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Abstract: Inertial measurement units (IMUs) are fundamental for attitude control of drones. With the
advancements in micro-electro-mechanical systems (MEMS) fabrication processes, size, power
consumption, and price of these sensors have reduced significantly and attracted many new
applications. However, this came at the expense of sensors requiring frequent recalibration, as they
are highly contaminated with systematic errors. This paper presents a novel method to jointly
calibrate the accelerometer, gyroscope, and magnetometer triad in a MEMS IMU without additional
equipment. Opportunistic zero change in velocity and position updates, and inclination updates
were used in conjunction with relative orientation updates from magnetometers in a robust batch
least-squares adjustment. Solutions from the proposed self-calibration were compared to existing
calibration methods. Empirical results suggest that the new method is robust against magnetic
distortions and can achieve performance similar to a specialized calibration that uses a more accurate
(and expensive) IMU as reference. The jointly estimated accelerometer and gyroscope calibration
parameters can deliver a more accurate dead-reckoning solution than the popular multi-position
calibration method (i.e., 54% improvement in orientation accuracy) by recovering the gyroscope
scale error and other systematic errors. In addition, it can improve parameter observability as well
as reduce calibration time by incorporating dynamic data with static orientations. The proposed
calibration was also applied on-site pre-mission by simply waving the sensor by hand and was able
to improve the orientation tracking accuracy by 73%.

Keywords: calibration; accelerometers; gyroscopes; magnetometers; optimization; inertial navigation;
dead-reckoning

1. Introduction

The market and applications for drones have skyrocketed. There are many manufacturers such
as DJI, 3D Robotics, Yuneec, and Parrot SA each selling their own unique designs. Depending on
the application, the drone may be equipped with extra sensors, such as laser scanners and cameras.
Regardless of the manufacturer or application, modern day drones are all dependent on the inertial
measurement unit (IMU) for assisting its attitude control. Conventional IMUs are composed of a triad
of accelerometers and a triad of gyroscopes. Together they can autonomously determine accurate
changes in position, velocity, and orientation of quadcopters and fixed wing unmanned aerial vehicles
(UAVs) at high frequencies through strap-down integration. Although they can provide valuable
navigation information, their long-term usefulness as a solo navigation device is jeopardized by the
accumulation of errors over time. Even over a relatively short time interval, the sensor’s systematic
errors are magnified by the integration process and will provide erroneous navigation parameters
that can be deemed unusable. Therefore, it is extremely important that these systematic effects be
minimized. In addition, popular onboard navaids deployed to aid IMUs (e.g., magnetometers) are
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only advantageous if they are properly calibrated for the platform they are mounted on. The necessity
for manufacturers to perform precise and reliable laboratory calibration has become a significant
portion of the production cost. Furthermore, unavoidable “wear and tear” from the usage of the sensor
may lead to demands for recalibration. For lower cost systems, stress induced on the printed circuit
board (e.g., soldering) can introduce parasitic effects on the accelerometer and gyroscope. Brodie et al.,
2008 [1] recalibrated the accelerometer and gyroscope of a micro-electro-mechanical systems (MEMS)
IMU and reported absolute static orientation errors of 5.2 degrees before user-calibration and 1 degree
after; in addition, they claimed that their user-calibration parameters are valid for at least 22 days before
another user-calibration is necessary. This paper presents a new robust low-cost quality assurance
technique that users can perform without specialized tools or taking apart the drone.

2. Related Work

Traditionally, expensive external systems with accuracy better than the IMU under consideration
are used to generate a series of reference signals. The IMU signals are forced to conform to this
reference through solving for the systematic parameters [2], which may include:

• Accelerometer—biases, scale factors, and non-orthogonalities.
• Gyroscope—biases, scale factors, non-orthogonalities, axes misalignments, and g-sensitivities.
• Magnetometer—biases, scale factors, non-orthogonalities, axes misalignments, soft-iron effects,

and hard-iron effects.

Typical calibration methods belonging to this category use actuated mechanical systems to
position the IMU in known orientations and rotate at known and/or constant rotation rates [3–6]. Kim
and Golnaraghi, 2004 [7] used the LED marker-based optical tracking system Optotrak to calculate
the ground truth acceleration and angular rate of the IMU and calibrated the biases, scale errors,
and non-orthogonality for the accelerometer and gyroscope in a disjoint nonlinear least-squares
routine. Existing infrastructure such as GNSS can also be used but will be restricted to outdoor
environments [8,9]. Well-known methods in this category of inertial calibration include the local level
frame method, six-position static test, and rate test [10]. Special boxes/mounts/platforms where
the IMU can be mounted and rotated or positioned accurately in a deterministic fashion can also be
used [11,12]. For magnetometer calibration, a 3D Helmholtz coil can be used to generate a known
magnetic field in various directions [13]. These methods all require infrastructure and/or apparatus
that may not be readily available to the end-user.

Another, perhaps more suitable, stream of self-contained user calibration methods focused on
exploiting reference signals found in nature and has no demand for specialized equipment except for
the sensors on-board. For example, Panahandeh et al., 2010 [14] implemented a gravity constraint in
the local-level frame to calibrate a triad of accelerometers. The calibration of other sensors necessary to
obtain the full navigation solution was not studied, and the presented approach requires solving the
nuisance inclination angles for every orientation besides the 9 accelerometer calibration parameters.
Yang et al., 2012 [15] performed a similar 2-step optimization procedure for the calibration parameters
and then the inclination but also solved for the non-linear scale errors. Wu et al., 2002 [16] and
Lötters et al., 1998 [17] avoided the need to determine the orientation angles during calibration by
constraining the norm of acceleration under static or quasi-static periods to equal gravity.

The magnetometer can be calibrated by using the same concept of constraining the norm to
a constant value (e.g., the magnitude of the Earth’s magnetic field obtained from a geomagnetic
model) [18]. Instead of negligible or zero motion, a constant and uniform ambient magnetic field is
required for the calibration [19]. This approach is comparable to performing a geometric sphere-fit
to 3D points [20]. When used as an orientation update, the strength of the field has no impact, so the
magnitude can arbitrarily be constrained to unity [21]. Any motion that can generate sufficient samples
to cover the entire surface of the sphere can be used to determine the hard and soft iron effects reliably,
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although Ali, 2013 [22] tested several movement patterns (i.e., random, figure-eight, and orthogonal
excitations) and concluded that coordinated rotation works best.

When the sensor is stationary, the gyroscopes should only sense the rotation rate of the Earth and
the magnitude of the observed angular rate can be compared to this reference using the same norm
constraint previously described [23].

These methods can calibrate a particular module (e.g., triad of magnetometers or accelerometer)
of a 9-DoF IMU or they can be combined to calibrate multiple modules (albeit independently).
Camps et al., 2009 [24] used the aforementioned norm constraint approach to calibrate a triad of
accelerometers and magnetometers. In the popular multi-position (or perhaps, “multi-orientation”)
calibration approach the accelerometer and gyroscope were calibrated at the same time using the
magnitude constraint [23]. These methods can be combined to calibrate a 9-DoF system, although in the
case of magnetometers, the static requirement is unnecessary. This combined approach independently
calibrates the accelerometer, gyroscope, and magnetometer even though data from the same trial can
be used. It was reported that ~19% performance improvement can be expected for tactical-grade
IMUs [25], but the gyroscope scale error and axes non-orthogonality for both the accelerometer and
gyroscope are difficult to estimate using this method [26]. Rather than requiring strict-static periods,
automatically detectable quasi-static periods can be used for convenience (with minor compromises in
accuracy) for pedestrian tracking applications [27,28]. Most improvements made to this method involve
adding a turn-table to generate a stronger reference signal for the gyroscope [29–31]. Undeniably
this is advantageous, but reduces the ease-of-use factor by returning to the reliance on additional
equipment. It took Zhang et al., 2010 [30] almost 2.5 h of data capture to perform their modified
multi-position calibration.

Another stream of inertial sensor calibration exploits the correlation between the sensor’s
accelerometer, gyroscope, and/or magnetometer to perform the calibration. In such cases the
calibration of the IMU components are no longer decoupled and often the inter-triad misalignment
needs to be known or estimated in addition to tracking the orientation states. Examples of this type
of calibration include Kok et al., 2012 [32] and Kok and Schön, 2014 [33]. In Kok et al., 2012 [32],
the authors calibrated the magnetometers using sphere-fitting and the dip angle constraint along
with the inclination (estimated by running a Kalman filter on the inertial data) to derive the axes
misalignments. Since the inclination was estimated independent from the magnetometer calibration,
the magnetometer readings were not used to update the inclination and calibrate the inertial sensor.
In Kok and Schön, 2014 [33], they used a grey-box system identification approach to estimate the
12 magnetometer calibration parameters as well as the gyroscope bias and variance-covariance
matrices of the accelerometer, gyroscope, and magnetometer. In both cases systematic errors of
the accelerometers were ignored and small accelerations were expected, otherwise the estimated
vertical direction could be erroneous.

Cheuk et al., 2012 [34] hierarchically calibrated a 9-DoF IMU by first constraining the accelerometer
and magnetometers to fit on two separate spheres and then comparing changes in orientation
from integrating the gyroscope signal with the orientation determined by the accelerometer and
magnetometer combined. They only used the magnetometer and accelerometer when the sensor was
static (dynamic portions of the data were simply ignored).

Renaudin and Combettes, 2014 [35], used a pre-calibrated magnetometer to help estimate the
accelerometer and gyroscope biases in a Kalman filter. Their magnetic angular rate model and
acceleration gradient model are comparable to the magnetometer and levelling updates used in this
paper, which are suitable attitude updates (AUPT) for indoor urban environments. However, they
focused on the tracking solution and did not account for the scale errors and non-orthogonalities of
the triads. More recently, Li et al., 2015 [36] improved upon this approach by using a pre-calibrated
magnetometer to also estimate the accelerometer and gyroscope scale errors. Measurement updates
include approximate position updates, low-pass acceleration updates, quasi-static orientation updates,
and relative change in magnetic field update when periods of constant magnetic field is identified by
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a detector. However, besides assuming that a calibrated magnetometer is available, not all systematic
errors were estimated by the filtering approach.

So far, none of the presented calibration routines can simultaneously calibrate for the accelerometer,
gyroscope, and magnetometer sensors along with their inter-triad misalignments optimally without
specialized tools; both Zhang et al., 2014 [37] and Ammann et al., 2015 [38] stressed the importance of
determining the inter-triad misalignments but neglected some dependencies between the sensors by
not calibrating them simultaneously. The abovementioned shortcomings can be mitigated using the
proposed methodology.

3. Proposed Method

The proposed self-calibration method was performed offline using a robust batch optimization
technique. Compared to a filtering approach, this allows information from the past, present, and
future to be incorporated optimally for identifying the systematic errors. By following the implicit
least-squares adjustment framework, all navigation states (i.e., orientation, velocity, and position) can
be marginalized away from the beginning of the adjustment, eliminating the need to determine good
initial approximations for the non-linear optimizer and making the size of the Hessian and Jacobian
time-invariant. To the authors’ best knowledge, this is the first total-system user self-calibration
method designed for MEMS IMU with a magnetometer that can simultaneously model all first
order systematic errors. Forty-two parameters are considered in this paper: accelerometer—3 biases,
3 scale errors, 3 non-orthogonality angles; gyroscope—3 biases, 3 scale errors, 3 non-orthogonality
angles, 9 g-sensitivity coefficients, 3 angles for axes misalignment relative to the accelerometer;
magnetometer—9 elements for the soft-iron effects and 3 elements for the hard-iron effects. In addition,
both static and dynamic data from all three sensor triads are used; there is no restriction on how
the sensor needs to be moved apart from having occasional periods of stillness (as in the typical
multi-position calibration). The novelty of the presented 9-degrees-of-freedom (DoF) IMU calibration
method is the combination of the following:

• Tightly-coupled joint calibration (rather than sequential independent hierarchical calibration) of
accelerometers, gyroscopes, and magnetometers.

• Number of optimization variables is time invariant and only contains the calibration parameters;
this eliminates efforts in rotation parameterization, datum definition, and deriving initial
approximation for the navigation states.

• Assumes only piecewise local homogenous magnetic field rather than a single global homogenous
field, which is more suitable for indoor applications.

• Automatic outlier detection for abrupt magnetic disturbances during optimization.
• Opportunistic zero change in velocity, inclination, and loop-closure position updates when

deemed suitable for calibrating the MEMS IMU indoors.
• Calibration is self-contained and easy to perform by the end-user. By combining both static

and dynamic signals a total of 42 systematic error parameters can be recovered without using
expensive equipment.

3.1. Sensor Models

The following sensor models describe the relationship between the observed signals (e.g., sensed
angular velocity and acceleration) and the true signal by accounting for the systematic and random
errors. In the following equations, uppercase letters represent 3 by 3 matrices and lowercase
letters represent 3 by 1 vectors. Furthermore, S is a diagonal matrix and N is a lower-triangular
non-orthogonality matrix, where both are composed of three independent unknown parameters [30].
Although the effect of scale error and axes non-orthogonalities can be merged into a single matrix, they
are treated separately for the accelerometers and gyroscopes to be consistent with the notation in some
literature (e.g., [23,29]).



Drones 2018, 2, 6 5 of 20

3.1.1. Accelerometers

sya = SaNa
sa + ba + εa (1)

where,
sya is the measured acceleration in sensor frame.
Sa is the linear accelerometer scale factor.
Na is the accelerometer axes non-orthogonality.
sa is the true acceleration in sensor frame.
ba is the accelerometer bias.
εa is the accelerometer noise.

3.1.2. Gyroscopes

yω = Sω NωRω
sω + bω + Gω

sa + εω (2)

where,

yω is the measured angular rate in gyroscope frame.
Sω is the gyroscope scale factor.
Nω is the gyroscope axes non-orthogonality.
Rω is the inter-triad misalignments between the accelerometers and gyroscopes.
sω is the true angular rate in sensor frame.
bω is the gyroscope bias.
Gω is the g-sensitivity.
εω is the gyroscope noise.

3.1.3. Magnetometers

ym = Dm
sm + om + εm ∗ (3)

where,

ym is the measured magnetic field in magnetometer frame.
Dm is the soft-iron effects.
sm is the true magnetic field in sensor frame.
om is the hard-iron effects.
εm is the magnetometer noise.

* Note that Dm and om also convey the effect of magnetometer biases, scale factors, axes
non-orthogonality, and inter-triad misalignments.

3.2. Constraints and/or Measurement Updates

Conventional IMU mechanization found in a Kalman filter requires the 3D pose (i.e., 7 parameters
when using quaternions) and velocity (i.e., 3 parameters) to be estimated at every epoch (Equation (4)).
Often IMU biases (i.e., 3 gyroscope biases and 3 accelerometer biases) are treated as time-varying
unknowns (e.g., random walk process) and are included in the filter, resulting in 16 unknowns at
every time step. These equations can pose a challenge when implementing in a batch least-squares
adjustment; for example, the number of unknown parameters for a 100 Hz IMU can reach 96k
in a minute (assuming orientations are parametrized using quaternions, represented by q in the
equations). If all 42 calibration parameters are being considered this increases to 312k unknowns per
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minute. Furthermore, navigation states of an uncalibrated IMU will have to be initialized using some
approximate methods before the nonlinear least-squares estimations.

L pt+T = L pt + LvtT + 1
2
(Lqt+T ·dvt,t+T ·Lqc

t+T + LgT2)
Lvt+T = Lvt + Lqt+T ·Ldvt,t+TT·Lqc

t+T + LgT
Lqt+T = Lqt ⊗ exp

(
1
2 dqt,t+TT

) (4)

where,

Lp, Lv, and Lq are the unknown navigation states (position, velocity, and orientation using
quaternion parametrization, respectively) in local frame at time t and t + T.
dqt,t+T and dvt,t+T are the change in orientation and velocity (defined in Equations (8) and (11),
respectively).
Lg is the local gravity vector.
T is the time interval.

Please note: superscript c indicates the quaternion conjugate.
Instead, the constraints and measurement updates in this section are written in implicit form

(i.e., f(X,Y) = 0, where X and Y are the unknowns and observations, respectively). This was chosen by
design in order to use an implicit least-squares solver [39] to eliminate the necessity to explicitly solve
for the navigation states, which grows with time. The constraints and updates described below may
happen at different times (i.e., opportunistically), and only the magnetometer updates are being applied
at regular intervals. The different constraints/updates are influenced by different systematic sensor
errors and therefore provide different information to the self-calibration in terms of their recovery
(Figure 1). Their combined effect makes all the systematic errors observable in the total-system user
self-calibration and some redundancy between observability improves the reliability of the estimates.
More details about each individual update or constraint are given in the following subsections.
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Figure 1. Contribution of the various constraint and/or updates to the recovery of different IMU
systematic errors. Green indicates that it is possible to calibrate for those error terms using the
corresponding constraint/update. Please note that the levelling update measures the tilt angle of the
sensor relative to local gravity when the sensor is static, ZUPT stands for zero-velocity update, and
CUPT stands for coordinate update, all of which will be explained below.

3.2.1. Accelerometers

When static or quasi-static periods in the IMU data are detected (e.g., by considering a window of
inertial data and checking the variance against some threshold [9]), the magnitude of the measured
acceleration in sensor frame (s) should equal the local gravity (Lg). This update can help define the
scale for the accelerometer.

‖sa‖2
2 −

Lg2 = sa2
x +

sa2
y +

sa2
z − Lg2 = 0 (5)

where, sax, say, and saz are the individual components of the corrected acceleration in sensor frame.
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3.2.2. Gyroscopes

When static or quasi-static periods in the IMU data are detected, the magnitude of the measured
angular rate should equal the rotation rate of the Earth. However, for MEMS IMUs the noise typically
masks such a weak signal. Instead the three components (x, y, and z channel) can be conditioned to
zero (a.k.a. zero rotation update). Any non-zero mean value will indicate a bias.

sωx = sωy = sωz = 0 (6)

where, sωx, sωy, and sωz are the individual components of the corrected angular rate in sensor frame.

3.2.3. Gyroscopes + Magnetometer

Regardless of the motion, the gyroscope signals and magnetometer signals can be compared to
each other in both static and dynamic situations. Instead of requiring the sensor to be static, the local
magnetic field should be constant and homogenous. If this assumption is satisfied, the magnetometer
can act as a low-pass filter that smooths out the sensed angular rate, while the gyroscope captures
the high-frequency dynamics missed by the magnetometers. Although such an assumption may
be satisfied in outdoor applications, in indoor urban environments the homogenous magnetic field
assumption is often violated. Instead, the assumption can be relaxed to assume only piece-wise
constant magnetic fields at the expense of losing the absolute heading reference (i.e., magnetic north)
and experiencing the possibility of heading drift. However, since the calibration parameters are defined
in sensor frame, they are independent of the absolute reference.

Assuming a longer duration of homogeneous magnetic field reduces heading drift and induces
more smoothing; however, it is more likely to be violated due to magnetic disturbances. On the
contrary, by assuming a shorter duration, the update has a higher probability of being valid but the
heading will drift more rapidly. It has also been perceived that a longer duration assumption is more
robust to magnetic disturbances because, with a larger rotation interval, the outliers become more
detectable. To combine the benefits of both approaches, the magnetometer updates can be performed
at two frequencies simultaneously (e.g., 10 Hz and 100 Hz as in this paper). The magnetic field
measurements at different times can be related through a 3D rotation (Equation (7)) determined by
performing strap-down integration on the gyroscope signal (Equation (8)).

dqt,t+T ·smt+T ·dqc
t,t+T − smt = 0 (7)

dqt,t+T =
1
2

T∫
τ=t

dqt,τ ·sωτdτ (8)

where,

dqt,t+T is the relative change in orientation from time t to time t + T expressed using quaternions
(with the superscript c representing the conjugate).
sωτ is the vector of corrected angular rates at time τ expressed in sensor frame.
smt is the vector of corrected magnetic samples at time t expressed in sensor frame.

3.2.4. Accelerometer + Gyroscopes

Several updates based on the accelerometer and gyroscope can be enforced depending on the
user’s motion for calibrating both sensors, namely levelling update, zero-velocity update (ZUPT),
and coordinate update (CUPT).

i. Levelling Update
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When the sensor is static the accelerometers can define the tilt angles relative to the local-level
frame by measuring gravity. This can be used to update the inclination determined from integrating
the gyroscope readings and give the orientations an absolute vertical reference.

dqt1,ti ·
sati
·dqc

t1,ti
− sat1

= 0 (9)

ii. Zero-Velocity Update (ZUPT)

Between two static (or quasi-static) periods the total change in velocity is zero. Instead of directly
applying the update to the velocity, which would involve solving for all the nuisance intermediate
velocity and orientation parameters, this update can be applied directly to the accelerometer
and gyroscope signals using Equation (10) and strap-down integration for change in velocity
(Equation (11)).

sgt1
·(ti − t1) + dvt1,ti = 0 (10)

dvt1,ti =

ti∫
τ=t1

dqt1,τ ·saτ ·dqc
t1,τdτ (11)

where,

dvt1,ti is the change in velocity from time t1 (first epoch) to time ti expressed in the sensor frame
at t1.
sgt1

is the gravity vector at time t1 expressed in sensor frame.

iii. Coordinate Update (CUPT)

If the user is rotating the sensor while standing or sitting at the same location, and/or the
sensor was returned approximately to the same position after a period of time, an approximate zero
change in position update can be applied. In the former case, this update can be applied at regular
intervals, and in the latter it can be applied sporadically even if the sensor is not static. Following the
strap-down integration approach described above and assuming the sensor started at rest, the CUPT
can be implemented without explicitly solving for the navigation states using Equations (12) and (13).
The detection of loop-closure (e.g., based on magnetic signature or RSS fingerprint) was not studied in
this research, similar position updates were detected manually based on the data acquisition procedure
described in Section 4.

1
2
·sgt1
·
(
tj − t1

)2
+ dpt1,tj = 0 (12)

dpt1,tj =

tj∫
τ=t1

τ∫
ξ=0

dqt1,ξ ·saξ ·dqc
t1,ξ dξdτ (13)

where, dpt1,tj is the change in position from time t1 to time tj expressed in the sensor frame at t1.

3.3. M-Estimator

The calibration parameters for the accelerometer, gyroscope, and magnetometers are treated as
time-invariant and can be solved simultaneously offline using the standard iterative Gauss-Helmert
least-squares adjustment [39] (as in the multi-position calibration approach [29]). The nuisance
parameters (i.e., states) were marginalized away by design from the beginning (i.e., by writing the
functional models in implicit form), which constrain the dimensions of the Hessian matrix. The
unknowns vector contains the 42 calibration parameters only (i.e., X = [ba, Sa, Na, bω, Sω, Nω, Gω,
Rω, Dm, om]T) and the observations are the accelerometer, gyroscope, and magnetometer readings
(i.e., Y = [ya, yω, ym]T), along with the pseudo-measurements for the approximate CUPT. During the
batch optimization the sum of weighted residuals squared is minimized (Equation (14)) subject to
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Equation (15). For more information about applying this implicit least-squares formulation to IMU
data, please refer to Shin and El-Sheimy, 2002 [23] and Shin, 2001 [26]. Through marginalization the
Hessian loses its sparse structure, however the size of the resulting dense Hessian matrix will never
exceed 42 by 42 regardless of the amount of data captured. This is a favorable property and offers the
potential for this method to be scaled to larger datasets.

r̂TC−1
l r̂ = min (14)

Aδ̂ + Br̂ + w = 0 (15)

where,

δ̂ is the correction to the unknown parameters, X.
r̂ is the correction to the observations, Y.
w is the misclosure vector.
A is the first design matrix.
B is the second design matrix.
Cl is the observations variance-covariance matrix.

The measurement noise of the sensors can be obtained from the manufacturer’s specification
sheets or from studying the Allan Variance. The noise introduced for the approximate CUPT depends
on the application and is the only parameter that requires tuning (it was set to σ = 10 cm in this paper).
All other measurement updates were assumed to be exact. To improve the robustness of the estimator,
the Huber and Tukey weight functions [40] were adopted to iteratively reweight the accelerometer
and magnetometer observations, respectively. This approach is suitable for dampening the effects
of abrupt magnetic disturbances and false-detection of static periods that can significantly affect the
calibration, for example.

4. Experimentation

Two MEMS-based IMUs from Xsens Technologies, MTi-300 and MTi-G-700 (both with built-in
accelerometers, gyroscopes, and magnetometers), were used for testing the algorithm. All data were
logged at 100 Hz (note: the raw inertial data was captured at 2 kHz and then down-sampled to
100 Hz via strap-down integration [41]). For quality control, a fiber optic gyroscope (FOG)-based
tactical grade IMU (i.e., IMU-FSAS from iMAR GmbH, St. Ingbert, Germany) capturing at 200 Hz
was rigidly attached to the MEMS IMU to provide a reference solution (Figure 2). The two IMUs
were software time synchronized for each experiment, while their rotational and translational offsets
(i.e., boresight and lever-arm) were predetermined using the calibrated accelerometer and gyroscope
signal. All reported error measures were computed by differencing the MEMS IMU solution with the
tactical-grade IMU solution.
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outside of a box (left) and the iMAR rigidly mounted to the inside of the same box (right). Please note
that the third Xsens IMU (MTi-30) was not used in this experiment.

4.1. Case 1: In-Laboratory User Self-Calibration

In the first case, data was acquired by placing the MTi-G-700 in various static orientations (i.e., 15)
similar to the conventional multi-position IMU calibration scheme. This calibration was performed in
a controlled environment with the objective of estimating the static portion of the systematic errors
(e.g., axes non-orthogonality). The repeatability and robustness of the calibration was tested by
carrying out ten consecutive calibrations with the MTi-300. The first five trials were acquired while
mitigating magnetic disturbances (i.e., rotating the sensor with minimal translations in an open space)
and for the remaining five trials the sensor was rotated and translated in the presence of various
magnetic disturbances (e.g., computers, tables, chairs, etc.). The latter heterogeneous magnetic field
case can represent some unexpected magnetic field changes during laboratory calibration. In addition,
it illustrates the potential of extending this method in an uncontrolled environment when significant
excitations are provided.

4.2. Case 2: On-Site User Self-Calibration

The second experiment was designed to reduce the time and effort of the multi-position calibration
(i.e., less stillness periods), which despite being easy to perform, may not always be a viable option
on-site. The MTi-G-700 begins in a static or quasi-static position, followed by a sequence of hand-held
rotations (~30 s) to ensure all axes are excited, and finishes in a static position near the starting position.
This type of calibration is suitable for estimating the static systematic errors that may change from
operation to operation such as turn-on biases and the soft and hard-iron effects immediately prior to
data acquisition for example. A special case where no periods of stillness exist in the MTi-300 data
is also presented to show the performance of the method as a gyroscope and magnetometer duo
calibration method. This accelerometer-free calibration places no restriction on the motion (e.g., slow
movements or quasi-stillness) and is suitable for applications with unpredictable extreme dynamics.

5. Results and Analyses

5.1. Case 1: In-Laboratory User Self-Calibration

Although the data acquisition procedure is almost identical to the popular multi-position
self-calibration approach, the data processing of the proposed method is rather different. The
conventional method ignores all dynamic data and the mutual information that can be shared between
the sensors. The proposed method can achieve similar or better accuracy in less time by exploiting
both static and dynamic portions of the trial in the optimization.

The multi-position calibration (without turn-tables) has difficulties estimating the gyroscope scale
errors (and possibly the accelerometer and gyroscope axes non-orthogonality). Through the inclusion
of accelerometer, gyroscope, and magnetometer signals under motion (Equations (6), (8), (9) and (11)),
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the accelerometer and gyroscope biases, scale errors, non-orthogonality, and inter-triad misalignments
can be recovered simultaneously with the hard and soft-iron effects for the magnetometer. The
estimated calibration parameters along with their standard deviations are reported in Table 1. The
sensor under consideration appears to be well calibrated, with the most pronounced systematic
errors being the accelerometer and gyroscope biases, and the magnetic distortions induced by the
mounting platform.

All the recovered systematic errors are statistically significant based on the t-test at a 95%
confidence interval, except for a few terms in the g-sensitivity matrix, the non-orthogonality between
the accelerometer’s y- and z-axis, the non-orthogonality between the gyroscope’s x- and z-axis, and the
misalignment rotation between the accelerometer and gyroscope about the x-axis. After removing the
statistically insignificant calibration parameters, the least-squares regression was repeated to estimate
the final sensor error model parameters.

Table 1. Estimated residual systematic errors for the Xsens MTi-G-700 using the proposed
method in-lab.
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 σ σ σ 
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Gω (rad∙s/m) Dm (unitless) 

Matrix 
0.0000 0.0000 0.0000 −0.0358 −0.0093 −0.0173 
0.0000 0.0000 0.0000 −0.0003 −0.0194 −0.0507 
0.0000 0.0000 0.0000 −0.0142 −0.0134 0.0552 

 σ σ 

Matrix 
2.80 × 10−6 2.41 × 10−6 2.52 × 10−6 5.44 × 10−5 9.03 × 10−5 9.20 × 10−5
2.95 × 10−6 3.51 × 10−6 2.82 × 10−6 1.02 × 10−4 6.07 × 10−5 1.04 × 10−4
1.82 × 10−6 1.71 × 10−6 2.16 × 10−6 9.57 × 10−5 9.63 × 10−5 5.71 × 10−5

All the recovered systematic errors are statistically significant based on the t-test at a 95% 
confidence interval, except for a few terms in the g-sensitivity matrix, the non-orthogonality between 
the accelerometer’s y- and z-axis, the non-orthogonality between the gyroscope’s x- and z-axis, and 
the misalignment rotation between the accelerometer and gyroscope about the x-axis. After removing 
the statistically insignificant calibration parameters, the least-squares regression was repeated to 
estimate the final sensor error model parameters. 

Tables 2 and 3 show the inertial error for both the in-sample trial (trial used for calibration)
and out-of-sample trial (another independent trial captured in a similar way as the multi-position
calibration hours later and after turning on and off the sensor several times). The RMSE in
the acceleration and angular rate signals showed only minor improvements after performing
multi-position and the proposed user self-calibration, which can be misleading. Therefore,
the integrated gyroscope (i.e., orientation) and integrated (un-rotated) accelerometer signals were also
reported to show the accumulated error over the four-minute duration of the trial. According to Mautz,
2012 [42] who surveyed various modern indoor positioning technologies (e.g., cameras and infrared)
the lowest positioning update frequency is 0.1 Hz, therefore the velocity and positioning error after
10 s of dead-reckoning is also reported to indicate the upper error limit.
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Table 2. In-sample RMSE of the input signals and estimated navigation quantities before
self-calibration (i.e., factory calibration), after conventional multi-position calibration, and after in-lab
user self-calibration.
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Based on the in-sample error, both the multi-position and proposed self-calibration method were
able to significantly reduce the discrepancies between the accelerometer and gyroscope signals of
the MEMS IMU and reference IMU by modelling for the systematic error parameters. Compared to
the factory calibration results, the new set of calibration parameters improved the accuracy of the
inertial signals by more than 80%. The RMSE also indicated that the proposed calibration can yield
similar or better results than the multi-position method by modelling additional statistically significant
compensation parameters (e.g., gyroscope scale errors).

During the out-of-sample validation, the orientations and integrated accelerations using the
proposed method were 54% and 11% more accurate than the multi-position method, respectively.
By utilizing the dynamic data between static segments of the trial more systematic errors became
observable and modelling them improved the data quality. Even when using just the first 1.4 min
of data (six static orientations with each axis pointing approximately up and down) the calibrated
accelerometer and gyroscope signals are comparable to the conventional multi-position method.
Although the integrated acceleration error is higher than the multi-position results, this was more than
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compensated by achieving nearly 50% lower orientation errors, and overall the IMU dead-reckoning
performance both in-sample and out-of-sample is improved (with the out-of-sample improvement
being particularly pronounced).

This suggests that using the proposed user self-calibration method has the merit of improving the
MEMS IMU accuracy and can potentially reduce the number of static orientations required (hence
reduce data acquisition time) in a multi-position calibration scheme.

The given zero change in velocity and position math models (Equations (10) and (12)) use the first
epoch as a reference in order to maintain consistent trajectory estimation when it is desired. However,
in the case of in-lab or on-site calibration, the objective is usually only to obtain a set of consistent
calibration parameters, therefore it can be performed as a relative update rather than an absolute
update. This is justifiable because the calibration parameters are expressed in sensor frame and are
independent of the absolute reference in the navigation frame. This is beneficial because performing
a relative zero change in velocity update (with respect to the previous stillness period) instead of
an absolute zero change in velocity update (with respect to the first stillness period) means a shorter
history of trajectory needs to be memorized. This results in a more efficient algorithm while delivering
statistically identical calibration parameters (as found in this research).

Consistency and Robustness of the Self-Calibration Method

Any calibration method that estimates parameters dedicated to a particular IMU should
consistently improve the sensor’s navigation accuracy when compared to using some typical average
calibration parameters. In addition, the self-calibration should be insensitive to magnetic disruptions
and deliver results comparable to the more expensive manual calibration (MEMS inertial signals
directly compared to a more accurate reference such as the iMAR).

In order to check for the consistencies of this method under both homogeneous and heterogeneous
magnetic fields, the out-of-sample validation errors for ten consecutive calibrations of the MTi-300 is
presented in Table 4. This is compared to the errors obtained when using nominal calibration
parameters (average component specs) of the sensor. Besides reporting the reduction in errors after
applying the proposed self-calibration method, errors obtained from applying the manufacturer’s
one-time-only factory calibration, and errors after performing a conventional manual calibration
are shown.

Table 4. Out-of-sample RMSE of the input signals and estimated navigation quantities based on some
nominal values, after factory calibration, after manual calibration, and after in-lab user self-calibration
under both homogeneous and heterogeneous magnetic field environments.
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 Nominal Factory Manual 
Homogeneous Magnetic Field Heterogeneous Magnetic Field

Self 1 Self 2 Self 3 Self 4 Self 5 Self 1 Self 2 Self 3 Self 4 Self 5
Acceleration 

(m/s2) 
0.67 0.12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Angular 
Rate (deg/s) 

1.86 0.17 0.15 0.16 0.16 0.17 0.15 0.16 0.15 0.16 0.17 0.16 0.17 

Integrated 
Acceleration 

(m/s) 
41.21 4.76 0.54 0.63 0.58 0.51 0.53 0.52 0.54 0.50 0.51 0.45 0.44 

Orientation 
(deg) 30.83 1.01 0.42 0.34 0.30 0.28 0.24 0.27 0.25 0.30 0.37 0.35 0.45 

It can be perceived that both the manual calibration and all cases of self-calibration improved the
sensor’s overall accuracy. Their improvements are even greater than relying on the factory calibration,
likely because the manufacturer’s calibration was done over a year ago and is outdated. For the
ten self-calibration results, only six static orientations were captured in each case. The errors in the
integrated acceleration and angular rate are comparable or lower than the manual calibration for
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majority of the cases. No significant deterioration in the signal quality can be observed when applying
the calibration parameters obtained under a non-homogeneous magnetic field to the validation trial.

To further assess the quality of the magnetometer calibration, the magnitude of the calibrated
magnetometer signal measured while rotating under a homogenous magnetic field is plotted in
Figure 3. The factory calibration is not valid because the MTi-300 was mounted close to other magnetic
objects during testing. The self-calibration results are consistent and show performance similar to
Xsens’ Magnetic Field Mapper (MFM), which calibrates the magnetometer using the sphere-fitting
approach [43]. Figure 4 shows the magnitude of the calibrated magnetic field measurements used in
self-calibration from one of the heterogeneous magnetic field trials and demonstrate the method’s
robustness to unexpected disturbances. These magnetic outliers were detected and rejected by the
self-calibration method automatically and did not impact the calibration significantly. Based on the
authors’ experience, the proposed gyroscope and magnetometer update, which only assumes a local
constant homogenous magnetic field, has shown to yield the same calibration results as assuming
a global constant homogenous magnetic field. The benefit of the proposed approach is that, under
magnetic disturbances, separate clusters of local magnetic homogeneity can be automatically detected
in the optimizer and can contribute to the self-calibration. Under the global homogenous field
assumption, some local homogenous magnetic fields (that happen to be different from the global field)
may be rejected by the outlier detector.
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Figure 4. Magnitude of an example input magnetometer measurement sequence used for in-lab user
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iron effects.

5.2. Case 2: On-Site User Self-Calibration

The measured accelerometer, gyroscope, and magnetometer signal from the MTi-G-700 before
self-calibration is shown in Figure 5. The integrated accelerometer and gyroscope errors before and
after applying the self-calibration parameters in-sample are shown in Figures 6 and 7, respectively;
please note that dashed lines in the cyan-magenta-yellow (CMY) color palette indicate x, y, and z errors
before user self-calibration and their complementary colors in the red-green-blue (RGB) color palette
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with solid lines represent x, y, and z errors after user self-calibration, respectively. Noticeable reduction
in errors can be perceived even after a few seconds of integration. Instead of reaching absolute errors
of 2 m/s and 1.9 deg when integrating the factory calibrated inertial signals, errors well below 0.4 m/s
and 0.2 deg were achieved using the new set of calibration parameters.

Immediately after performing the calibration, another trial was captured where the sensor was
rotated freely and the navigation states were determined using the previously determined calibration
parameters. The accumulated change in velocity and orientation errors of this trial (out-of-sample) are
shown in Figures 8 and 9. It can be perceived from the figures that after performing user self-calibration
the navigation solution out-of-sample were improved. Table 5 quantifies the errors for both trials
before and after applying the user self-calibration parameters. On-site self-calibration was capable
of improving the accuracy of the accelerometer and gyroscope signal by approximately 5% and 30%,
respectively. This results in decimeter-level positioning accuracy after 10 s of dead-reckoning, and
sub-degree RMSE in orientation overall. More data could have yielded a better calibration for the
MTi-G-700 but there is trade-off with convenience.
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Figure 5. Input signal from free hand motion used for on-site calibration. The red, green, and blue in
the left column represents the x, y, and z components, respectively.
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Figure 6. In-sample errors in the integrated accelerometer signal in a rotating frame before and after
on-site calibration.
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after on-site calibration.
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Table 5. In-sample and out-of-sample RMSE of the input signals and estimated navigation quantities
before and after on-site user self-calibration.
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Gyroscope and Magnetometer Calibration (Accelerometer-Free Calibration)

In situations where the IMU does not stop moving or moves erratically (e.g., continuous
high-dynamic movements), the gravity signal cannot be separated from the acceleration signal,
therefore it becomes difficult to incorporate acceleration information into the self-calibration. However,
the gyroscope and magnetometer can still be calibrated jointly using the proposed method in
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the absence of stillness (only Equations (6) and (7) will be active). A comparison between the
manufacturer’s MFM calibration and the proposed calibration for on-site application is presented
in Figure 10. The RMSE between the two signals is 0.01 a.u. for the individual x, y, and z channels.
For most practical applications, the two sets of magnetometer results can be considered comparable.
The main advantage of the proposed method compared to MFM are the freedom to accelerate (i.e.,
rotate quickly during data capture) because acceleration is not used for resolving the vertical direction
and the gyroscope is calibrated simultaneously, therefore the gyroscope dead-reckoning solution can
also be improved during this process. The out-of-sample rotation errors observed when using the
factory calibration, manual calibration, and gyroscope and magnetometer self-calibration parameters
are summarized in Table 6. The proposed calibration appeared to be slightly worse than the manual
calibration, but is nevertheless a significant improvement over the factory calibration results in all
three principal directions and can be performed without additional equipment.
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6. Conclusions

The utilization and variety of UAVs for both commercial and consumer applications are
rising. Although there is a lot of diversity in the architecture of the UAVs they all use an IMU
for attitude feedback control. Most of the time because of the cost, payload, and power restrictions
a MEMS-based IMU is adopted. Sensor calibration can add tremendous value to MEMS IMUs but
it is a time-consuming and expensive quality assurance procedure that may need to be updated
frequently. This paper presented a new total-system user self-calibration routine for a 9-DoF
MEMS IMU. In contrast to calibrating the individual components separately, all sensors were jointly
estimated to take advantage of their correlations. It encompasses static and dynamic inertial and
magnetic information and applies AUPT, CUPT, and ZUPT without external equipment to estimate
the calibration parameters in post-processing. The method can enhance the quality of laboratory
calibration and/or reduce this laborious process. Unlike the popular multi-position calibration
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method, it can recover up to 42 systematic errors simultaneously (including gyroscope scale errors,
which was previously unobservable). This self-calibration method was designed to be robust against
inhomogeneity in the ambient magnetic field. Results have shown that the calibration quality does not
deteriorate significantly in the presence of magnetic disturbances. It is a suitable method for on-site
self-calibration—for example it can be performed in tens of seconds prior to data acquisition and
results have shown that dead-reckoning orientation error of 0.26 degrees over about half a minute
is achievable. In the absence of useful accelerometer information, the gyroscope and magnetometer
can still be calibrated simultaneously using the proposed method. This is a significant improvement
over the manufacturer’s current on-site magnetometer self-calibration approach (i.e., Xsens’ MFM)
because the sensor does not need to be moved slowly (simplifies data acquisition) and accuracy of
the gyroscope model can also be improved, which means the strap-down integration error can be
reduced. Future work will focus on a near real-time implementation of this self-calibration method for
in-use applications.
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