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Abstract: This paper introduces a new computational approach for fast deblurring non-blind imag-
ing. The method implementation reveals how to solve image deblurring integrals with arbitrary
kernels using the Theory of Hypernumbers. The method is applicable for real-time event recogni-
tion when kernel parameters can be defined by monitoring camera vibration and kernel–vibration
association algorithms.
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1. Introduction

Information retrieval from images that involves object recognition are now in high
demand for many applications [1–6], including military tasks. Using Unmanned Aerial
Vehicles equipped with digital cameras for image recording allows us to solve previously
unsolved problems. Examples of solving critical problems using this approach include
detecting fire sources, locating power lines damage, spotting pipe leaking, finding railroad
failures, etc. The image should satisfy some quality requirements in order to allow object
recognition. On the other hand, using images recorded from Unmanned Aerial Vehicles
is affected by blurring due to the video cameras’ random vibration. The main reason of
vibration is air turbulence due to strong wind [7]. The level of image blurring depends on
the amplitudes of camera displacement due to the vibration. In cases when vibration ampli-
tude would exceed the threshold, the image should be deblurred. Some image recognition
applications require real-time recognition and consequently rapid deburring.There are two
major directions in image deconvolution: blind and non-blind. The non-blind image de-
convolution algorithms recover blurred images with unknown blur kernel. Such methods
as Lucy–Richardson [8] and Wiener Filters achieve high resolutions in image deburring.
However, it requires hundreds of iterations to obtain original image approximation. The
proof of such iterative algorithm convergence is covered in such publications [9]. Non-blind
image deburring requires two steps. The first step reveals defining blur kernels, and the
second one consists of finding an unknown original image from the blur equation. The
first step can be resolved by matching known vibration characteristics to the blur kernel.
The second requires solving a non-linear equation. In cases when the kernel is a Gaussian
function, it is given constructive formulas for the deblurring of kernels in terms of Hermite
polynomials [10].

The numerical solution is defined in [11] for the non-linear diffusion equation is known
to be a significant application in solving image processing issues. Per the author’s analysis,
a largenumber of computations is needed in filtering the image as the sizes keep getting
bigger. The authors proposed speeding up the computation in solving the developed linear
system with the faster iterative method.

The current research covers the method of deblurring images with arbitrary kernels
using the theory of hypernumbers [12,13]. Using hypernumber for solving complex op-
erator equations shows high computational efficiency [14]. The sequential hypernumber
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solution for deblurred images is defined from solving linear equations toward deblurred
image variation.

The analysis of the fast deblurring algorithms [15] shows that recovery may take up to
minutes. Such speed will not satisfy the real-time processing requirements. The deblurring
algorithms are running until the image would be sharpened to a high level.

This method is highly efficient for image processing when time of recovering the
image is not critical. For real-time image recognition, we have presented the hypernumber
image recovering method.

2. Identifying Original Image by Solving Integral Blurring Equation with Theory
of Hypernumber

Per [10], the blurred image can be defined by the following transformation:

bδ =
∫
Ω

h(s, t)i(t)dt s

i ∈ Ω
(1)

where h(s, t) is the blur kernel, i(t) is the original image, and bδ is blurred image.
In many applications [9], the integral is symmetric convulsion, where kernel is equal

to:
h(s, t) = h(t, s) = k(s− t) (2)

The blurring kernel can be defined with Gaussian distribution [16]:

k(s(x, y)− t(u, v)) = e−
(x−u)2+(y−v)2

2πσ2 (3)

By plugging (3) into (1), the expression for the blurred image is defined as:

bδ(x, y) =
1

2πσ2

x

Ω

e−
(x−u)2+(y−v)2

2πσ2 i(u, v)dudv (4)

The area Ω (Figure 1) in the integral is defined to include significant value of the
Gaussian function:

e
(x−u)2+(y−v)2

2πσ2 < ε ∀ (x− u) > r ∩ ( y− v) > r, (5)

where ε is significant for blurring value.
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Schema from Figure 1 of the calculation of blurring by linear approximation of the
delta blurring in area Ωi

δbk(x, y) =
1

2πσ2

x

Ω

e−
(x−u)2+(y−v)2

2πσ2 δik(u, v)dudv (6)
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Let:
δim+1(x, y ) = −µ

(
bδ

m(x, y)− bδ(x, y)
)

(7)

The image hypernumber is defined as:

im = Hn(im)m∈w (8)

im+1 = im + δim+1 (9)

δbδ
m+1(x, y) =

−µ

2πσ2

x

Ω

(
bδ

m(u, v)− bδ(u, v)
)

e−
(x−u)2+(y−v)2

2πσ2 dudv (10)

bδ
m+1(x, y) = bδ

m(x, y) + δbδ
m+1(x, y) (11)

The hypernumber solution should satisfy the difference between the blurred image
with image hypernumber and the original blurred image to be equal to zero.

bδ
m+1(x, y)− bδ(x, y) = bδ

m(x, y)− bδ(x, y)−
µ

2πσ2

s

Ω

(
bδ

m(u, v)− bδ(u, v)
)
e−

(x−u)2+(y−v)2

2πσ2 dudv
(12)

Let:
bδ

m(u, v)− bδ(u, v) =
(

bδ
m(x, y)− bδ(x, y)

)
+ ∆bδ

m (u, v) (13)

and ∣∣∣∆bδ
m (u, v)

∣∣∣< ∆m (14)

Then, plugging (12) into (11) and using (13), we obtain such inequality β = µ

2πσ2∣∣bδ
m+1(x, y)− bδ(x, y)

∣∣ ≤∣∣∣∣∣( bδ
m(x, y)− bδ(x, y)

)
(1− β) + β∆m

s

Ω
e−

(x−u)2+(y−v)2

2πσ2 dudv

∣∣∣∣∣ (15)

Since the integral over Gaussian kernel equals to 1:

x

Ω

e−
(x−u)2+(y−v)2

2πσ2 dudv = 1 (16)

Equation (15) can be re-written:∣∣∣bδ
m+1(x, y)− bδ(x, y)

∣∣∣ ≤ ∣∣∣(bδ
m(x, y)− bδ(x, y)

)
(1− β) + β∆m

∣∣∣ (17)

The defined algorithm of constructing the hypernumber solution provides a computan-

ional mechanism of |∆m| <
|bδ

m(x,y)−bδ(x,y)|
k , k > 1 and consequently

∣∣bδ
m+1(x, y)− bδ(x, y)

∣∣
<
|bδ

m(x,y)−bδ(x,y)|
l , l >1.

3. Conclusions

The software implementation of the approach defined in this paper shows the effi-
ciency in deblurring the image with Gaussian kernel. The image recovering time is less
than one second.
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