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Abstract: We designed an ultrasonic horn using a physics-based freeform optimization method
to achieve the target frequency response of an airborne ultrasonic MEMS transducer operating in
transmitting mode. The radial profile of the ultrasonic horn was parametrized using a Bezier curve,
and its shape was optimized using a genetic algorithm. A computationally fast compact model of the
full system, wherein the horn was described analytically using transmission line theory, was used to
calculate the frequency response of the transducer and evaluate the optimization objective. The result
shows very good agreement with the experimental measurement of a realized prototype.
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1. Introduction

MEMS-based airborne ultrasonic systems have gained popularity due to their compact-
ness, low power consumption, and low-cost applications in ranging and gesture recognition.
It is well known that the coupling between the device and the acoustic surroundings de-
fined by the package has a significant impact on the dynamic behavior of membrane-based
ultrasonic transducers [1]. Figure 1a shows dynamic measurements of an electrically ac-
tuated piezoelectric membrane attached to a cylindrical horn. One can recognize that the
transducer, air, and horn form a coupled oscillator system whose resonances define the
optimal operating frequencies of the ultrasonic system. Hence, a specifically designed horn
shape enables us to tailor the system frequency response to a specific target response.
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Figure 1. (a) Laser Doppler vibrometer measurements of the center displacement of the transducer
under electrical actuation in vacuum and in air when attached to a cylindrical ultrasonic horn.
(b) Freeform modeling of the ultrasonic channel. The radial profile is described with Bezier curves.
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2. Methods

As a first step, the radial profile of the horn is parametrized by Bezier curves, which
provide a flexible yet controllable description of the geometry and allow for the definition of
a freeform and continuous radial profile by introducing a limited number of control points
(Figure 1b). Moreover, this mathematical framework enables a clear definition of the start
and end points of the curve, which is necessary to match the throat radius of the horn to the
etched cavity of the chip and to set a defined mouth radius. In the presented example, we
define control points, which are equally spaced over the length of the horn; the more control
points, the more complex the geometries. In this work, the goal is to find a horn geometry
which tunes the system response to exhibit two resonance peaks at 29 kHz and 41 kHz.
A genetic algorithm is employed to search for the optimal freeform control points, which
are used to calculate the new horn geometry at each evaluation step. The optimization goal,
i.e., the desired displacement frequency response, is evaluated for each horn geometry by
applying an analytical, physics-based compact model, where the input acoustic impedance
of the horn Zin,TL is determined by a discretization approach based on transmission line
theory [2]. The optimal design is extracted by minimizing the error between the simulated
and the target resonance frequencies. The full-analytical nature of the whole optimization
loop ensures very fast computation times and consistent convergence.

3. Discussion

Because of the exotic nature of the shape of the optimized horn (see Figure 1b), we
checked the agreement between the input acoustic impedance calculated by the compact
models with FEM simulations (see Figure 2a). Figure 2b shows the displacement response
of the optimized and analytically predicted system design. It meets the target values very
well, which is also confirmed by measurements of a prototype. The exceptional results of
this study demonstrate the feasibility and predictive power of the presented optimization
method and, therefore, lay the foundation towards tailoring the frequency response of
airborne MEMS transducers by ultrasonic horns.
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Figure 2. (a) Input acoustic impedance of the ultrasonic horn: comparison between analytical calcu-

lation and FEM results. (b) System response of the optimized ultrasonic system. Comparison be-

tween compact model and measurements. 
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Figure 2. (a) Input acoustic impedance of the ultrasonic horn: comparison between analytical
calculation and FEM results. (b) System response of the optimized ultrasonic system. Comparison
between compact model and measurements.
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