
����������
�������

Citation: Dakowski, J. Isomorphism

between Sudoku and Proof Systems

and Its Application in Sudoku

Solving. Proceedings 2022, 81, 78.

https://doi.org/10.3390/

proceedings2022081078

Academic Editor: Peter Boltuc

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

proceedings

Proceeding Paper

Isomorphism between Sudoku and Proof Systems and Its
Application in Sudoku Solving †

Jakub Dakowski

Department of Logic and Cognitive Science, Adam Mickiewicz University, 60-568 Poznań, Poland;
jakubdakowski@gmail.com
† Presented at Philosophy and Computing Conference, IS4SI Summit 2021, Online, 12–19 September 2021.

Abstract: (1) Introduction: While automatic Sudoku solvers are a well-known area of study in formal
sciences, there has been little to no progress when it comes to describing the proving process as
analogous to Sudoku solving. (2) Materials and Methods: This paper proposes two methods of
solving Sudokus automatically: one using Hilbert systems, the other with an additional contradiction
rule. (3) Results: While the first algorithm was not complete, it seems that the second one is. It was
able to solve most of the provided test cases in under a second. (4) Discussion: Different work already
suggests this concept for a Sudoku solver. However, it comes from a different theoretic standpoint.
Future work in this field might include incorporating the results of proof theory or searching for a
Sudoku solvable for every possible substitution.

Keywords: logic; proof theory; sudoku; puzzle; consequence operation

1. Introduction

The first Sudoku puzzles appeared in 1979 in an East Coast puzzle magazine [1], and
despite their relative youth, there has been huge development when it comes to solving
them. Multiple methods for filling the fields of Sudoku were developed. From this emerged
a method which closely resembles proof systems.

A Sudoku puzzle is a 9× 9 matrix (also called a grid) partially filled with numbers
from 1 to 9 (later refered to as digits). Its main parts are fields (single entries in the matrix),
columns, rows and subgrids—9 3× 3 submatrices (There exists a simple function which
values group together the fields to create subgrids (given that both coordinates start with
0): f (i, j) = idiv3 + 3 ∗ (jdiv3)). According to Britannica [1], the name of Sudoku puzzles is
an abbreviation of the main rule of Sudokus—“suuji wa dokushin ni kagiru” (“the numbers
must remain single” in English). This can be formalized as:

Definition 1. In a solved Sudoku, no digits reappear in a given row, column or subgrid, and every
field is filled in.

When solving, the player slowly narrows down the possible numbers (this resembles
a logical disjunction [2]) in given fields to single digits. This is carried out using a set of
solvability-preserving strategies on the grid. Two of most basic ones will be presented
below (based on [3]).

The hidden single strategy (denoted as HS) is based around the notion that if a given
digit can be placed only in one field of a given column, row or set, it certainly is the value
of this field.

The naked single strategy (denoted as NS) can be thought of as the reverse of the first
strategy. When only one digit can be placed in a field, this digit will surely be there in the
solution. Because of this, it can be permanently placed there.

Proceedings 2022, 81, 78. https://doi.org/10.3390/proceedings2022081078 https://www.mdpi.com/journal/proceedings

https://doi.org/10.3390/proceedings2022081078
https://doi.org/10.3390/proceedings2022081078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com
https://orcid.org/0000-0002-7811-4580
https://doi.org/10.3390/proceedings2022081078
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com/article/10.3390/proceedings2022081078?type=check_update&version=2


Proceedings 2022, 81, 78 2 of 5

When trying to represent deductive reasoning, one might be inspired by proof systems in
formal logic. While there are a few of those, here, only two of them will be mentioned—Hilbert
systems and natural deduction.

Axiomatic systems were introduced by Hilbert [4]. These use direct reasoning—the
proof is a derivation of given formula from a given axiom set, using clearly defined rules [5].

To simplify this system, Fitting [5] introduces axiom schemas. These contain symbols
that denote arbitrary formulas [5], instead of propositional variables. When given an axiom
scheme, A→ (B→ A ) , one might substitute A and B with any formula without using
additional proving rules.

The notion of consequence can be used to define a function Cn : 2Form → 2Form (Form
denotes a set of all sentences in propositional logic), which for any set of formulas returns
a set of every derivable formula. When given a set of axioms, Ax, the set of all derivable
formulas will be equal to Cn(Ax) [6].

Axiomatic systems, while elegant, have little connection to how human mathemati-
cians reason. Because of this, Gentzen [7] and Jaśkowski [8] simultaneously proposed
natural deduction. This system was simplified and popularized by Fitch [9] as the method
of subordinate proofs.

In contrast to axioms in Hilbert systems, here one can introduce new assumptions to
proofs (which initiates new subproofs) and discharge them (ending the subproofs). Usually,
reasoning in these systems is direct, but when a contradiction is reached, it is possible to
use reasoning by contradiction to eliminate the faulty assumption, deducing its negation at
the same time [5].

2. Materials and Methods

When examined carefully, one can find certain similarities between the processes of
proof creation and Sudoku solving. Both start with a fundamental object that is trans-
formed using certain reasoning schemes to the desired form. In this way, a Sudoku puzzle
becomes a formula, while the solvability of a Sudoku can be compared to being true, and
unsolvability to being false. With this being said, the solvability-preserving strategies can
be compared to truth-preserving inference rules.

With this being said, it is possible to modify the Cn function to return all derivable
Sudokus. Let us define a function: CnS

{NS,HS} : Sudokus→ 2Sudokus (where Sudokus denotes
the set of all solvable Sudoku puzzles). Such a function should return every Sudoku that
is derivable using these rules. As the consequence operation was originally defined with
Hilbert systems in mind, it felt natural to try implementing it. One of the main parts of this
solver was creating a working consequence function, as its definition is quite theoretical.
To simplify this process, the author introduces an assumption:

Assumption 1. Hidden single and naked single rules commute with each other. This means that,
regardless of the rule order, the result of applying those rules will always be the same.

To implement the notion of consequence, the immediate consequence in Herbrandt
models [10] was used. It is a function that represents using any rule once. Using this
operation until the result of X is equal to {X} yields a set which consists of all of its
consequences.

The main problem of this method was its incompleteness. A complete version of this
method certainly exists, as there are a finite number of Sudoku puzzles; therefore, it is
possible to create a finite number of rules that would match unfinished puzzles with their
finished counterparts. This method is not useful, because such algorithm would simply be
inefficient. While smaller complete strategy set can exist, the author could not find any work
regarding them, and instead proposes using another tool from the proof–theoretic toolbox.

Let us recall Definition 1. It is easy to deduce Theorem 1 from it.



Proceedings 2022, 81, 78 3 of 5

Theorem 1. A Sudoku is solvable if it is possible to place every digit once in every row, column
and subgrid.

Based on this, we can infer Corollary 1, which introduces the concept of contradiction
to this system (and because of this, the unsolvability of a Sudoku will be denoted as ⊥).

Corollary 1. If there exists a field that can’t be filled with any digit, then the Sudoku is unsolvable.

With contradiction comes the possibility of reasoning by contradiction. Such reasoning
is quite popular in natural deduction systems. Similarly, one might imagine an inference
schema—“if placing a given digit into a field yields a contradiction (an unsolvable Sudoku),
then the digit is not in the field”. This mechanism is introduced into the Hilbert-inspired
solver as a negation rule [5].

It is worth mentioning that the negation rule is quite risky in a proof search. When
used amiss, the assumption introduction might inflate the computational complexity, as it
can test the correctness of any value in any field. Because of this, the negation rule is not
introduced via the consequence operation.

There is a finite number of possible digits in every field. These can be searched through
using the negation rule and the consequence operation. As one might imagine, this makes
this proof search a breadth-first tree search. As a heuristic, this search prioritizes fields with
a lower number of possible digits.

3. Results

The software was tested against two Sudoku puzzle sets. The experiment was carried
out using an Intel Core i9-10850 processor with the clock speed set to 4.8 GHz. In both sets,
every Sudoku was solved 100 times to minimize the measurement error.

The first set [11] consisted of 50 easy Sudokus. The software was able to solve them
with mean solving time of 43.853 ms, and a standard deviation of 89.282 ms.

The second set [12] consisted of 46 hard Sudokus, and again the presented algorithm
was able to solve all of them. The average solving time was 64.611 ms. The standard
deviation in this set was 146.752 ms. Higher solving times are understandable when the
rise in difficulty is taken into account.

4. Discussion

It is important to note that the performance of other algorithms will not be discussed
in this section, because of the differences in both hardware and software used.

Peter Norvig [13] proposes the same algorithm, which he develops based on the
concept of constraint programming. Conceptually, his algorithm starts with a possible
solution space consisting of all Sudokus. He then uses different strategies to constrict
this solution space. When nothing else is possible, Norvig searches through the solution
space using—what this work would call—assumption creation and retraction. The duality
of this algorithm will be discussed later; however, Norvig reassures the completeness of
this algorithm.

Another work which presents this algorithm is [14]. The authors use rewriting logic to
create a similar set of inference rules with branching, which in turn creates a system that
resembles tableaux methods. In the author’s opinion, this work, while coming from logic,
still should be viewed as a different approach. The isomorphism presented here is a case
for treating Sudoku as a logic; therefore, it is a proof–theoretic solution of the problem.

A similar case can be made for [2]. The authors encode every Sudoku as a conjunctive
normal form and then use a series of SAT inference techniques (these bear resemblance to
the negations rules presented here) to find a solution to the presented Sudoku.

The fact that multiple perspectives led to a similar mechanism might be used to
draw important conclusions. First of all, there is the difference between Peter Norvig’s
constraints and this work’s inference rules. These, while being opposite to themselves



Proceedings 2022, 81, 78 4 of 5

(one disallows solutions and the other infers them), might be considered as two sides
of the same coin. Similar to the rules of generative grammars [15], from which these
algorithms do not deviate too far, the mechanisms of Sudoku seem to both match and
generate possible solutions. This is quite understandable given the connection of logic and
constraint programming [16].

The applications of this work can be summed up using a famous quote—“Just a
spoonful of sugar helps the medicine go down” [17]. Proof theory, in the author’s opinion,
can be thought of as quite an inaccessible part of science. Using analogies similar to the one
presented here might make it easier for students to understand the topic and its problems.
A great example might be the concept of completeness and soundness, which are much
easier to introduce using down-to-earth examples, such as Sudoku puzzles.

While using more advanced techniques of proof search might yield a better solver,
there are other topics worth exploring in the intersection of formal proofs and puzzles.
Assumption 1, and all of the rules in the system, require formal proofs. One might also come
back to the presented Hilbert system and try creating a complete version. Furthermore, as
Hilbert systems are used to create true formulas from axioms, one might create a calculus
which allows the creation of new puzzles from the solutions. (This would be a trivial task
without the constraint of only one solution, but might produce interesting results with this
restriction.) These might be considered Sudoku axioms, as they are solvable by definition.
To define these solutions, one might use axiom schemas [5] of solved puzzles, defined
based on [18]. A final suggestion would be comparing solvability to satisfiability [6] and
searching for tautology puzzles, which would resolve for every possible digit substitution.
The axiom set would not change, as all Sudoku solutions are solvable for every possible
substitution by definition.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data generated in this study and the tested Sudoku examples
can be found here: https://github.com/PogromcaPapai/Teresa/tree/measure/data (accessed on
25 October 2021). The same repository contains the implementation of the algorithm.

Acknowledgments: The author would like to thank Aleksander Kiryk for his remarks which inspired
some parts of the discussion.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Sudoku. Available online: https://www.britannica.com/topic/sudoku (accessed on 31 May 2021).
2. Lynce, I.; Ouaknine, J. Sudoku as a SAT Problem. ISAIM 2006, 11, 6–13.
3. Sudoku9x9.com. Sudoku Solving Techniques. Available online: http://www.sudoku9x9.com/sudoku_solving_techniques_9x9.html

(accessed on 31 May 2021).
4. Van Heijenoort, J. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931; Harvard University Press: Cambridge, MA,

USA, 2002.
5. Fitting, M. First-Order Logic and Automated Theorem Proving; Springer Science & Business Media: New York, NY, USA, 2012.
6. Batóg, T. Podstawy Logiki; Wydawnictwo Naukowe im. Adama Mickiewicza w Poznaniu: Poznań, Poland, 1986; pp. 65–67.
7. Gentzen, G. Untersuchungen über das logische Schließen. Math. Z. 1934, 39, 405–431. [CrossRef]
8. Jaśkowski, S. On the Rules of Suppositions in Formal Logic; Studia Logica: Warszawa, Poland, 1934.
9. Fitch, F.B. Symbolic Logic: An Introduction; Ronald Press Co.: New York, NY, USA, 1952.
10. Garcez, A.S.D.; Broda, K.B.; Gabbay, D.M. Neural-Symbolic Learning Systems: Foundations and Applications; Springer Science &

Business Media: London, UK, 2012.
11. Solving Every Sudoku Puzzle. Available online: https://github.com/dimitri/sudoku (accessed on 31 May 2021).
12. Mantere, T.; Koljonen, J. Solving and analyzing Sudokus with cultural algorithms. In Proceedings of the 2008 IEEE Congress

on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008;
pp. 4053–4060.

13. Solving Every Sudoku Puzzle. Available online: http://norvig.com/sudoku.html (accessed on 31 May 2021).

https://github.com/PogromcaPapai/Teresa/tree/measure/data
https://www.britannica.com/topic/sudoku
http://www.sudoku9x9.com/sudoku_solving_techniques_9x9.html
http://doi.org/10.1007/BF01201363
https://github.com/dimitri/sudoku
http://norvig.com/sudoku.html


Proceedings 2022, 81, 78 5 of 5

14. Santos-García, G.; Palomino, M. Solving Sudoku puzzles with rewriting rules. Electron. Notes Theor. Comput. Sci. 2007, 176, 79–93.
[CrossRef]

15. Sipser, M. Introduction to the Theory of Computation. ACM Sigact News 1996, 27, 27–29. [CrossRef]
16. Hooker, J.N. Logic, optimization, and constraint programming. INFORMS J. Comput. 2002, 14, 295–321. [CrossRef]
17. Stevenson, R. Mary Poppins; Buena Vista Distribution Company: Burbank, CA, USA, 1964.
18. Felgenhauer, B.; Jarvis, F. Enumerating Possible Sudoku Grids. 2005, preprint.

http://doi.org/10.1016/j.entcs.2007.06.009
http://doi.org/10.1145/230514.571645
http://doi.org/10.1287/ijoc.14.4.295.2828

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	References

