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Abstract: The paper is intended as an exploration of the potential methodology for hypercomputing
using the long intellectual experience of the study of morphology and morphogenesis. The first part
of the paper shows that the missing element of the process of computation in the studies searching
for the generalization of computation is encoding. Turing Machines can work only on information
encoded in a very specific way. When we look for ways to generalize computation, the analysis
of encoding is the most likely source of ideas for the extension of this concept. The second part of
the paper is an exploration of the history of morphogenesis from the perspective of the search for a
method of unconventional encoding information.
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1. Introduction

The paper is intended as an exploration of the potential methodology for hypercomput-
ing using the long intellectual experience of the study of morphology and morphogenesis.
The first part of the paper shows that the missing element of the process of computation in
the studies searching for the generalization of computation is encoding. Turing Machines
can work only on information encoded in a very specific way. When we look for ways to
generalize computation, the analysis of encoding is the most likely source of ideas for the
extension of this concept. The main source of confusion regarding the matters of encoding
is in the distinction between digital and analog forms of information that has to be clarified.

The second part of the paper is an exploration of the studies of morphology and
morphogenesis from the perspective of the search for a method of unconventional encoding
of information.

2. Encoding: Digital, Morphological, or Other

The pairs of adjectives “analog”—“digital” and “qualitative”—“quantitative” entered
the everyday language and in the common belief, the latter in each pair is better, more
progressive, and future-oriented. There is another belief, this time among those who know
the theoretical model of computing introduced by Alan Turing called now Turing Machine
that this model sets the boundaries for computing that cannot be crossed. This belief is not
universal and there is continuous effort to design hypercomputing, i.e., computing free
from the limits set in the orthodox model. Turing himself challenged the limits, first with
his oracle machines, later by exploration of chemical morphogenesis.

To go beyond Turing’s model of computation requires a generalization of the concept
of computing. Of course, computing understood as a process modeled by Turing Machine
excludes hypercomputing. The strong attachment to the existing orthodox model of compu-
tation generates emphatic denials of its feasibility. In the absence of any clear vision of the
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generalization, the claim that hypercomputation is not a discipline is obvious [1], but the
claim that it is impossible can be only an expression of the belief. On the other hand, with-
out having any idea about the process which could have orthodox computing as a special
case, but which exceeds its boundaries the task is formidable. Thus far, attempts were made
to engage some elements of analog computing within the orthodox digital paradigm [2].

If we want to go beyond the existing paradigm of computation we have to have a
clear view of the existing model. We have to identify what exactly we want to transcend.
Turing’s model of computation is very clear, precise, and surprisingly simple. It may seem
impossible to find in it anything which requires an additional explanation or clarification.
However, the question is whether the Turing Machine accurately describes the entire
process of computation. More specifically, does it describe the entire process of information
transformation with all its aspects? This question can be reformulated using a different
perspective on computation. Can Turing Machine be autonomous? What does it need for
its functioning?

The answer is obvious. Information processed by the Turing Machine has to be in
digital form. It is a less obvious question of what “digital form” means. Von Neumann in
1948 described analog computing as based on the idea that the representation of numbers
in the processing units is not digital (i.e., is not based on the finite number of classes of
states of the physical processor associated with digits and their combination into numerals),
but analog (numbers are represented directly by the physical magnitudes characterizing
the states of processor). Its disadvantage in comparison to digital computing is in the lack
of universality and the need for reconfiguration for different tasks [3]. Later the distinction
between digital and analog processing of information (not only in the context of computa-
tion, but also storage, transmission, and retrieval) entered the everyday vocabulary and
became associated with the distinction between the discrete and continuous characteristics
of information.

My distinction between analog and digital computing can be formulated in terms of
the distinction between states and observables introduced in physics after the influence
of quantum mechanics. Analog computing is performed directly and exclusively on the
states of the processing unit without the mediation of observables and their measurement,
i.e., numbers. Digital computing involves the mediation of observables, i.e., numbers. In
the Turing Machine, in each step, the head observes the cell of the tape, and the transition
to the next step is based on the result of this observation. The dynamic of the process
of computing is based on the outcomes of these observations. In analog computing, the
observation is engaged only in the identification of the result. Of course, this distinction is
slightly different from von Neumann’s in which processing is in both cases of the numbers
which are represented in the analog or digital forms.

Thus, in digital computing, we have an important engagement of encoding informa-
tion in the process of information dynamic. This encoding is not arbitrary. The work of
the Turing Machine is heavily dependent on the specific encoding in a digital-positional
way. If we use different symbols for each piece of information, the model of computation
fails. The description of the process of computation assumes that the variety of information
items is represented by finite sequences of pre-selected digits (characters). This approach
was inherited by computation from the human use of the language, in particular of the
written language. We use a finite number of basic units (letters or characters) from which
compound units carrying meaning are formed as sequences. The rules of formation of
these compound units of higher levels are governed by syntactic and logic. Yet another
aspect of processing information is semantics. Turing Machine has to get as its input al-
ready encoded information and the result of computing has to be decoded and interpreted
externally, typically by a human programmer. It is a natural choice to look for the models
for hypercomputation in the extension or generalization of encoding.

However, this tells us about the exploration of information systems with alternative
encoding, but it does not answer the question about the generalization of computing. Before
entering the exploration of morphological computing, let me briefly recall my proposal of
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generalized computing by the so-called Symmetric Turing Machine presented in earlier
publications in which computing is defined as the construction of information structures
in the interaction of two or more information systems carrying information [4]. The main
point of my approach is that computing is understood as a dynamical process involving
more than one information system with equal status and that the outcome of the process
is information which is a nontrivial function of information from the interacting systems.
The requirement of involvement in the interaction of more than one system prevents
the overgeneralization in which every process, such as the motion of a stone could be
considered computation. On the other hand, it is clear that the work of Turing Machine
is a form of computing understood this general way with the added specification of the
digital encoding together with the one-way goal-oriented action, so orthodox computing
is a special case. The model of the symmetric Turing Machine in which the interaction is
Turing-noncomputable may achieve the goals of hypercomputing.

3. Morphological Computing and Morphogenesis

To avoid the mediation of digital encoding, we can explore information systems based
on morphology, not necessarily structures of sequences of digits. At first sight, the task may
seem easy. “Morphological computing” is sometimes described as computing involving
shape as a carrier of information. However, the concept of shape, although very intuitive
and often used in the common sense discourse, is actually very difficult to define and
systematize. The word “shape” in topological shape theory initiated and developed by
K. Borsuk in “Concerning homotopy properties of compacta,” 1968 is misleading [5], as
it is not concerned with anything which can be expected from the intuitive meaning of
the word “shape”. For instance, the so-called Warsaw circle is shape equivalent to a circle,
but its appearance is of a circle after a very serious accident in which it was bent infinitely
many times. Shape theory developed by D. G. Kendall was intended as a tool for numerical
characterization and statistical analysis of shape understood in the common sense way:
“We here define ‘shape’ informally as all the geometrical information that remains when
location, scale, and rotational effects are filtered out from an object” [6]. It is however
disputable whether this theory can meet all expectations of the theory of shape in all
contexts. For instance, the fact that the object whose shape is considered is reduced to the
finite number of quite arbitrary “landmark points” and that the shape is an invariant of
rotations around some axis makes it questionable that this approach grasps the essential
features of the concept of shape. Whether these objections are justified or not, it is quite clear
that the reduction of morphology to the analysis of shape would not make understanding of
morphology easier or more useful. We can only observe that the introductory explanation
of Kendall’s concept refers to shape as “geometrical information”. Whatever understanding
would be of morphological computing or computing in general, it is a legitimate assumption
that they refer to information in its dynamical aspect. Therefore any attempt to characterize
morphological computing requires prior study of the relationship between morphology
and information.

Morphology as a study of organic forms was initiated by J. W. Goethe and indepen-
dently by C. F. Burdach at the turn of the 18th and 19th centuries. Goethe defined it in
1817 “On Morphology” as the science of the form (Gestalt), formation (Buildnung), and
transformation (Umbildung) of organic beings. Significantly, he conceived it as a study of
the form and at the same time as a study of its changes. The tradition of the study of organic
forms in terms of their transformations initiated by Goethe became the central paradigm
of biology reinforced and redirected by the influential work of D’A. W. Thompson (“On
Growth and Form,” 1917).

There is less known, but the equally interesting 1894 study of William Bateson, “Mate-
rials for the Study of Variation” with very deep insights into the matters of morphogenesis
which his son Gregory Bateson linked directly with the concept of information in his
1971 article “A Re-examination of ‘Bateson’s Rule’” [7].
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Henri Poincaré in his 1905 “Science and Hypothesis” analyzed the mechanism of
human perception engaging different organs distributed all over human organism to show
that geometry is conventional. His study is essentially describing a form of morphological
computing of spatial information implemented in the human organism.

This direction of inquiry entered the context of information and computing indirectly
in the work of A. Turing (“The Chemical Basis of Morphogenesis,” 1952) and directly and
explicitly in the celebrated book of R. Thom (“Structural Stability and Morphogenesis,”
1972). Thom explicitly presents his book as a study of information alternative and superior
to the approach of E. C. Shannon. For Thom morphology of a process is defined by its
points of singularity (catastrophic points) as distinct from regular points. He describes the
relationship between morphology and information “[A]ny geometric form whatsoever can
be the carrier of information, and in the set of geometric forms carrying information of
the same type the topological complexity of the form is the quantitative scalar measure
of information” [8].

The work of Thom is of special value. He showed that we can investigate dynamic
processes from the point of view of differential topology. These processes of morphogenesis
and the study of their structural stability provide the tools for the design of morphological
computing. On the other hand, we also get a warning in the fact that Thom did not
achieve any breakthrough in his study of semiosis (information processing!) His failure
(which he admitted [9]) was the result of not being able to reject traditional principles of
the quantitative methodology. It seems that we should follow the dream of Leibniz to
develop an entirely new structure of human thought based on a general form of algebra (as
expressed in his own words).

The origins of ideas expressed in the current morphological study of information are
much older than the term “morphology” or “computing”. Probably the most influential
among the early studies of the morphology of information predating these terms was
the work of G. W. Leibniz (e.g., “On the Art of Combination,” 1690). His characteristica
universalis is a language based on morphological information directly reflecting thinking
without the mediation of the alphabet and his calculus ratiocinator operating on characteristica
universalis is a process of computing. Leibniz wrote in the letter to Nicolas Remond in
1714 that the integration of science, mathematics, and metaphysics through the use of
characteristica universalis requires “a kind of general algebra in which all truths of reason
would be reduced to a kind of calculus” [10]. He did not understand it as a simple
extension of arithmetic. In earlier work (“On Universal Synthesis and Analysis,” 1679)
Leibniz presented calculus ratiocinator as “that science in which are treated the forms or
formulas of things in general, that is, quality in general” [11]. Leibniz did not know that a
sub-discipline of mathematics called “general algebra” would be developed. He did not
give a clear view of what he expected.
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