take more than four hours, while the image collection
with the highest flight altitude took only 16 min and needed approximately 4 h of processing (in
office, and mostly for computational time without the need of supervision). This difference in time
would be more significant in larger areas, or in streams with limited access. Despite the need for a
few additional ground control points in larger projects, the UAV approach would clearly outpace
traditional or GPS field measurement over larger project areas, yet UAV are may not be the most
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cost efficient for very larger areas, where manned aircrafts or high-resolution satellites could be the
recommended choice [60]. In addition to speed and ease of data collection and processing, UAV data
can be analyzed in office, with a full 3D view of the area, to detect bankfull edges in as many positions
as needed, data which can also be used as an archive of stream condition for future reference.

5. Conclusions

The current work evaluated the viability of using UAV-derived imagery to simulate PHA field
measurements. The main objective was to estimate the accuracy of UAV-based remote sensing methods
in comparison to traditional measurements, as well to understand the effect of different flight altitudes
on the accuracy of UAV PHA measurements.

Results indicated UAV PHA values present a similar trend as the observed PHA metrics used in
the current work. In general, the UAV method overestimated wetted width while underestimating
distance to water. Yet, bankfull width presented the largest errors, as illustrated by RMSE values.
Differences between observed and UAV PHA values are likely related to problems in the correct
characterization of the metrics in the imagery, since it was performed manually, and to limitations of
the UAV system applied. Therefore, results from the UAV PHA were considered valid, highlighting the
applicability of the method for stream research in general, and physical habitat assessments specifically.
The UAV flight altitudes showed differences in accuracy, relative to observed values, but differences
were not characterized by a systematic relationship, which emphasizes the utility of even the highest
legal flight altitude in the USA (FAA regulations) for PHA studies. Although the flight at 61.0 m
aboveground provided the best results, the highest flight altitude provided similar results, and can
therefore be recommended since it allows faster data collection and processing.

Future studies should evaluate other UAV planning/flight variables, such as photo overlap
percentage (80% forward, 80% side was held constant in this study), flight directions, and number
and placement of ground control points, given these parameters also impact UAV data collection
and processing time. Data processing parameters could be modified to lower settings to reduce
processing time and file sizes, and many other PHA metrics should be validated. Future work should
address the development of an automated method to detect and measure PHA metrics in UAV outputs,
considering the manual identification (as performed in the current study) was labor intensive and
time consuming.

Collectively, results illustrate the value of UAV-based remote sensing techniques for the
characterization of stream habitat conditions. Considering the reduced time and labor associated with
UAV methods, as compared to traditional field-based approaches, results support the adoption of UAV
methods for routine physical habitat assessment, which can in turn improve outcomes of land and
water resource management strategies and more effectively target restoration and remediation efforts
at reduced costs.
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