

A New Approach to 5-Functionalized 1,2-Dihydropyrimidin-2-ones/imines via Base-Induced Chloroform Elimination from 4-Trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones /imines ⁺

Pavel A. Solovyev¹, Anastasia A. Fesenko² and Anatoly D. Shutalev^{2,*}

- ¹ Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; paulnighti@gmail.com
- ² N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; af240182@yandex.ru
- * Correspondence: anatshu@gmail.com, shad@ioc.ac.ru
- + Presented at the 22nd International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2018; Available Online: https://sciforum.net/conference/ecsoc-22.

Published: 14 November 2018

Abstract: A novel four-step methodology for the synthesis of 5-acyl- and 5-arylsulfonyl-1,2-dihydropyrimidin-2-ones has been developed. The reaction of readily available N-[(1-acetoxy-2,2,2-trichloro)ethyl]-ureas with Na-enolates of 1,3-diketones, β -oxoesters, or α -arylsulfonylketones followed by heterocyclization–dehydration of the oxoalkylureas formed gave 5-acyl- or 5-arylsulfonyl-4-trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones. The latter, in the presence of strong bases, eliminates CHCl₃ to give the target compounds. The above methodology was also used in the synthesis of 5-acyl-1,2-dihydropyrimidin-2-imines starting from N-[(1-acetoxy-2,2,2-trichloro)ethyl]-N'-guanidine.

Keywords: 1,2,3,4-Tetrahydropyrimidin-2-ones/imines; 1,2-Dihydropyrimidin-2-ones/imines; amidoalkylation; aromatization

1. Introduction

5-Non-functionalized 1,2-dihydropyrimidin-2-ones (**1a** $R^1 = H$, alkyl, aryl) (Figure 1) are of considerable interest due to their wide range of biological activities [1–5]. These compounds have been extensively studied, and effective methods for their synthesis have been developed [6–8]. In contrast, 5-acyl-1,2-dihydropyrimidin-2-ones (**1b** $R^3 =$ alkyl, aryl, alkoxy, etc.) have been studied less widely. A number of methods, including condensations of (C-C-C-N-C-N)- [9–11], (C-C-C-N + C-N)-[12], and (C-C-C + N-C-N)-types [10,13,14], dehydrogenation [15] and oxidation [16–23] of the corresponding 1,2,3,4-tetrahydropyrimidin-2-ones, catalytic acylation of 5-trialkylstannylpyrimidines [24], and hydrolysis of appropriate 2-functionalized pyrimidines [24–30], have been reported for the synthesis of pyrimidines **1b**. However, the synthetic methods generally efficient in the preparation of **1a** tend to give poor yields in the specific case of **1b**.

Other 5-functionalized 1,2-dihydropyrimidin-2-ones remain hitherto practically inaccessible. For example, there are only a few reports on the synthesis of 5-arylsulfonyl-1,2-dihydropyrimidin-2-ones (**1c** \mathbb{R}^4 = aryl) [31,32]. Thus, the development of a general approach to the synthesis of 5-functionalized 1,2-dihydropyrimidin-2-ones is important.

Figure 1. Structures of 1,2-dihydropyrimidin-2-ones **1a**, 5-acyl-1,2-dihydropyrimidin-2-ones **1b**, and 5-arylsulfonyl-1,2-dihydropyrimidin-2-ones **1c**.

Taking into consideration the reported formation of imines from α -trichloromethyl-substituted secondary amines and amides by elimination of chloroform in the presence of bases [33–36], we hypothesized that 5-functionalized 1,2-dihydropyrimidin-2-ones (**1b**, c R² = H) could be obtained starting from the corresponding 4-trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones. Synthesis of the latter is presented in our retrosynthetic plan (Scheme 1) and includes ureidoalkylation of enolates of α -functionalized ketones [37–41].

FG = functional group; X = good leaving group (Ts, OAc, etc.); $R^4 = H$, Ac.

Scheme 1. Retrosynthesis of 5-functionalized 1,2-dihydropyrimidin-2-ones.

Here, we describe a novel convenient approach to 5-acyl-1,2-dihydropyrimidin-2-ones **1b** and 5-arylsulfonyl-1,2-dihydropyrimidin-2-ones **1c** via 4-trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones as key intermediates. The application of this approach to the synthesis of 5-acyl-1,2-dihydropyrimidin-2-imines are also reported.

2. Results and Discussion

In our previous experience, α -tosyl-substituted *N*-alkylureas proved very useful starting materials for the preparation of various 5-functionalized 1,2,3,4-tetrahydropyrimidin-2-ones by ureidoalkylation of α -functionalized ketones [37–41]. However, the synthesis of tosyl derivative **3** bearing a trichloromethyl group failed (Scheme 2), while acetoxy derivatives **4** and **5** [42] were conveniently prepared by treatment of the readily available **2** [43] with Ac₂O in pyridine and Ac₂O in the presence of H₂SO₄, respectively. Based on the ability of the acetoxy group to serve as a good leaving group in various reactions of ureidoalkylation [44–49], we hypothesized that compounds **4** and **5** might also be used in the synthesis of compounds **7** under the conditions similar to those applicable for ureidoalkylation of α -substituted ketones with α -tosyl-substituted *N*-alkylureas [37–41].

Scheme 2. Synthesis of ureidoalkylating agents **4** and **5**. Reagents and conditions: (a) H₂O, rt; (b) 4-MeC₆H₄S(O)OH, H₂O, rt or heating; (c) Ac₂O, py, rt, 75%; and (d) Ac₂O, H₂SO₄, rt, 79%.

Sodium enolates of 1,3-dicarbonyl compounds **6a**,**b** and β -oxoesters **6c**,**d** generated in situ by treating the corresponding CH-acids with an equivalent amount of NaH reacted with urea **4** for 2.7–4.3 h at room temperature to give the products of acetoxy group substitution, *N*-oxoalkylureas **7a–d**, in 70–95% yield (Scheme 3, Table 1).

6a $R^1 = R^2 = Me$; **b** $R^1 = R^2 = Ph$; **c** $R^1 = Me$, $R^2 = OEt$; **d** $R^1 = Ph$, $R^2 = OEt$. **7-8a** R = H, $R^1 = R^2 = Me$; **b** R = H, $R^1 = R^2 = Ph$; **c** R = H, $R^1 = Me$, $R^2 = OEt$; **d** R = H, $R^1 = Ph$, $R^2 = OEt$; **e** R = Ac, $R^1 = R^2 = Me$; **f** R = Ac, $R^1 = Me$, $R^2 = OEt$.

Scheme 3. Synthesis of ureas 7a-f by reaction of sodium enolates of 1,3-diketones 6a,b and β -oxoesters 6c,d with 4 and 5.

Entry	Starting Material		Solvent	Reaction Molar Ratio		Product	Diastereomeric Ratio h	Yield, ^c
	Iviat	enai		Time, n	(4/0 01 5/0)		Natio ^o	/0
1	6a	4	MeCN	3.3	1:1	7a	-	70
2	6b	4	THF	4.3	1:1	7b	-	89
3	6c	4	MeCN	4	1.1:1	7c	57:43	86
4	6d	4	MeCN	2.7	1.1:1	7d	72:28	95
5	6d	4	MeCN	5.75	1:1	7d	83:17	91
6	6d	4	MeCN	9.3	1:1	7d	84:16	90
7	6a	5	MeCN	4.4	1:1	7e	-	82
8	6c	5	MeCN	4.2	1.1:1	7f	75:25	69

Table 1. Reaction of ureas 4 and 5 with sodium enolates of 6a-d^a.

^{*a*} At room temperature. ^{*b*} Established by ¹H NMR data of crude product. ^{*c*} All yields refer to isolated material homogeneous spectroscopically and by thin-layer chromatography (TLC).

Anhydrous MeCN was used as a solvent for preparation of compounds **7a**,**c**–**d**; however, for compound **7b** anhydrous THF was used because the solubility of the enolate of **6b** in MeCN was very low and the resulting extremely dense suspension hampered the completion of reaction of NaH with **6b**.

Following the same procedure, urea **5** reacted with the sodium enolate of **6a** and **6c** in MeCN (rt, 4.2–4.4 h) to give oxoalkylureas **7e** and **7f** in 82 and 69% yield, respectively (Scheme 3, Table 1).

IR-, ¹H-, and ¹³C-NMR spectra indicated that compounds 7a-f only existed in acyclic form both in solid state and in DMSO- d_6 solution. Their cyclic isomers 8a-f (Scheme 3) were not detected by any spectroscopic methods.

Compounds **7c,d,f** were formed as mixtures of two diastereomers (Table 1). The diastereoselectivity of the product formation depended on the structures of both reagents and was higher with **5** than with **4** (entry 3 vs. entry 8) and with **6d** than with **6c** (entry 3 vs. entry 4). The reaction time did not affect the ratio of diastereomers (entry 5 vs. entry 6). The use of a greater excess of a nucleophile slightly reduced the stereoselectivity (entry 5 vs. entry 4), which indicated that these reactions were controlled by both kinetic and thermodynamic factors.

Sodium enolates of ketones bearing the arylsulfonyl group at the α -position generated in situ by treating the corresponding CH-acids **9a–d** with an equivalent amount of NaH reacted with ureas **4** and **5** (MeCN or THF, rt, 4–9 h) to give products of nucleophilic substitution of the acetoxy group, sulfones **10a–e**, in a 76–90% yield (Scheme 4, Table 2).

9a Ar = R¹ = Ph; **b** Ar = 4-MeC₆H₄, R¹ = Ph; **c** Ar = Ph, R¹ = Me; **d** Ar = 4-MeC₆H₄, R¹ = Me. **10-11 a** R = H, Ar = R¹ = Ph; **b** R = H, Ar = 4-MeC₆H₄, R¹ = Ph; **c** R = Ac, Ar = 4-MeC₆H₄, R¹ = Ph; **d** R = Ac, Ar = Ph, R¹ = Me; **e** R = Ac, Ar = 4-MeC₆H₄, R¹ = Me.

Entry	Starting Material		Solvent	Reaction Time, h	Product	Diastereomeric Ratio <i>a</i> (<i>R</i> *, <i>S</i> *)-10/(<i>R</i> *, <i>R</i> *)-10	Yield, ^b %
1	4	9a	MeCN	4	10a	95:5	88
2	4	9a	THF	4.5	10a	88:12	76
3	4	9b	MeCN	5	10b	91:9	85
4	5	9b	MeCN	8	10c	97:3	88
5	5	9c	MeCN	4	10d	85:15	85
6	5	9d	MeCN	9	10e	85:15	86
7	5	9d	THF	6.5	10e	86:14	90

Scheme 4. Synthesis of oxoalkylureas 10a-e.

Table 2. Reaction of ureas 4 and 5 with sodium enolates of 9a-d at rt.

^a According to ¹H NMR data of crude products. ^b For isolated compounds.

Reactions of **9a–d** with **4** and **5** proceeded with high diastereoselectivity to give sulfones **10a–e** in 70–94% diastereomeric excesses (Table 2). The polarity of the solvent had a slight effect on diastereoselectivity (Entry 1 vs. Entry 2; Entry 6 vs. Entry 7). *N*-Acyl-substituted urea **5** reacted with enolate of **9b** with higher diastereoselectivity compared with urea **4** (Entry 3 vs. Entry 4).

Based on the values of vicinal couplings of protons in the NH-CH-CH moiety, we have concluded that the minor diastereomers of **10a–e** in DMSO-*d*₆ solution exist in a conformation with an anti–anti orientation of the named protons (${}^{3}J_{NH,CH} = 10.1-10.8$ Hz, ${}^{3}J_{CH,CH} = 8.8-9.0$ Hz), while the orientation of the protons for major diastereomers is anti for NH-CH and gauche for CH–CH moieties (${}^{3}J_{NH,CH} = 9.5-9.6$ Hz, ${}^{3}J_{CH,CH} = 1.5-1.8$ Hz).

Next, refluxing solutions of ureas **7a–f** in the presence of TsOH (Scheme 5) led to 4-trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones **12a–d**. The dependence of the yields of **12a–d** on the reaction conditions is outlined in Table 3.

12a R¹ = R² = Me; **b** R¹ = R² = Ph; **c** R¹ = Me, R² = OEt; **d** R¹ = Ph, R² = OEt.

Scheme 5. Synthesis of 5-acyl-4-trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones 12a-d.

Entry	Starting Material	Solvent	Molar Ratio of 7:TsOH	Reaction Time, h	Product(s)	Molar Ratio of 12a:13 ^b	Yield of 12, %
1	7a	MeCN	1:0.3	0.6	12a	-	95
2	7a	PhMe	1:1.13	1.0	12a + 13	73:27	-
3	7a	EtOH	1:1.13	1.0	12a + 13	94:6	-
4	7a	EtOH	1:0.5	1.25	12a + 13	94:6	-
5	7a	EtOH	1:0.3	0.63	12a + 13	90:10	-
6	7a	MeOH	1:0.5	1.75	12a + 13	62:38	-
7	7b	MeCN	1:1	2.2	12b	-	91
8	7c	MeCN	1:0.3	1.0	12c	-	93
9	7c	PhMe	1:1.1	1.0	12c	-	84
10	7d	MeCN	1:0.5	33	12d	-	81
11	7d	MeCN	1:3.0	14.2	12d	-	75
12	7e	EtOH	1:1.5	2.0	12a + 13	79:21	-
13	7f	EtOH	1:2.0	3.0	12c	-	77

Table 3. Synthesis of pyrimidinones 12a-d from ureas 7a-f^a.

^a Boiling in the presence of TsOH. ^b Based on ¹H NMR spectrum of crude product.

Heterocyclization–dehydration of **7a–d** proceeded smoothly in MeCN as a solvent to give **12a–d** in high yields (75–95%, Table 3, entries 1, 7–11). Reaction of **7a,c** was complete after 0.5–1 h in the presence of TsOH (0.3 equiv, entries 1, 8). By comparison with compounds **7a,c**, their counterparts **7b,d**, which possess a less electrophilic carbonyl group, were converted into **12b,d** (entries 7, 10–11) using a greater amount of catalyst or/and longer reaction time. Pyrimidine **12c** was also readily synthesized from **7c** using toluene as a solvent (entry 9).

In contrast to the smooth conversion of **7a** into **12a** in MeCN, refluxing **7a** in EtOH, MeOH, or toluene in the presence of TsOH led to the formation of **12a** plus the product of its deacetylation, pyrimidine **13** (entries 2–6). Presumably, **13** was obtained as a result of the acid-promoted deacylation of **7a** followed by heterocyclization and dehydration of the intermediate formed. The data listed in Table 3 indicates that the formation of **13** was favored in more polar solvents (entry 4 vs. entry 6), at higher reaction temperature (entry 2 vs. entry 3), and in protic solvents (entry 1 vs. entry 5). The amount of catalyst had no appreciable effect on the ratio of **12a** to **13** (entry 3 vs. entry 4 vs. entry 5).

5-Arylsulfonyl-substituted tetrahydropyrimidines **14a–d** were obtained by the reflux of sulfones **10a–e** in alcohols (EtOH, *n*-BuOH) in the presence of TsOH (1–4 equiv) (Scheme 6, Table 4).

Formation of compounds **14a**,**b** from **10a**,**b** proceeds via heterocyclization of intermediate hydroxypyrimidines **11a**,**b** followed by dehydration. In case of *N*-acetylureas **10c**–**e**, the first step is *N*-deacylation into corresponding ureas **10b**,**f**,**g** followed by cyclization into hydroxypyrimidines **11b**,**f**,**g** and fast dehydration into tetrahydropyrimidines **14b**–**d**. The data presented in Table 4 shows that the result of the reaction depends on the structure of the starting compounds and reaction conditions. The rate of pyrimidine **14** formation increases with increasing reaction temperature (Entry 7 vs. Entry 8) and quantity of TsOH (Entry 3 vs. Entry 4; Entry 6 vs. Entry 7). *N*-deacylation of **10c**–**e** proceeds much faster than subsequent transformation of obtained **10b**,**f**,**g** into B **14b**–**d** (Entry 2 vs. Entry 4; Entries 3, 6, and 7). Benzoyl-containing ureas **10a**–**c** react significantly slower comparing with acetyl-containing ureas **10d**,**e** (Entries 1, 2, and 4 vs. Entries 5 and 8). Apparently, cyclization of *N*-deacylated ureas **10a**,**b**,**f**,**g** into the corresponding hydroxypyrimidines (**11**), which is affected by electrophilicity of carbonyl group and steric bulk of R¹, is the rate-determining step of compounds **14a–d** formation.

10-11 f Ar = Ph, R¹ = Me; **g** Ar = 4-MeC₆H₄, R¹ = Me.

14a Ar = R^1 = Ph; **b** Ar = 4-MeC₆H₄, R^1 = Ph; **c** Ar = Ph, R^1 = Me; **d** Ar = 4-MeC₆H₄, R^1 = Me.

Scheme 6. Synthesis of 5-arylsulfonyl-4-trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones 14a-d.

Entry	Starting Material	Solvent	Molar Ratio of 10:TsOH	Reaction Time, h	Product(s)	Molar ratio of Products, 14:10 ^b	Isolated Yield of 14, %
1	10a	n-BuOH	1:4.0	31	14a	-	63
2	10b	n-BuOH	1:4.0	25	14b	-	75
3	10c	n-BuOH	1:3.1	5	14b + 10b ^c	28:72	-
4	10c	n-BuOH	1:4.0	18	14b	-	72
5	10d	n-BuOH	1:2.0	2	14c	-	93
6	10e	EtOH	1:1.1	26	14d + 10g ^d	68:32	-
7	10e	EtOH	1:2.1	16.5	14d + 10g ^d	80:20	-
8	10e	<i>n</i> -BuOH	1:2.0	2	14d	-	92

Table 4. Transformation of 10a-e into 14a-d^a.

^{*a*} Reflux in alcohols in the presence of TsOH. ^{*b*} According to ¹H NMR data. ^{*c*} Diastereomer mixture, 85:15. ^{*d*} Diastereomer mixture, 84:16.

Thus, under optimal conditions, reflux of **10a–e** in BuOH in the presence of 2–4 equiv of TsOH led to the smooth formation of pyrimidines **14a–d** in 63–93% yields.

Finally, aromatization of tetrahydropyrimidines **12a–d** by NaH (1.2–1.25 equiv) in an aprotic solvent at room temperature led to formation of the corresponding 5-acyl-1,2-dihydropyrimidin-2-ones **15a–d** in good yields (Scheme 7). The reaction proceeded best in THF (for **15a,c,d**) and, for **15b**, in DME while the more polar MeCN failed to give satisfactory yields even with a prolonged reaction time (24 h) and a greater excess of NaH (up to 1.5 equiv).

Analogously, treatment of tetrahydropyrimidines **14a–d** with strong bases in aprotic solvents resulted in the formation of the corresponding 5-arylsulfonyl-1,2-dihydropyrimidin-2-ones **16a–d** (Scheme 7). Target pyrimidines (**16a–d**) were obtained by the reaction of **14a–d** (rt, MeCN, 1.2–3.3 h) with NaH (1.1 equiv) in 80–98% yields. The rate of elimination decreased with a decrease in the base strength. When compound **14d** was treated with DBU (2.1 equiv) in MeCN, aromatization was completed in five days and led to the formation of **16d** in 96% yield. Reaction of **14c** with sodium malonate in MeCN did not proceed at rt and was complete only after reflux for 1 h, resulting in **16c** in 85% yield. Compound **14d** being treated with NaH (1.1 equiv) in THF (rt, 2 h) gave compound **16d** in 90% yield.

15a R¹ = R² = Me; **b** R¹ = R² = Ph; **c** R¹ = Me, R² = OEt; **d** R¹ = Ph, R² = OEt.

16a Ar = R¹ = Ph; **b** Ar = 4-MeC₆H₄, R¹ = Ph; **c** Ar = Ph, R¹ = Me; **d** Ar = 4-MeC₆H₄, R¹ = Me.

Scheme 7. Synthesis of 5-acyl-1,2-dihydropyrimidin-2-ones **15a–d** and 5-arylsulfonyl-1,2-dihydropyrimidin-2-ones **16a–d**.

Transformation of **12a–d** into **15a–d** and **14a–d** into **16a–d** proceeds via elimination of chloroform. Proton abstraction from the more acidic N₍₁₎-H group in **12a–d**, **14a–d** followed by CCl₃-anion elimination leads to formation of **15a–d**, **16a–d** (Scheme 8).

Scheme 8. Base-induced transformation of 12a-d and 14a-d into 15a-d and 16a-d, respectively.

The above methodology was also used in the synthesis of 5-acyl-1,2-dihydropyrimidin-2-imines starting from N-[(1-acetoxy-2,2,2-trichloro)ethyl]-N'-guanidine **19** (Scheme 9). The latter was prepared by heating N-tosylguanidine with excess chloral without solvent, followed by treatment of the obtained methylol derivative **18** with Ac₂O in pyridine.

23a R = Me, R¹ = OEt; **b** R = Me, R¹ = OMe.

Scheme 9. Synthesis of 5-acyl-1,2-dihydropyrimidin-2-imines 23.

7 of 10

Acetate **19** reacted with the Na-enolates of CH-acids **6a,c–d** to give the corresponding products of the acetyl group substitution, compounds **20a–d**, which, under reaction conditions, completely (for R = Me) or partly (for R = Ph) cyclized into 4-hydroxypyrimidin-2-imines **21a–d**. Dehydration of the compounds obtained was readily carried out by boiling in EtOH in the presence of TsOH to afford the corresponding tetrahydropyrimidin-2-imines **22** in high yields. The treatment of carboxylates **22b,c** with NaH in THF proceeded with the elimination of chloroform to give the target alkyl 2-tosylimino-1,2-dihydropyrimidine-5-carboxylates **23a,b**.

3. Conclusions

We have developed a novel general approach to 5-acyl- and 5-arylsulfonyl-substituted 1,2-dihydropyrimidin-2-ones/imines that involved base-induced elimination of CHCl₃ from the corresponding 4-trichloromethyl-1,2,3,4-tetrahydropyrimidin-2-ones/imines. The latter were prepared using the reaction of readily available *N*-[(1-acetoxy-2,2,2-trichloro)ethyl]ureas and guanidines with Na-enolates of 1,3-diketones, β -oxoesters, or α -arylsulfonylketones, followed by acid-catalyzed heterocyclization–dehydration of the products formed.

Acknowledgments: This work was supported by the Russian Foundation for Basic Research (grant No. 18-33-00374).

References

- 1. Perrine, J.W.; Houlihan, W.J.; Takesue, E.I. Anti-inflammatory and other pharmacodynamic properties of five members of the 4-aryl-1-isopropyl-2(1*H*)-quinazolinone series. *Arzneim. Forsch.* **1984**, *34*, 879–885.
- 2. Voronina, T.A.; Gordiichuk, G.N.; Andronati, S.A.; Garibova, T.L.; Zhilina, Z.I. Synthesis and pharmacological properties of some 4-phenyl-quinazoline-2-ones. *Pharm. Chem. J.* **1981**, *15*, 495–497.
- 3. Kandeel, M.M.; Abbady, M.S.; Youssef, M.S.K. Synthesis of 4-Substituted 3-Methy1-1-pheny1-2-pyrazo1ine-5-thione by Heterocycles. *Bull. Soc. Chim. Fr.* **1988**, *6*, 1005–1008.
- 4. Hamdy, N.A. Synthesis of new pyridine, pyrazole and pyrimidine derivatives of potential antimicrobial effect. *Egypt. J. Chem.* **2005**, *48*, 749–758.
- 5. Nagaraj, A.; Reddy, C.S. Synthesis and biological study of novel methylene-bis-chalcones and substituted methylene-bis-pyrimidinones. *J. Heterocycl. Chem.* **2007**, *44*, 1181–1185.
- 6. Brown, D.J. Pyrimidines and their Benzo Derivatives. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A.R., Rees, C.W., Eds.; Pergamon Press: Oxford, UK, 1984; Volume 3, p. 57–155.
- Undheim, K.; Benneche, T. Pyrimidines and their Benzo Derivatives. In *Comprehensive Heterocyclic Chemistry II*; Katritzky, A.R., Rees, C.W., Scriven, E.F.V., Eds.; Pergamon: Oxford, UK, 1996; Volume 6, p. 93–231.
- 8. Rewcastle, G.W. Pyrimidines and their Benzo Derivatives. In *Comprehensive Heterocyclic Chemistry III*; Katritzky, A.R., Ramsden, C., Scriven, E.F.V., Taylor, R., Eds.; Elsevier: Oxford, UK, 2008; Volume 8, p. 117–272.
- 9. Bergmann, W.; Johnson, T.B. Die Synthese des 5-Acetyl-uracils (Untersuchungen über Pyrimidine, CXXXVII. Mitteil.). *Chem. Ber.* **1933**, *66*, 1492–1496.
- 10. Jones, W.D.; Huber, E.W.; Grisar, J.M.; Schnettler, R.A. The synthesis of 5- and 6-acyl-2(1*H*)-pyrimidinones. *J. Heterocycl. Chem.* **1987**, 24, 1221–1227.
- 11. Mulwad, V.V.; Shirodkar, J.M. Synthesis of some of the antibacterial compounds from 4-hydroxycoumarins: Part II. *Indian J. Chem. Sect. B* **2002**, *41*, 1263–1267.
- 12. Dorokhov, V.A.; Komkov, A.V.; Vasil'ev, L.S.; Azarevich, O.G.; Gordeev, M.F. Synthesis of functional derivatives of trifluoromethylpyrimidines from acetylacetone, trifluoroacetonitrile, and aryl isocyanates. *Bull. Acad. Sci. USSR, Div. Chem. Sci.* **1991**, *40*, 2311–2313.
- Altural, B.; Akcamur, Yu.; Saripinar, E.; Yildirim, I.; Kollenz, G. Reactions of cyclic oxalyl compounds, part 29: A simple synthesis of functionalized 1*H*-pyrimidines. *Monatsh. Chem.* **1989**, *120*, 1015–1020.
- Palanki, M.S.S.; Erdman, P.E.; Gayo-Fung, L.M.; Shevlin, G.I.; Sullivan, R.W.; Suto, M.J.; Goldman, M.E.; Ransone, L.J.; Bennett, B.L.; Manning, A.M. Inhibitors of NF-κB and AP-1 Gene Expression: SAR Studies on the Pyrimidine Portion of 2-Chloro-4-trifluoromethylpyrimidine-5-[N-(3',5'-bis-(trifluoromethyl)phenyl)carboxamide]. *J. Med. Chem.* 2000, 43, 3995–4004.

- 15. Kappe, C.O.; Roschger, P. Synthesis and reactions of "Biginelli-compounds". Part I. J. Heterocycl. Chem. **1989**, *26*, 55–64.
- 16. Kadysh, V.P; Stradyn', Y.P.; Khanina, E.L.; Dubur, G.Y.; Mutsenietse, D.K. Electrochemical reduction of hydrogenated 2-pyrimidones on a graphite electrode. *Chem. Heterocycl. Compd.* **1985**, *21*, 95–99.
- 17. Slavinskaya, V.A.; Dubur, G.Y.; Sile, D.A; Kreile, D.R.; Khanina, E.L. Method of obtaining 2-oxo-4-phenyl-5-carbethoxy-6-methylpyrimidine. USSR Patent 632695, **1978**; *Chem. Abstr.* **1979**, *90*, 121631y.
- 18. Khanina, E.L.; Dubur, G.Y. Oxidation of some derivatives of tetrahydropyrimidine-5-carboxylic acid with selenium dioxide. *Chem. Heterocycl. Compd.* **1982**, *18*, 412–414.
- 19. Kestenansky, J.L.; Khmelnitsky, Y. Biocatalytic combinatorial synthesis. *Bioorg. Med. Chem.* 1999, 7, 2157–2162.
- 20. Puchala, A.; Belaj, F.; Bergman, J.; Kappe, C.O. On the reaction of 3,4-dihydropyrimidones with nitric acid. Preparation and X-ray structure analysis of a stable nitrolic acid. *J. Heterocycl. Chem.* **2001**, *38*, 1345–1352.
- Dondoni, A.; Massi, A.; Minghini, E.; Sabbatini, S.; Bertolasi, V. Model Studies toward the Synthesis of Dihydropyrimidinyl and Pyridyl α-Amino Acids via Three-Component Biginelli and Hantzsch Cyclocondensations. J. Org. Chem. 2003, 68, 6172–6183.
- 22. Shanmugam, P.; Perumal, P.T. Regioselective dehydrogenation of 3,4-dihydropyrimidin-2(1*H*)-ones mediated by ceric ammonium nitrate. *Tetrahedron* **2006**, *62*, 9726–9734.
- 23. Shanmugam, P.; Perumal, P.T. An unusual oxidation–dealkylation of 3,4-dihydropyrimidin-2(1*H*)-ones mediated by Co(NO₃)₂·6H₂O/K₂S₂O₈ in aqueous acetonitrile. *Tetrahedron* **2007**, *63*, 666–672.
- 24. Arukwe, J.; Benneche, T.; Undheim, K. Synthesis of 5-stannylpyrimidines and their use in Pd-catalysed ketone formation. *J. Chem. Soc. Perkin Trans.* 1, **1989**, *0*, 255–259.
- 25. Dyer, E.; Johnson, T.B. Researches on Pyrimidines. CXL. Pyrimidines Derived from Carbethoxymalonic Aldehyde. J. Am. Chem. Soc. **1934**, *56*, 222–225.
- 26. Benneche, T.; Undheim, K. Syntheses and Reactions of Some 5-Vinyl- and 5-Ethynylpyrimidines. *Acta Chem. Scand. Ser. B* **1983**, *37*, 235–239.
- 27. Arukwe, J.; Undheim, K. Lithiation in the Synthesis of 5-Pyrimidinyl Ketones. *Acta Chem. Scand. Ser. B* **1986**, *40*, 588–592.
- 28. Arukwe, J.; Undheim, K. Organomanganese(II) Reagents in the Synthesis of 5-Pyrimidinyl Ketones. *Acta Chem. Scand. Ser. B* **1986**, *40*, 764–767.
- 29. Gaare, K.; Repstad, T.; Benneche, T.; Undheim, K. Preparation of 5-(Pyrrolylcarbonyl)- and 5-(Imidazolylcarbonyl)pyrimidines. *Acta Chem. Scand.* **1993**, 47, 57–62.
- Eynde, J.J.V.; Audiart, N.; Canonne, V.; Michel, S.; Haverbeke, Y.V.; Kappe, C.O. Synthesis and Aromatization of Dihydropyrimidines Structurally Related to Calcium Channel Modulators of the Nifedipine-Type. *Heterocycles* 1997, 45, 1967–1978.
- 31. Caldwell, W.T.; Sayin, A.N. The Preparation of a Pyrimidine Analog (Isostere) of Promizole and Other Substituted Pyrimidines. *J. Am. Chem. Soc.* **1952**, *74*, 4314–4317.
- 32. Hafez, A.A.A. Synthesis of Some Heterocyclic Sulfones Related to Quinolinol. *Collect. Czech. Chem. Commun.* 1993, 58, 2222–2226.
- 33. Bal'on, Ya. G.; Smirnov, V.A. 1,2,2,2-Tetrachloro-1-arylethylisocyanates. J. Org. Chem. USSR 1980, 16, 648–653.
- 34. Takamatsu, M.; Sekiya, M. Reactions of 1-Trichloromethyl-substituted Amines with Potassium *tert*-Butoxide. *Chem. Pharm. Bull.* **1980**, *28*, 3098–3105.
- 35. Yamamoto, M.; Yamamoto, H. Synthetic Studies on Quinazoline Derivatives. II. The Reactions of 2-Trichloro- and 2-Trifluoroacetamidobenzophenones with Primary Amines. *Chem. Pharm. Bull.* **1981**, *29*, 2135–2156.
- 36. Vovk, M.V.; Bal'on, Ya. G.; Krainikova, I.G.; Samaray, L.I. Structure of cyclocondensation products of the reaction of 1-chloroalkyl isocyanates with 2-aminopyridine and 2-aminothiazole. *Ukr. Khim. Zh.* **1995**, *61*, 63-68; *Chem. Abstr.* **1996**, *125*, 328670.
- 37. Shutalev, A.D.; Kuksa, V.A. Utilization of the amidoalkylation reaction in the synthesis of hydrogenated pyrimidine-2-thiones. *Chem. Heterocycl. Compd.* **1997**, *33*, 91–95.
- 38. Shutalev, A.D. Synthesis of 5-arylsulfonyl-1,2,3,4-tetrahydropyrimidine-2-thiones. *Chem. Heterocycl. Compd.* **1997**, 33, 1469–1470.
- Shutalev, A.D.; Kishko, E.A.; Sivova, N.V.; Kuznetsov, A.Y. A New Convenient Synthesis of 5-Acyl-1,2,3,4-tetrahydropyrimidine-2-thiones/ones. *Molecules* 1998, 3, 100–106.
- Fesenko, A.A.; Shutalev, A.D. Diastereoselective synthesis of 5-benzylthio- and 5-mercaptohexahydropyrimidin-2-ones. *Tetrahedron Lett.* 2007, *48*, 8420–8423.

- 41. Fesenko, A.A.; Cheshkov, D.A.; Shutalev, A.D. Synthesis of diethyl 2-thioxo-1,2,3,4-tetrahydro- and hexahydropyrimidine-5-phosphonates. *Mendeleev Commun.* **2008**, *18*, 51–53.
- 42. Chattaway, F.D.; James, E.J.F. The Condensation of Chloral with Urea and Phenyl Urea. *Proc. R. Soc. Lond.* **1931**, *134*, 372–384.
- 43. Coppin, N.G. S; Titherley, A.W. The Condensation of Chloral Hydrate and Carbamide. J. Chem. Soc. **1914**, 105, 32–36.
- 44. Zaugg, H.E. Recent Synthetic Methods Involving Intermolecular *α*-Amidoalkylation at Carbon. *Synthesis* **1970**, *2*, 49–73.
- 45. Zaugg, H.E. α-Amidoalkylation at Carbon: Recent Advances Part I. Synthesis 1984, 02, 85–110.
- 46. Zaugg, H.E. α-Amidoalkylation at Carbon: Recent Advances Part II. Synthesis 1984, 3, 181–212.
- 47. Speckamp, W.N.; Moolenaar, J.M. New Developments in the Chemistry of *N*-Acyliminium Ions and Related Intermediates. *Tetrahedron* **2000**, *56*, 3817–3856.
- 48. Maryanoff, B.E.; Zhang, H.-C.; Cohen, J.H.; Turchi, I.J.; Maryanoff, C.A. Cyclizations of *N*-Acyliminium Ions. *Chem. Rev.* **2004**, *104*, 1431–1628.
- 49. Shutalev, A.D. Reaction of α -(thio)amidoalkylation in the synthesis of α -cyano-substituted cyclic (thio)ureas and dithiocarbamates. *Chem. Heterocycl. Compd.* **1993**, *29*, 1192–1199.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).