
����������
�������

Citation: Eberbach, E. Undecidability

and Complexity for Super-Turing

Models of Computation. Proceedings

2022, 81, 123. https://doi.org/

10.3390/proceedings2022081123

Academic Editor: Mark Burgin

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

proceedings

Proceeding Paper

Undecidability and Complexity for Super-Turing Models
of Computation †

Eugene Eberbach

Department of Engineering and Science, Rensselaer Polytechnic Institute, Hartford, CT 12180, USA;
eeberbach@gmail.com
† Presented at the Conference on Theoretical and Foundational Problems in Information Studies,

IS4SI Summit 2021, online, 12–19 September 2021.

Abstract: It seems that intelligent complex systems will require formalisms having richer behavior
than Turing machines. Very little is known about the relations (e.g., the expressiveness and/or
effectiveness) between new super-Turing models of computation. The objective of this paper is an
attempt to establish a hierarchy of expressiveness of super-Turing models. Truly, a new theory of
undecidability and complexity for super-Turing models has to be developed. Some preliminary
steps have been done in this paper by introducing a-decidable and i-decidable algorithms and
U-complete, D-complete, and H-complete complexity classes that were inspired by NP-complete
and PSPACE-complete classes for intractable problems. This paper should be understood as a
preliminary step leading to feasible approximate solutions of Turing machine undecidable problems,
in a similar way as approximate, randomized, and parallel algorithms allow for feasible solutions for
intractable problems.

Keywords: undecidability; intractability; super-Turing computation; super-recursive algorithms; a-
decidability; i-decidability; reduction techniques; U-completeness; D-completeness; H-completeness

1. Introduction: Beyond Turing Machines and Recursive Algorithms

Turing machines [1,2] and algorithms are two fundamental concepts of computer
science and problem-solving. Turing machines describe the limits of problem-solving using
conventional recursive algorithms and laid the foundation of current computer science in
the 1960s.

Note that there are several other models of algorithms, called super-recursive algo-
rithms that can compute more than Turing machines, using hypercomputational (also
called super-Turing) models of computation [3–6].

It turns out that (TM) undecidable problems cannot be solved by TMs and intractable
problems are solvable but require too many resources (e.g., steps or memory). For un-
decidable problems, effective recipes do not exist, problems are called nonalgorithmic
or nonrecursive. On the other hand, for intractable problems, algorithms exist, but run-
ning them on a deterministic Turing machine requires an exponential amount of time (the
number of elementary moves of the TM) as a function of the TM input.

2. Super-Turing Models of Computation

We use the simplicity of the TM model to formally prove that there are specific
problems (languages) that the TM cannot solve [7]. Solving the problem is equivalent
to deciding whether a string belongs to the language. A problem that cannot be solved
by a computer (Turing machine) is called undecidable (TM undecidable). Unfortunately,
the Turing machine model is not sufficient for many domains. In solving real problems,
we work with computational models (or invent new ones) that are more convenient and
appropriate for the domain. Such new types of computation and computational models are
often called hypercomputational or super-Turing models of computation.

Proceedings 2022, 81, 123. https://doi.org/10.3390/proceedings2022081123 https://www.mdpi.com/journal/proceedings

https://doi.org/10.3390/proceedings2022081123
https://doi.org/10.3390/proceedings2022081123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com
https://doi.org/10.3390/proceedings2022081123
https://www.mdpi.com/journal/proceedings
https://www.mdpi.com/article/10.3390/proceedings2022081123?type=check_update&version=1

Proceedings 2022, 81, 123 2 of 5

Definition 1. (On hypercomputation/super-Turing computation) By super-Turing compu-
tation (also called hypercomputation), we mean any computation that cannot be carried out by a
Turing machine as well as any (algorithmic) computation carried out by a Turing machine.

The above definition is consistent with Wikipedia’s definition that states that hyper-
computation or super-Turing computation refers to models of computation that go beyond,
or are incomparable to, Turing computability (see also [3–6]).

Super-Turing models derive their higher than the TM expressiveness using three
principles: Interaction, evolution, or infinity:

• In the interaction principle, the model becomes open and the agent interacts with
either a more expressive component or with infinitely many components.

• In the evolution principle, the model can evolve to a more expressive one using
nonrecursive variation operators.

• In the infinity principle, models can use unbounded resources: Time, memory, the
number of computational elements, an unbounded initial configuration, an infinite
alphabet, etc.

The details can be found in [4,5].

Definition 2. (On time/space complexity) We can define four classes of problems/languages to
decide strings in the language in the order of increasing complexity:

1. The number of steps/memory cells is polynomial in the problem size and problems will be
called polynomial decidable (p-decidable).

2. The number of steps/memory cells is exponential in the problem size and problems will be
called exponentially decidable (e-decidable).

3. The number of steps/memory cells is infinite but computed in a finite time/finite number of
cells, i.e., asymptotically decidable in limit (a-decidable) (analogy: Convergent infinite series,
a mathematical induction, computing an infinite sum in a definite integral).

4. The number of steps/memory cells is infinite and requires an infinite time/infinite number of
cells to decide strings in the problem size, i.e., infinitely decidable (i-decidable) (undecidable in
the finite sense).

The classical complexity theory usually covers classes (1) as easy/tractable and class (2)
as intractable problems (but both decidable). Class (3) is an intermediate class because
although technically it requires an infinite number of steps (or memory cells for space
complexity), we can find a solution in the limit using finite resources. Its infinite compu-
tations are decided in a finite number of steps or require a finite amount of memory and
are represented by inductive Turing machines, accelerating Turing machines, persistent
Turing machines, inductive machine learning, anytime algorithms, evolutionary algorithms,
neural networks or $-calculus. Class (4) requires infinite resources and is unsolvable by
Turing machine (but solvable by hypercomputers using infinite resources). Classes (2),
(3), and (4) cover nonpolynomial algorithms, classes (3) and (4) belong to super-recursive
algorithms [4] (see also Wikipedia). Class (1) and (2) cover recursive algorithms.

Obviously, undecidable problems are characterized by computations growing faster
than exponentially (i.e., hyper-exponentially) or they may have even an infinite compu-
tational complexity (an enumerable or real numbers infinity type). For relations between
undecidability and complexity, look, for instance, to [8,9].

In [4,5], several super-Turing models have been discussed and overviewed. An
incomplete list includes:

• Turing’s o-machines, c-machines, and u-machines (Turing, A.). They use the help of
Oracle (o-machines) or human operator (c-machines), or they form an unorganized net-
work that may evolve by genetic algorithms or reinforcement learning (u-machines),

• Cellular automata (von Neumann, J.), an infinite number of discrete finite automata
cells in a regular grid,

Proceedings 2022, 81, 123 3 of 5

• Discrete and analog neural networks (Garzon, M.; Siegelmann, H.), a potentially
infinite number of discrete neurons or neurons with true real-valued inputs/outputs,

• Interaction machines (Wegner, P.). They interact with other machines sequentially or
in parallel by infinite multiple streams of inputs and outputs,

• Persistent Turing machines (Goldin, D.). They preserve contents of memory tape from
computation to computation,

• Site and Internet machines (van Leeuwen, J.; Wiedermann, J.). They have input/output
ports that allow to interact with an environment or Oracle and communicate by infinite
streams of messages,

• The п-calculus (Milner, R.) potentially an infinite number of agents interacting in
parallel by message-passing,

• The $-calculus (Eberbach, E.), potentially an infinite number of agents interacting in
parallel by message-passing and searching for solutions by built-in kΩ-optimization
meta-search that may evolve,

• Inductive Turing machines (Burgin, M.). They may continue computation after pro-
viding the results in a finite time,

• Infinite time Turing machines (Hamkins, J.D.). They allow an infinite number of
computational steps,

• Accelerating Turing machines (Copeland, B.J.). Each instruction requires half of the
time of its predecessor’s time forming a geometric convergent series,

• Evolutionary Turing machines (Eberbach, E.) and evolutionary automata (Eberbach, E.;
Burgin, M.). They use an infinite chain of abstract automata that may evolve in
successive generations and communicate by message-passing (an output becomes an
input to a next generation).

3. Three New Classes of TM Undecidable Problems

We introduce three new classes of TM undecidable problems, inspired by the Cook/Levin
NP-complete class definition [7]. The new complexity classes will be defined in the order of
growing undecidability based on [10], however, using new modified definitions.

Examples of typical unsolvable problems [7] include the universal language Lu (of
the Universal Turing Machine), the diagonalization language Ld, nonenpty Lne and empty
Le TM langugaes, Post Correspondence Problem (PCP), Busy Beaver Problem (BBP), the
Economy Collapse Problem (ECP), the Economy Immortality Problem (EIP).

Now we are ready to introduce three new classes of TM undecidable problems.

Definition 3. (on U-complete languages) We say a language L is U-complete (Universal Turing
Machine complete) if

1. Any word w can be decided in a finite number of steps if w ∈ L, or it requires an infinite
number of steps if w /∈ L (semi-decidability condition).

2. For any language L’ satisfying (1), there is p-decidable or e-decidable reduction of L’ to L
(completeness condition).

U-complete languages belong to the RE-nonREC class. Examples of U-complete
languages include Lu (a basic representative to call the whole class), PCP, Lne, BBP, ECP,
planning problem, optimization problem. The U-hard languages, a superset of U-complete
languages, satisfy only the completeness condition from the above definition.

Definition 4. (on D-complete languages) We say a language L is D-complete (Diagonalization
complete) if

1. Any word w from L cannot be decided in a finite number of steps (undecidability condition).
2. For any language satisfying (1), there is p-decidable, or e-decidable reduction of L’ to L

(completeness condition).

Proceedings 2022, 81, 123 4 of 5

Examples of D-complete languages include Ld (a basic representative to call the whole
class), Le, EIP, complement of Ld, complement of Lu, complement of BBP. The D-hard
languages, a superset of D-complete languages, satisfy only the completeness condition
from the above definition.

Definition 5. (The hyper-diagonalization language) The hyper-diagonalization language Lhd
consists of all strings w such that TM M whose code is w will not accept even in an infinite number
of steps when given w as input.

Definition 6. (on H-complete languages) We say a language L is H-complete (Hypercomputa-
tion complete) if

1. Any word w from or outside of L cannot be decided in a finite number of steps (undecidability
condition).

2. For any language L’ satisfying (1), there is an a-decidable or i-decidable reduction of L’ to L
(completeness condition).

A canonical representative of this class is Lhd. The H-hard languages, a superset of
H-complete languages, satisfy only the completeness condition from the above definition.

4. Terminal Languages and Expressiveness of Evolutionary Automata and
Interaction Machines

Definition 7. A word w is accepted in the terminal mode of the automaton E if given the word w as
input to the automaton E, there is a number n such that the automaton A[n] from E comes to an
accepting state.

Definition 8. The terminal language TL(E) of the automaton E is the set of all words accepted in
the terminal mode of the automaton E.

It has been proven that evolutionary automata (e.g., evolutionary Turing machines or
evolutionary finite automata) and interaction machines accept arbitrary languages over a
given alphabet [11,12]. From the above, we get Theorem 1:

Theorem 1. Terminal languages of evolutionary automata and interaction machines coincide with
the class of all languages in the alphabet X.

5. Expressiveness of o-Machines, Site and Internet Machines, $-Calculus, п-Calculus,
Cellular Automata, Neural Networks and u-Machines

We can safely assume that models based on Oracles, i.e., Turing o-machines [2] and
site and Internet machines, can also accept arbitrary languages over a given alphabet.

Theorem 2. Terminal languages of o-machines and site and Internet machines coincide with the
class of all languages in the alphabet X.

We believe that analogous proofs can be derived for $-calculus [13], п-calculus (pend-
ing that replication operator allows for infinity), cellular automata (extended to random
automata networks, where each cell may represent a different finite state automaton), neural
networks, Turing u-machines (pending that they allow for an infinite number of nodes), i.e.,
models where we can derive the sequence of components inheriting all needed information
from their predecessors, i.e., we can repeat essentially the proofs for evolutionary automata
and interaction machines. Thus, we will write, skipping the proofs, the following.

Conjecture 1. Terminal languages for $-calculus, п-calculus, cellular automata generalized to
random automata networks, neural networks and Turing u-machines coincide with the class of all
languages in the alphabet

Proceedings 2022, 81, 123 5 of 5

From Theorems 1 and 2 and Conjecture 1, we can immediately derive Corollary 1.

Corollary 1. Expressiveness of $-calculus, n-calculus, cellular automata, neural networks, Turing
o-machines and u-machines, evolutionary automata, and interaction machines is the same and
allows to accept all languages over a given finite alphabet.

6. Expressiveness of Other Super-Turing Models and Relations with U-Complete,
D-Complete and H-Complete Complexity Classes

It is not clear at this moment how to classify expressiveness of Infinite time Turing
machines and accelerating Turing machines. Simply, the conditions of an infinite number
of steps or doubling the speed of each successive step alone seem not to be sufficient to
prove that those models can accept all languages over a given alphabet. Similarly, we
do not have enough details on c-machines because they were only briefly mentioned in
the original paper on Turing machines. Moreover, we cannot properly classify at this
moment the expressiveness of inductive Turing machines and persistent Turing machines
in the form of the stand-alone components. However, it is clear that they, as components of
evolutionary automata or interaction machines, may achieve such enormous expressiveness
of their hosts.

On the other hand, from Corollary 1, we can conclude the following.

Corollary 2. Turing o-machines and u-machines, site and Internet machines, $-calculus, п-calculus,
cellular automata, neural networks, evolutionary automata and interaction machines accept all
U-complete, D-complete, and H-complete languages.

7. Conclusions

We proposed three new definitions of complexity classes for TM undecidable problems:
U-complete, D-complete, and H-complete languages. We also proved that several super-
Turing models of computation can accept all languages (including those not accepted by
Turing machines) over a given alphabet.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: Not applicable.

References
1. Turing, A. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1936, 42-2,

230–265; Correction in ibid 1937, 43, 544–546. [CrossRef]
2. Turing, A. Systems of Logic based on Ordinals. Proc. Lond. Math. Soc. Ser. 1939, 45, 161–228. [CrossRef]
3. Burgin, M. Super-Recursive Algorithms; Springer: New York, NY, USA, 2005.
4. Eberbach, E.; Wegner, P. Beyond Turing Machines. Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS Bull.) 2003, 81, 279–304.
5. Eberbach, E.; Goldin, D.; Wegner, P. Turing’s Ideas and Models of Computation. In Alan Turing: Life and Legacy of a Great Thinker;

Teuscher, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 159–194.
6. Syropoulos, A. Hypercomputation: Computing Beyond the Church-Turing Barrier; Springer: Cham, Switzerland, 2008.
7. Hopcroft, J.E.; Motwani, R.; Ullman, J.D. Introduction to Automata Theory, Languages, and Computation, 3rd ed.; Addison-Wesley:

Boston, MA, USA, 2007.
8. Burgin, M. Algorithmic complexity of recursive and inductive algorithms. Theor. Comput. Sci. 2004, 317, 31–60. [CrossRef]
9. Burgin, M. Algorithmic complexity as a criterion of unsolvability. Theor. Comput. Sci. 2007, 383, 244–259. [CrossRef]
10. Eberbach, E. On Hypercomputation, Universal and Diagonalization Complete Problems. Fundam. Inform. 2015, 139, 329–346.

[CrossRef]
11. Burgin, M.; Eberbach, E. Evolutionary Automata: Expressiveness and Convergence of Evolutionary Computation. Comput. J.

2012, 55, 1023–1029. [CrossRef]
12. Wegner, P.; Eberbach, E.; Burgin, M. Computational Completeness of Interaction Machines and Turing Machines. In Turing-100.

The Alan Turing Centenary; Voronkov, A., Ed.; Volume 10, pp. 405–414. Available online: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.432.2685&rep=rep1&type=pdf (accessed on 28 February 2022).

13. Eberbach, E. The $-Calculus Process Algebra for Problem Solving: A Paradigmatic Shift in Handling Hard Computational
Problems. Theor. Comput. Sci. 2007, 383, 200–243. [CrossRef]

http://doi.org/10.1112/plms/s2-42.1.230
http://doi.org/10.1112/plms/s2-45.1.161
http://doi.org/10.1016/j.tcs.2003.12.003
http://doi.org/10.1016/j.tcs.2007.04.011
http://doi.org/10.3233/FI-2015-1237
http://doi.org/10.1093/comjnl/bxr099
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.432.2685&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.432.2685&rep=rep1&type=pdf
http://doi.org/10.1016/j.tcs.2007.04.012

	Introduction: Beyond Turing Machines and Recursive Algorithms
	Super-Turing Models of Computation
	Three New Classes of TM Undecidable Problems
	Terminal Languages and Expressiveness of Evolutionary Automata and Interaction Machines
	Expressiveness of o-Machines, Site and Internet Machines, $-Calculus, п-Calculus, Cellular Automata, Neural Networks and u-Machines
	Expressiveness of Other Super-Turing Models and Relations with U-Complete, D-Complete and H-Complete Complexity Classes
	Conclusions
	References

