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Abstract: This paper presents a Quantitative Structure-Activity Relationship (QSAR) study of a 
series of 24 dihydropyrrole-fused and phenylazo neonicotinoid derivatives, with insecticidal 
activity tested against Cowpea aphids (Aphis craccivora). In this regard, the conformational search 
ability of the OMEGA software was employed to model neonicotinoid conformer ensembles, 
using molecular mechanics calculations based on the 94s variant of the Merck Molecular force 
field (MMFF94). The minimum energy conformers were used to calculate structural descriptors, 
which were further related to the insecticidal activity (pLC50 values), using the multiple linear 
regression (MLR) approach. The genetic algorithm was used for variable selection and several 
criteria for internal and external model validation. A robust model (r2 = 0.880, r2adj = 0.855, q2LOO = 0.827, 
s = 0.2098, F = 34.295) with predictive power (concordance correlation coefficient (CCC)ext = 0.945, 
r2m= 0.824) was obtained, using the QSARINS software. The developed model can be confidently 
used for the prediction of the insecticidal activity of new chemicals, saving a substantial amount of 
time and money. 
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1. Introduction 

Neonicotinoids are considered to be one of the most important and relevant classes of 
insecticides used nowadays [1,2]. Neonicotinoids are synthetic insecticides acting on the insect 
nicotinic acetylcholine receptor (nAChR) and have been increasingly used to control various insects 
during recent decades, especially since imidacloprid was introduced to the market [3]. However, 
the neonicotinoids success is being provoked by the rapid development of resistance [2] and severe 
bee toxicity [4–6]. It is considered that neonicotinoid insecticides represent the most effective 
chemical class for the control of sucking insect pests (aphids, whiteflies, leaf- and planthoppers, 
thrips), micro lepidoptera, and a number of coleopteran pest species [7]. Neonicotinoids have the 
advantage of their plant systemicity over other insecticides. After application into the soil or the 
seed, these compounds are absorbed through the plant roots, where they are distributed and give 
therefore consistent and long-lasting control of sucking insects. 

The coplanar segment between guanidine or amidine and pharmacophore in the 
neonicotinoids could create an electronic conjugation to facilitate the partial negative charge flow 
toward the tip atom and increase the binding affinity to the insect target [8]. Photostabilized 
compounds selective for insects relative to mammals have photolabile nithiazine with a 
nitromethylene moiety and no cationic substituent [9]. 
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Quantitative Structure-Activity Relationship (QSAR) is the most commonly used method to 
understand how chemical structure features correlate with the toxicity of natural and/or synthetic 
chemicals like insecticides. This method offers the possibility of searching for new insecticides with 
enhanced activity against insects and pests. The urgent need for the development of a new 
insecticide is related to the phenomenon of insecticide-resistant cases of pests. In this regard, several 
computational approaches were applied to study the insecticidal activity of neonicotinoids [10–15]. 

In this study, the QSAR model of 24 dihydropyrrole-fused and phenylazo neonicotinoid 
derivatives is derived from the data set of chemical structures and insecticidal activities tested 
against Cowpea aphids (Aphis craccivora) using multiple linear regression (MLR) approach. 

Molecular mechanics calculations, using the 94s variant of the Merck Molecular force field 
(MMFF94), were used to model the neonicotinoid structures. Statistical analysis using several 
criteria was employed to find a robust and predictive MLR model. The best derived MLR model 
could be confidently used to predict the insecticidal activity of newly designed insecticides. 

2. Methods 

2.1. Dataset and Theoretical Molecular Descriptors Calculation 

A dataset of 24 phenylazo and dihydropyrrole-fused neonicotinoid derivatives (Table 1) 
having the insecticidal activity (LC50, in mmol/L) against cowpea aphids (Aphis craccivora) [16,17] 
was analyzed. pLC50 values were used as the dependent variable. 

Table 1. Experimental (pLC50exp) and predicted for the best multiple linear regression (MLR) model 
(pLC50pred) insecticidal activity values of neonicotinoids. 

No Structure pLC50exp pLC50pred No Structure pLC50exp pLC50pred 

1 

 

5.21 5.16 13 * 

 

3.97 4.04 

2 

 

5.70 5.57 14 * 
N

N
N

HN

N
N

O

O

F

Cl

 

4.43 4.22 

3* 

 

5.80 5.59 15 

 

5.37 5.49 

4 

 

5.71 5.61 16 * 

 

5.30 5.08 

5 

 

5.11 5.34 17 

 

5.43 5.33 
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6 

 

3.85 3.97 18 

 

5.55 5.21 

7 

 

4.55 4.77 19 

 

4.86 5.34 

8 

 

4.52 4.53 20 

 

5.00 4.86 

9 

 

4.41 4.49 21 

 

5.46 5.33 

10 

 

4.35 4.16 22 

 

4.82 4.88 

11* 

 

3.96 4.23 23* 

 

4.93 5.16 

12 

 

4.16 4.15 24 

 

4.83 4.70 

* Test compounds included in the best MLR model. 

The neonicotinoid structures were pre-optimized using the MMFF94 molecular mechanics 
force field included in the Omega (Omega v.2.5.1.4, OpenEye Scientific Software, Santa Fe, NM) 
software [18,19]. For conformer generation, the maximum number of conformers per compound set 
of 400 and a root-mean-square deviation (RMSD) value of 0.5 Å were employed during the 
conformer ensemble generation. 

The conformers of minimum energy were then used to calculate the structural parameters, 
using the DRAGON (Dragon Professional 5.5, 2007, Talete S.R.L., Milano, Italy) and InstanJChem 
(Instant JChem (2012) version 5.10.0, Chemaxon) software. 

2.2. The Multiple Linear Regression Method 

The MLR approach [20] was employed to relate the pLC50 values with the calculated structural 
descriptors, using the QSARINS v. 2.2 program [21,22]. The genetic algorithm with leave-one-out 
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cross-validation correlation coefficient was used for variable selection of a constrained function to 
be optimized, a mutation rate of 20%, and a population size with 10 and 500 iterations. 

2.3. Model Validation 

The dataset was divided randomly into training and test (25% of the total number of 
compounds) sets. Following compounds: 3, 11, 13, 14, 17, and 23 were included in the test set (Table 1). 

Several criteria were used for testing the predictive model power: 2
1FQ  [23], 2

2FQ  [24], 2
3FQ  [25], 

the concordance correlation coefficient (CCC) [26] (having the thresholds values higher than 0.85, [27]) 
and the predictive parameter 2

mr  (with a lowest threshold value of 0.5) [28]. 
The model overfit was checked using the Y-randomization test [29] and by comparing the 

root-mean-square errors (RMSE) and the mean absolute error (MAE) of the training and validation sets 
[30]. 

Y-scrambling [31], the adjusted correlation coefficient ( 2
adjr ), and q2 (leave-one-out, 2

LOOq , and 

leave-more-out, 2
LMOq ) cross-validation coefficients were employed for internal model validation. 

The Multi-Criteria Decision Making (MCDM) validation criterion [32] is used to summarize 
the performance of MLR models. For every validation criterion, a desirability function was 
associated, and MCDM had values between 0 (the worst) and 1 (the best). 

3. Results and Discussion 

The autoscaling method was employed for normalizing the data: 

m

mmj
mj S

XX
XT

−
=  (1) 

where for each variable m, XTmj, and Xmj are the j values for the m variable after and before scaling, 
respectively. mX  is the mean and Sm is the standard deviation of the variable. 

The variables contained in the MLR models were selected using the genetic algorithm. The 
statistical (fitting and predictivity) results are included in Tables 2–4. 

The ‘MCDM all’ scores, based on the fitting, cross-validated, and external criteria were 
considered for choosing the best MLR models. 

Table 2. Fitting and cross-validation statistical results of the MLR models *. 

Model 
2
trainingr  2

LOOq  2
LMOq  

2
adjr  RMSEtr MAEtr CCCtr 2

scrr  2
scrq  SEE F 

MLR1 0.880 0.827 0.806 0.855 0.185 0.147 0.936 0.176 −0.404 0.210 34.295 
MLR2 0.865 0.793 0.774 0.837 0.196 0.164 0.928 0.174 −0.396 0.222 30.000 
MLR3 0.854 0.777 0.755 0.822 0.205 0.172 0.921 0.178 −0.390 0.232 27.208 
MLR4 0.854 0.790 0.772 0.823 0.204 0.161 0.921 0.177 −0.397 0.232 27.333 

* 
2
trainingr

: correlation coefficient; 
2
LOOq : leave-one-out correlation coefficient; 

2
LMOq : 

leave-more-out correlation coefficient; 
2
adjr

: adjusted correlation coefficient; RMSEtr: 
root-mean-square errors; MAEtr: mean absolute error; CCCtr: the concordance correlation coefficient; 

2
scrr  and 

2
scrq : Yscrambling parameters; SEE: standard error of estimates; F: Fischer test. 

Table 3. The model predictivity results *. 

Model 2
1FQ  2

2FQ  2
3FQ  RMSEext MAEext CCCext 

MLR1 0.904 0.844 0.945 0.211 0.202 0.945 
MLR2 0.801 0.676 0.889 0.304 0.293 0.889 
MLR3 0.818 0.704 0.896 0.291 0.281 0.896 
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MLR4 0.744 0.583 0.858 0.345 0.309 0.858 

* 2
1FQ ; 2

2FQ ; 2
3FQ : external validation parameters; RMSEext: root-mean-square errors; MAEext: 

mean absolute error; CCCext: the concordance correlation coefficient. 

Table 4. The ‘Multi-Criteria Decision Making (MCDM) all’ score values, 2
mr  predictivity 

parameter, and descriptors included in the MLR models *. 

Model 2
mr  MCDM all Descriptors included in the MLR model * 

MLR1 0.824 0.867 JGI2 HATSv R3m 
MLR2 0.795 0.814 BEHp2 JGI2 R3m 
MLR3 0.791 0.812 JGI2 Mor06m R3m 
MLR4 0.720 0.786 JGI2 R3m R8m+ 

* JGI2: mean topological charge index of order2 (Galvez topological charge index); HATSv: leverage-weighted 

total index/weighted by atomic van der Waals volumes (GETAWAY descriptor); R3m: R autocorrelation of lag 

3/weighted by atomic masses (GETAWAY descriptor); BEHp2: highest eigenvalue n. 2 of Burden 

matrix/weighted by atomic polarizabilities (BCUT descriptor); Mor06m: 3D-MoRSE—signal 06/weighted by 

atomic masses (3D-MoRSE descriptor); R8m+: R maximal autocorrelation of lag 8/weighted by atomic masses 

(GETAWAY descriptor). 

For the reliability of the best MLR1 model, the experimental versus predicted pLC50 values and 
Y-scramble plots are presented in Figures 1 and 2, respectively. 

Figure 1. Plots of experimental versus predicted pLC50 values for the MLR1 model predicted by the 
model (left) and by the leave-one-out (right) cross-validation approach (yellow circles-training 
compounds and blue circles-test compounds). 

In the Y-scrambling test performed for the MLR models, a significant low scrambled r2 ( 2
scrr ) 

and cross-validated q2 ( 2
scrq ) values were obtained for 2000 trials. Figure 2 shows that in case of all 

the randomized models; the values of 2
scrr  and 2

scrq  for the MLR1 model were <0.5 ( 2
scrr / 2

scrq of 

0.1759/-0.4035). The low calculated 2
scrr  and 2

scrq values indicate no chance correlation for all MLR 
chosen models (Table 2). 
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Figure 2. Y-scramble plots for the MLR1 model. 

The Williams plot (standardized residuals versus leverages, with the leverage threshold h* = 
0.667 for the MLR1 model), in the range of ±2.5σ, was used to verify the domain applicability. All 
compounds in the dataset are within the applicability domain of the MLR1 model, as presented in 
Figure 3. 

 
Figure 3. Williams plot predicted by the MLR1 model (yellow circles-training compounds, blue 
circles-test compounds). 

The selected descriptors included in the MLR1 best model are not intercorrelated, as presented 
in the correlation matrix from Table 5. 

 

 



Proceedings 2019, 9, 18 7 of 9 

 

Table 5. Correlation matrix of the descriptors included in the best MLR1 model and their 
standardized coefficients (Std. coeff.). 

 JGI2 HATSv R3m Std. coeff. 
JGI2 1   0.967 

HATSv −0.278 1  0.321 
R3m −0.121 0.623 1 −0.617 

Good correlations with the insecticidal activity and predictive model power were notices for 
all MLR models. Model MLR4 was less predictive (in accordance to its 2

2FQ  value) compared to 
the other MLR models. Closer values of the RMSE and the MAE of the training and validation sets 
were observed for the MLR2, MLR3, and MLR4 models. MLR1 model was considered being the 
best one according to several other statistical parameters of fitting and the ‘MCDM all’ score values. 

The best MLR1 model had three descriptors: one Galvez topological charge index (JGI2, which 
means the topological charge index of order 2) and two GETAWAY descriptors (HATSv, which 
represents the leverage-weighted total index/weighted by atomic van der Waals volumes and 
R3m—R autocorrelation of lag 3/weighted by atomic masses). The increase of the JGI2 and HATSv 
descriptor values is favorable for high insecticidal activity. Lower values of R3m raise the 
insecticidal activity. 

New neonicotinoid structures with insecticidal activity against the cowpea aphids can be 
designed based on the MLR models presented in this study. 

4. Conclusions 

Quantitative structure-insecticidal activity relationships were developed using the multiple 
linear regression approach for neonicotinoids with dihydropyrrole-fused and phenylazo moieties, 
active against the cowpea aphids (Aphis craccivora). Insecticide structures were modeled using the 
MMFF94s force field. Descriptors of the minimum conformers were related to the pLC50 values 
using the multiple linear regression approach. Good correlations and predictive models were 
obtained. Getaway and Galvez topological charge index descriptors included in the best MLR 
model can be used for prediction of new insecticides active against the cowpea aphids, saving 
experimental time and money. 
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