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Abstract: Is information a real entity, or is it only a useful mathematical notion? Shannon’s equation
and a consolidated tradition have led many scientists and laymen to consider information as some
kind of physical, additive quantity. The very well-known argument in favour of information as a
physical quantity has not reached any definitive conclusion. Much has been derived from Shannon’s
formula, which was introduced to provide a convenient logarithmic measure that might be practically
useful and close to most intuitive feelings. Shannon never insisted on the ontological status of
information, which might be revealed to be a lot less committing than is often believed. The bottom
line is that information might be a convenient mathematical notation to express the probability of
independent configurations in a system.

Keywords: information; entropy; Shannon; causal overdetermination; reification; ontology

1. Introduction

Here, I will show that there is a mathematical derivation that reduces Shannon’s for-
mula to standard probability theory between independent events. I present an alternative
formulation of entropy based on remapping events with different probabilities over multi-
ple equiprobable events. This suggests that, as happens with entropy, there are not more
probable configurations, but rather there are many indistinguishable configurations that
are mapped onto convenient “more probable” states. Since an alternative formula that does
not require any ontological commitment is available, the contention is that information
does not exist (its existence does not make any difference). If H can be expressed as the
product between the probabilities of independent events, there is no need to add any new
entity—information is simply a convenient way to express the probability of different
configurations of a physical system.

2. Shannon’s Equation Revisited

Shannon’s equation and a consolidated tradition have led many scientists and laymen
to consider information as some kind of physical, additive quantity. The standard formula
that all schoolboys learn is the familiar sum of products between probabilities and their
logarithms [1]:

H(X) =
N

∑
i

piLog2 pi (1)

The aim of this paper is to show that the above function (1) can be rewritten in terms
of standard probability theory, and that it thus does not entail any ontological commitment.
Namely, that it is possible to show that:

H(X) = − 1
M

Log2

M

∏
j

p̃j (2)

where p̃′js (M ≥ N) maps the probabilities, pi, of the random variable, X, using a method
that will be described below. It can be shown that Equations (1) and (2) are mathematically
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equivalent (in the sense of providing the same set of solutions). Since Equation (2) is
a function of a product of probabilities, it follows that H expresses, logarithmically, the
probability of independent events, i.e., P(AB) = P(A)P(B). Thus, by Ockham’s principle,
if Equation (2) were valid it would drain all ontological commitments of Equation (1).
Information as a real quantity could be dismissed.

A few steps show how Equation (2) can be derived from Equation (1). First, Equation (1)
can be rewritten as an exponent, and thus the sum can be reformulated as a product
with exponents:

2−H = 2∑N
i pi Log2 pi =

N

∏
i

(
2Log2 pi

)pi
=

N

∏
i

pi
pi (3)

Equation (3) begins to take some of the spell away. The next step consists of removing
exponents and suggesting suitable independent events. Let d be the greatest common
factor among all pi (assuming pi ∈ Q, ∀i, d ∈ Q, d is the greatest rational, such that
pi/d = q ∈ N, ∀i). By means of d, Equation (3) can then be rewritten as (Figure 1):

N

∏
i

pi
pi = p1

p1 · p2
p2 · . . . · pN

pN = p1
d · p1

d · . . . · pN
d = p̃1

d · p̃2
d · . . . · p̃M

d (4)

whereas each factor, pi
pi , is rewritten as a product, ∏Ki

k (pi)
d, where Ki = pi/d, Ki ≥ 1,

M = ∑N
i

pi
d . Of course, if d = pi, Ki = 1. Thus, each pi can be revisited by—and thus

substituted with—a series of independent events, x̃i, 1 ≤ i ≤ M, each having a probability,
p̃i. The set of probabilities, p̃i, is built by multiplying each pi Ki times. Equation (3) can be
rewritten as:

2−H =
N

∏
i

pi
pi =

M

∏
j

p̃i
d =

[
M

∏
j

p̃i

]d

(5)
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Figure 1. Each discrete set of probabilities pi can be split into a larger set of equally probable events p̃i.

Additionally, then, since M = ∑N(pi/d) = ∑N pi/d = 1/M, it is trivial to obtain
Equation (2). The derivation from Equation (1) to Equation (2) might appear complicated,
but it is not. For instance, if the elements are equiprobable symbols (pi =

1
N ), the familiar

Hartley’s expression, H = Log2N, will follow [2]. An important caveat: ∏N pi does
not correspond to a probability (p(i ∩ j) = 0, ∀i 6= j), ∏M p̃i does. In fact, ∏M p̃i is the
probability of any sequence of M events whose frequency matches exactly that of the
outcomes of X (Figure 2). In the future, it would be interesting to check whether this
proposal might be extended to the continuous case, thereby providing an even more
compelling case.
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Figure 2. (a) X, such that p1 = 1
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4 ; (b) X, such that p1 = 3
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since
M
∏ p̃i = p̃1 p̃2 = 3

16 .

Consider a handful of numerical examples.
First, suppose having two outcomes with probabilities

{
1
3 , 1

2

}
, then d = 1

6 , since 1
6 is

their greatest common factor, i.e., d is a rational number by which 1
3 / 1

6 = 2, 1
2 / 1

6 = 3. In

fact,
(

1
3

) 1
3 ·
(

1
3

) 1
3 =
(

1
3

) 1
6
(

1
3

) 1
6 ·
(

1
2

) 1
6
(

1
2

) 1
6
(

1
2

) 1
6 .

Second, suppose having three outcomes, x1, x2, x3, with probabilities
{

1
6 , 1

3 , 1
2

}
,

N = 3. Their greatest common factor common is d = 1/6 . By multiplying all elements
according to the ratio Ki = pi/d, a set,

{
x̃j
}

, M = 6, where each element has a prob-
ability of d = 1

6 = 1
M , we obtain {p1, p2, p3} ⇒ { p̃1, p̃2, p̃3, p̃4, p̃5, p̃6} . Equation (1)

obtains H = −
(

1
6 Log2

1
6 + 1

3 Log2
1
3 + 1

2 Log2
1
2

)
∼= 1.459147917 . . .. Equation (2) obtains

H = − 1
6 Log2

(
1
6 ·

1
3 ·

1
3 ·

1
2 ·

1
2 ·

1
2

)
∼= 1.459147917 . . .

Finally, suppose having two outcomes with probabilities
{

3
4 , 1

4

}
, N = 2. Then, d = 1

4 ,

M = 4. {p1, p2} ⇒ { p̃1, p̃2, p̃3, p̃4} . The probability ∏M p̃i represents the probability
of any sequence of M outcomes of the kind 0001, 0100, and 1000 (or whatever matches
X’s profile).

3. Discussion

Is information something real or not? In many fields, the notion that information is
a physical quantity has led scientists to debatable conclusions about both its nature and
role [3,4]. Many arguments have been advanced both in favour of and against the reality of
information. It is fair to maintain that information cannot be directly measured, as can be
done with other, less problematic physical quantities (say, mass and charge). It is impossible
to tell how much information is contained in a physical system unless more knowledge
about the relation between that physical system and another system is available. It is also
disputable whether information has any real causal efficacy, or if it is an epiphenomenal
notion, as is centres of mass. The very well-known argument in favour of information as a
physical quantity has not reached any definitive conclusion [5]. In this context, much have
been derived from Equation (1), which, as Shannon himself stated, was introduced mostly
because “the logarithmic measure is more convenient [ . . . ] it is practically more useful
[ . . . ] it is mathematically more suitable [ . . . ] it is nearer to our intuitive feelings” [1].
Shannon hardly provides final arguments for the physical existence of information.

An interesting outcome of Equation (2) is that it is achieved by remapping events
with different probabilities over multiple equiprobable events. This suggests that, as
happens with entropy, there are not more probable configurations, but rather there are
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many indistinguishable configurations that are mapped onto convenient “more probable”
states. Therefore, Equation (2) (and the steps from three to six) is a way to unpack one’s
limited knowledge or perspective about physical states and represent them in a neutral
way where each state is just as probable.

This is not to say that the notion of information is not a very successful and useful
one. Yet, the existence of an alternative formula that does not require any ontological
commitment to information makes a strong cause against its existence—the existence of
information does not seem to make any difference. Equations (1) and (2) causally overde-
termine what a system does, and, since Equation (1) is ontologically less parsimonious, for
the Ockham’s razor Equation (2) is to be preferred.

In this contribution, Equation (2) expresses H in terms of the product between the
probabilities of independent events. Therefore, if Equation (2) was used in place of Equation
(1) (despite being more cumbersome), there would be no need to add any new entity—
information is simply a convenient way to express the probability of different configurations
of a physical system. Since Equation (2) is mathematically equivalent to Equation (1), and
it does not require anything but probabilities, it follows that Equation (2) provides a
mathematical proof that information does not exist apart from as a useful conceptual tool.
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