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Abstract: I propose a number of principles that I believe are substantial for various faculties of the
mammalian brain, such as perception, expectations, imagery, and memory. The same principles are
also of interest when designing an artificial but biologically inspired cognitive architecture. More-
over, I discuss how the same principles may lie behind the ability to represent new concepts and to
imagine fictitious and impossible objects, while also giving us reasons to believe that there are limits
to our imagination and to what it is possible for us to think about. Some ideas regarding how these
principles could be relevant for an autonomous agent to become functionally conscious are discussed
as well.
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1. Introduction

The mammalian brain’s astonishing abilities raise the question of the principles by
which it is organized. Since it is evolved rather than designed, such principles should be
simple rather than complicated. This seems to be contradicted by the brain’s remarkably
advanced abilities. I believe that this contradiction is false and that the advanced capabilities
of the brain are indeed based on fairly simple principles, but which are reused over and
over again at different levels of complexity.

Below I explain and motivate why I think rather simple principles regarding self-
organization; internal self-supervision; and laterally, hierarchically, and recurrently con-
nected topology-preserving feature representations that reflect the probability distributions
of their inputs are important in the mammalian brain, as well as how that insight can be
used artificially.

Simple principles, I believe, employed over and over again by nature at various levels
of complexity are behind astonishingly complex abilities, such as perceptions, imagery,
and functional consciousness in the mammalian brain. The same principles can explain
why we sometimes tend to perceive our expectations rather than what is really out there;
how we construct and fill in the gaps in our perceptions within and between various
sensory modalities when sensory inputs are limited; and multimodal integration. How
various memory systems, imagery, and perception fit together can be explained by the
same principles.

I will also discuss how the corresponding faculties could be implemented in an
artificial biologically inspired cognitive architecture by employing the same principles
in the same way as has been done through evolution by nature. By looking at how the
mammalian brain is structured and by identifying its crucial components and how these
are interconnected, knowledge can be obtained that, together with the identified principles,
enables a systems-level approach to modeling perception as well as the integration of
various sensory modalities, memory, imagery, the generation of an inner world, and
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functional consciousness in a biologically inspired cognitive architecture modeled on the
mammalian brain.

2. Topologically Ordered Feature Representations as Building Blocks

Topology-preserving feature representations, i.e., self-organizing topographical repre-
sentations of features that reflect the probability distributions of their inputs, are inherent
parts of the sensory modalities as well as other systems in the mammalian brain. Such
representations can be found in, for example, somatosensory, visual [1], and auditory areas,
in neuron nuclei, and in the cerebellum. Due to the topology-preserving property of the
representations, similar features are represented close to each other. That they also reflect
the probability distributions means that the size of the representational areas depends on
the importance and frequency of inputs. There are topology-preserving feature representa-
tions of various levels of complexity, from somatosensory areas containing somatotopic
representations of the skin surface to frequency-preserving tonotopic maps [2–4] to color
maps [5] in visual areas, as well as representations of more complex features.

Such topology-preserving feature representations could be modeled at an appropriate
abstraction level and used as building blocks in an artificial cognitive architecture by
self-organizing artificial neural networks, known as self-organizing maps (SOMs) [6], and
variants, such as the associative SOM (A-SOM) [7]. These ANNs mimic crucial properties
of the topology-preserving representations found in the mammalian brain, such as self-
organization into topologically ordered feature representations that reflect the probability
distributions of their inputs. SOMs can self-organize into, e.g., color maps, semantic
maps [8], and posture maps [9].

3. Representational Hierarchies

Various sensory modalities, as well as other systems, in the mammalian brain seem to
be ordered in hierarchies of increasingly more complex/abstract feature representations.
More complex features rely on inputs from representations of less complex features, though
there is probably also a flow of information in the opposite direction. Hence, in the visual
modality we find the dorsal (where) and ventral (what) streams. Both streams originate in
the primary visual areas in the occipital lobe, whereas the former ends up in the parietal
lobe and the latter in the temporal lobe. For example, in the ventral stream there are ordered
feature representations of contour directions in visual area one (V1), of shapes in visual area
two (V2), of objects in visual area four (V4), and of complex facial features in the inferior
temporal (IT) area.

In the auditory modality there seems to be similar (what, how, and where) streams.
One could speculate whether the auditory and visual where streams, both ending up in the
parietal areas, coincide to some extent.

This principle of a hierarchy of increasingly more complex feature representations has
been exploited artificially in deep neural networks [10], but also in the use of hierarchical
SOMs applied to various sensory modalities, e.g., [9,11].

4. Perception, Imagery, Memory, and Consciousness

The brain supplements perceptions when the sensory inputs are not complete. This is
evident from various visual illusions, e.g., the Kanizsa Triangle [12], where the contours of
a triangle can be perceived even though they are actually not there. Moreover, when our
eyes scan the scenery before us, they are doing so by semirandom eye movements known
as saccades, directing the movements toward particularly conspicuous and, in some sense,
interesting features. Supposedly we carry out similar semirandom movement with our
hands and fingers to gain particularly interesting and useful tactile sensory inputs when
we, e.g., ransack our pockets for a particular key or grope about to find the doorknob in
the dark. When we perceive, our brains seem to fill in the gaps of sensory inputs with
expectations, from memory, of what is likely to be there.
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The ability to influence and simulate perceptual activity in certain brain areas due to
activity in other brain areas is crucial for biological cognition [13,14]. Hence, the supple-
menting of perceptions could also be due to cross-modal expectations. These could even
override actual inputs, which is evident from the McGurk–MacDonald effect [15]. If you
watch a video recording of a person making the sound/da/ (which means that the lips are
not closing), but with the sound substituted with the sound/ba/, you may still perceive
the sound you hear as being/da/.

A variant of SOMs, the A-SOM [7], which adds adaptable associative connections
between feature representations has been used to build artificial systems, e.g., [16], which
demonstrate cross-modal expectations.

Through adaptable associative connections between hierarchies of topographically
ordered feature representations, self-organizing intra- and intermodal networks of feature
representations (NFRs) are obtained. Some feature representations can be part of several
NFRs, and the particular division of feature maps into NFRs depends on how we look at
them and how we choose to categorize systems into subsystems. Adaptive associative
connections learn to associate simultaneous, or temporarily close, activity in various feature
representations elicited by simultaneous, or temporarily close, but different ordinary inputs.
This means that feature representations that later lack ordinary inputs will be activated by
activity patterns associated with ongoing activity in other feature representations in NFRs.
For example, hearing the voice of a particular person would elicit activity patterns not only
in the auditory hierarchies of feature representations that directly receive sensory inputs, but
also in other, e.g., visual, feature representations in an intermodal NFR through associative
activation. The total activity in NFRs will constitute episodic memories, imagery, etc.

The representation of a real or imagined concept or object is constituted by a set of
associated activity patterns in various feature representations of NFRs distributed over
multiple modalities. Hence, there is no need for any grandmother cells. Such associated
activations of topologically ordered feature representations preserve an internal ordering
of activation, and could be seen as forming a conceptual space [17].

To learn to represent novel concepts, objects, or possible objects, there is no need for
new feature representations, because they are formed through associating activity patterns
in existing feature maps in novel ways.

Hence, it is possible to create representations of various kinds of novel objects and
concepts: existing; possible but not existing, e.g., unicorns; and impossible as well as
nonexisting. What is possible to represent in this way by NFRs in the brain/artificial
architecture is only constrained by the set of available feature representations that can be
associated. In the mammalian brain, such feature representations are likely formed in early
developmental phases and then to a large extent fixed and closed, see, e.g., [18]. It follows
that there are likely constraints to what we can think.

NFRs containing topologically ordered feature representations with intra- and inter-
modal adaptable associative connections enable perception, various forms of memory,
imagery, and functional consciousness.

In perception, sensory signals from receptors, together with information about in-
volved exploratory actions, such as eye or hand movements, activate sets of feature maps.
Those parts of the associated networks of feature representations that are not elicited di-
rectly by sensory inputs are activated through the activity in other feature representations
via associative connections. Hence, the perceptions will be complete even with scarce
sensory inputs, because missing parts are filled in with likely guesses through internal
simulations. In episodic memory and imagery (i.e., internal simulation), the sets of asso-
ciated networks of feature representations (which can also be nonsensory, such as motor
representations) are activated internally in the cognitive architecture/brain. Semantic
memory corresponds to more persistent associations due to repeatedly overlapping parts of
activation from various episodic examples, thus forming prototypes in conceptual spaces.
This also makes semantic memory more persistent. The working memory supposedly
again employs networks of the same building blocks of feature representations obtained
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during early developmental phases, but now activated in a more transient and temporary
way, perhaps from, in the case of the mammalian brain, the frontal lobes.

In reality, these various cognitive functions are not separated from each other in a neat
way. Rather, they blend and mix into each other. For example, the perception of hearing a
familiar person’s voice can trigger both episodic memories and internal visual simulations
of the person, corresponding to reality but also pure fantasies, etc. Internally simulated
perceptual expectations may, in turn, trigger exploratory behavior and attention aiming at
confirming the expectations by obtaining additional sensory inputs. All of this is founded
on associatively connected networks of topologically ordered feature representations.

The A-SOM has been successfully tested in many simulations [7] in several differ-
ent domains regarding the ideas expressed in this paper. It has been tested with real
sensors [16,17] as well as when simulating continuations of sequences [19–21].

Consciousness is about experiencing perceptions, including the perceptions of your ac-
tions; imagery; and memories. However, who is experiencing? I am considering functional
consciousness here, thus leaving the problem of qualia out of the discussion.

When something is perceived, corresponding activity is elicited in a subset of as-
sociatively connected feature maps. This, in turn, elicits activity in other associatively
connected subsystem(s), perhaps also composed of associatively connected feature maps.
This means that the elicited activity patterns in the other connected subsystem(s), in a sense,
represent the ongoing activity in the system (of associatively connected feature maps). This
is equivalent to the second system observing the various phenomenal maps in the first
system, whether these are activated due to sensory signals or through internal simulations
(imagery, episodic memory, working memory, etc.).
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