
 
 

 

 
Proceedings 2021, 79, 13. https://doi.org/10.3390/ IECBM2020-08586 www.mdpi.com/journal/proceedings 

Proceedings 

Inhibition of TNF-Alpha Using Plant-Derived Small Molecules 
for Treatment of Inflammation-Mediated Diseases † 
Md. Rimon Parves 1,*, Shafi Mahmud 2, Yasir Mohamed Riza 1, Khaled Mahmud Sujon 2,  
Mohammad Abu Raihan Uddin 1, Md. Iftekhar Alam Chowdhury 1, Md. Jahirul Islam 1,  
Fahmida Alam Tithi 1, Mosharaf Alam 1, Nabila Rahman Jui 1, Saiful Islam 1 and Nurul Absar 1 

1 Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), 
Foy’s Lake, Khulshi, Chittagong 4202, Bangladesh; yasirmohamedriza@gmail.com (Y.M.R.);  
raihanuddin.bb@gmail.com (M.A.R.U.); mileemon239@gmail.com (M.I.A.C.); jahirjoel87@gmail.com (M.J.I.);  
fahmidariti@gmail.com (F.A.T.); mosharafalam66@gmail.com (M.A.); nrjjui708@gmail.com (N.R.J.); saifsai-
fulislam9@gmail.com (S.I.); nurul_ustc@yahoo.com (N.A.) 

2 Department of Genetic Engineering & Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; 
shafimahmudfz@gmail.com (S.M.); kmsujongeb@gmail.com (K.M.S.) 

* Correspondence: rimonriju@gmail.com; Tel.: +880-1719270674 
† Presented at the 1st International Electronic Conference on Biomolecules: Natural and Bio-Inspired  

Therapeutics for Human Diseases, 1–13 December 2020; Available online: https://iecbm2020.sciforum.net/. 

Abstract: Inhibition of tumor necrosis factor-alpha (TNF-α) has become a feasible target for allevi-
ating inflammation-mediated diseases. Currently, techniques developed, such as anti-TNF antibody 
therapies, prove not to be nearly as beneficial enough to effectively treat inflammation-mediated 
syndromes because of the increased risk for severe infections and malignancies. Our study has un-
dertaken the attempt of identifying small molecules to inhibit TNF-α. This study manually selected 
37 plant-derived compounds based on IC50 value from various literature, which showed inhibitory 
activity against TNF-α. By employing an in silico pipeline, we have aimed to explore the binding 
modes, to discover the most possible mechanism of inhibition, as well as, for a deeper understand-
ing of structural changes, which is necessary for rationalization of the targeted inhibition by our 
proposed bioactive compounds. Therefore, this study has identified two potential compounds 
through advanced induced fit docking and simulation study. The stability of protein-ligand com-
plex and structural changes was studied by performing 100 ns molecular dynamics simulation with 
its binding energy estimated through MM-PBSA analysis. 

Keywords: inhibition of TNF-α; plant-derived small molecules; inflammation-mediated diseases; 
exploration of the inhibitory sites; promising potential inhibitors 
 

1. Introduction 
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic inflammatory cytokine trimeric 

protein, encoded within the major histocompatibility complex. TNF-α is believed to play 
a significant role in the response of the innate immune system, inflammation associated 
carcinogenesis, and different pathophysiological function [1–3]. 

TNF derives its biological functions through initiating diverse signaling pathways, 
such as the nuclear factor κB (NF-κB) and c-Jun N-terminal kinase (JNK). NF-κB is a key 
cell survival signal and anti-apoptotic, whilst sustained JNK activation contributes to cell 
death. It also mediates the expression of anti-apoptotic and antioxidant genes, along with 
being able to block cell death to help cancer cells proliferate [4–6]. 

TNF plays a critical role in a diverse range of inflammatory, infectious, and malig-
nant diseases. TNF’s crucial function in inflammatory diseases has been highlighted by 
therapeutics developed against TNF in a number of in vitro and in vivo studies. Inhibition 
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of TNF was proved to be effective against Rheumatoid Arthritis, Ankylosing Spondylitis, 
Inflammatory Bowel Disease, Psoriasis, Respiratory Diseases, Cardiovascular Diseases, 
Renal Diseases, Diseases of the Central Nervous System, and a number of other inflam-
matory diseases [7]. 

As a pro-inflammatory cytokine, the expression of TNF could be high, as seen in in-
flammation and most aspects of carcinogenesis. It has already been suggested that serum 
TNF levels could be an indicator for understanding chemotherapeutics’ response and 
prognosis [8–10]. 

Since the 1980s, several attempts have been taken to develop potential inhibitors 
against TNF alpha, and protein-based drugs such as etanercept, infliximab, and ada-
limumab have been approved by the FDA [11]. However, these first-generation inhibitors 
have several adverse effects, such as; cognitive heart failure, activation of latent tubercu-
losis, and increased probability of cancer [12–14]. 

Following that, studies have suggested that the development of small molecules 
against the receptors are more applicable and ideal for long term use and could potentially 
be used in combination with other anti-inflammatory therapies [15]. Although there have 
been anti-TNF antibody therapies, they are quite expensive, and these therapies may in-
crease the risk of severe infections and malignancies [16]. 

In silico approach is a low-cost and rapid method for identifying protein targets from 
massive pools of inhibitors. Our current study is concerned with exploring the inhibitory 
binding sites and exploring potential inhibitors for the target by combining molecular 
docking, mechanics, and dynamics simulation. The goal of this research is to suggest a 
way for the possible utilization of experimental natural compounds in the development 
of lead drug compounds against TNF-alpha. The rationale stands that natural compounds 
are generally more likely to be safer and less toxic (i.e., fewer side effects) according to 
several studies, whilst being relatively cost-effective and being widely available, espe-
cially in developing markets, where inflammatory-mediated illness is a pertinent and 
pressing issue [17,18]. 

2. Methodology 
2.1. Ligand Preparation 

We selected 37 plant-derived compounds having a specific action against TNF-α and 
based on wet lab validation from literature (Supplementary Table S1), which were then 
retrieved from the PubChem database [19]. However, it should be noted that, the bioactive 
compounds were chosen to identify potent inhibitors that fit structurally and can there-
fore be further experimented or developed on reliably. The compounds were then pre-
pared in ligprep wizard of Schrödinger suite (LigPrep, Schrödinger, LLC, New York, NY, 
USA, 2018). The possible states of those compounds were generated by Epik [20] at target 
pH 7.0 ± 2 for proper enumeration in biological condition. High energy ionization/tauto-
mer states were removed as they are likely to have low populations at the prevailing con-
ditions. 

2.2. Protein Preparation and Receptor Grid Generation 
The three-dimensional structure of TNF-α (PDB ID: 2AZ5) was retrieved from the 

protein data bank [21] and prepared using the protein preparation wizard module [22] of 
Schrödinger suite. All the waters were deleted beyond 5.0 Å from het groups and the pro-
tein was pre-processed by assigning bond orders, adding Hydrogens, creating disulfide 
bonds and zero-order bonds to metals. H-bond networks were optimized, and protona-
tion states were generated at pH 7.0. Finally, a restrain minimization was performed to 
converge atoms to 0.30 Å using the OPLS3e force field [23,24] before further analysis. In 
need of generating a receptor grid to be docked, the co-crystallized ligand was specified 
in the receptor grid generation panel of the Glide program [25]. 
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2.3. XP Docking and MM-GBSA Rescoring Workflow 
Initially, the screening process was started in Glide program by employing the XP 

docking protocol [26]. The produced pose file of XP was introduced into the Prime pro-
gram (Prime, Schrödinger, LLC, New York, NY, USA, 2018) for predicting ligand binding 
free energies and to reach a relatively more accurate estimation rather than using Glide 
score. Using the VSGB(variable dielectric generalized Born solvation model )solvation 
model [27] and OPLS3e force field, the final minimization (minimization of all the atoms 
in each residue) was performed. During the minimization, only the residues within 5.0 Å 
of the ligand were allowed to relax, keeping the rest of the structure fixed [28,29]. The 
ligand-binding free energy (ΔGbind) was calculated by the following equation: 

ΔGbind = Gcomplex − (Gprotein + Gligand) (1)

where G = EMM + VSGB + GNP. 
The molecular mechanics energies combined with the generalized born and surface 

area continuum solvation (MM-GBSA) estimates the relative free binding energies from 
the combination of molecular mechanics (EMM), an SGB solvation model for polar solva-
tion (VSGB) and a non-polar solvation term (GNP) [30]. The non-polar solvation term is 
composed of the non-polar solvent accessible surface area and Van der Waals interactions. 
The best nine compounds were selected based on the best ΔGbind score. 

2.4. Induced-Fit Docking 
Receptor conformational changes is a critical issue in predicting the accuracy of dock-

ing. Besides this, it is crucial to ascertain accurate docking and characterization of binding 
sites [31]. However, to ensure the higher accuracy of docking, we have performed In-
duced-fit Docking (IFD) [32]. The IFD program is also coupled with Prime, which refines 
residues within 5.0 Å of ligand poses and predicts conformational changes within the re-
ceptor active-site following to be minimized that proceeds to redock. The best nine com-
pounds obtained from the MM-GBSA rescoring workflow were subjected to IFD. Like XP 
docking workflow, here the co-crystalized ligand was used to generate receptor grid. The 
standard protocols were employed which generates up to 20 poses. The side chains were 
trimmed automatically based on B-factor prior to being optimized in Prime refinement 
panel. Finally, Glide XP redocking procedures were carried, in which the structures within 
the threshold value of 30.0 kcal/mol were redocked into the active sites. The produced 
poses were filtered and selected based on IFD score. Poses having the best IFD score were 
considered for further study. 

2.5. ADME/T Calculation 
The pkCSM and ADMETsar servers [33,34] were used for predicting both the physi-

cally significant descriptors and pharmaceutically relevant properties. To determine the 
ADME properties of selected compounds, the compounds were firstly neutralized to be 
processed in normal mode. It produced several important descriptors and the compounds 
were evaluated based on Lipinski’s rules of five, which is indispensable in rational drug 
design. Simplified molecular data input system (SMILES) and structure data file (SDF) 
were used as an input system to check the properties of our selected ligands. 

2.6. Molecular Dynamics 
YASARA Dynamics software [35] was used for simulating the drug-protein com-

plexes to validate the docking study and for further investigation into the binding stability 
of the protein-ligand complexes. The Apo protein structure was also simulated as a con-
trol to compare and understand the changes in the protein structure upon ligand binding. 
Therefore, both Apo structure and ligand-protein complexes were cleaned, and hydrogen 
bonds were assigned, followed by parameterization. The Assisted Model Building with 
Energy Refinement 14 (AMBER14) force field [36] was used because this system is well 



Proceedings 2021, 79, 13 4 of 20 
 

 

known and extensively used to explain the macromolecular system. A cubic simulation 
cell with a size of 82.63 Å × 82.63 Å × 82.63 Å was created and Particle mesh Ewald (PME) 
methods were used to calculate long-range electrostatic interactions at a cut off distance 
of 8 Å at physiological state (298 K, pH 7.4, 0.9% NaCl) [37]. Initially, the energy minimi-
zation of each system has been performed by the simulated annealing method using the 
steepest descent approach (5000 cycles). Then, a Molecular Dynamics (MD) simulation 
was started with a time step interval of 2.00 fs [38]. Finally, simulation was performed 
about 100 ns long and MD trajectories were saved for every 100 ps for further analysis. 

2.7. DCCM and PCA Analysis 
The Bio3D software [39] implemented in the R program was used to construct dy-

namic cross-correlation maps. It is a matrix representation of time-correlated information 
between protein atoms i and j (cij). The dynamic cross-correlation matrices (DCCM) be-
tween i and j were obtained from the following formula; 

𝐷𝐶𝐶𝑀 ,  =  〈→ .→ 〉𝑑 𝑑  (2)

where d denotes the displacement between the current position and the average position 
of all selected pairs of atoms. The angle brackets denote the average overall trajectories. 
The values in the DCCM are predicted within the range of −1 to +1, where +1 and −1 de-
scribe the positive correlation and anti-correlation respectively. 

Besides this, we performed Principal Component Analysis (PCA) [40], which was 
executed in the R program through Bio3D for investigating flexibility and collective mo-
tion of Apo structure, and protein-ligand complexes. The Algorithm removes transla-
tional and rotational movements, performs superimposition of the coordinates to the ref-
erence structure, and therefore calculates eigenvectors. An orthogonal coordinate trans-
formation matrix was used to calculate the symmetric matrix, on which diagonalization 
was performed. The orthogonal coordinate transformation matrix produces the diagonal 
matrix of eigenvalues, in which the columns were the eigenvectors equivalent to the di-
rection of motion relative to the initial coordinates. Furthermore, the eigenvectors were 
correlated with eigenvalues, representing the root-mean-square fluctuation (RMSF) of the 
system along the corresponding eigenvector. The mathematical details have been de-
scribed previously [41,42]. The images of DCCM and PCA were rendered by using Visual 
molecular dynamics (VMD) and PyMOL software [43,44]. 

2.8. MM-PBSA Calculation 
The MD trajectories were subjected to Molecular Mechanics Poisson-Boltzmann Sur-

face Area (MMPBSA) for estimating ligand binding free energy by using built in macros 
of YASARA, which applies the following formula: 

Binding Energy = EpotRecept + EsolvRecept + EpotLigand + EsolvLigand − EpotComplex − EsolvComplex 

where more positive energies indicate better binding. 

3. Results 
3.1. Docking Analysis 

Molecular docking is an essential approach in understanding binding modes of the 
protein-ligand complex. However, in need of searching for potential inhibitors against 
TNF-α, a multistep and rigorous docking was performed. Firstly, XP docking was carried 
and the top nine compounds were selected based on ΔG bind score for having more ac-
curacy. Table 1 represents the results obtained from XP docking and MM-GBSA. Finally, 
the top 9 compounds were subjected to IFD, wherein two ligands were considered, which 
could satisfy the target. The best IFD score was chosen for selecting the best pose. Table 2 
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reports the IFD score selected compounds with TNF-α. Figure 1 illustrates the details of 
non-bonded interaction study. 

Table 1. Docking results (kcal/mol) and of primary estimation of binding affinity. 

Compound 
Name 

Docking 
Score 

Glide Ligand 
Efficiency Glide Evdw Glide Ecoul Glide Energy 

Glide 
Emodel 

MMGBSA ΔG 
Bind 

Kaempferol −10.677 −0.254 −40.764 −14.462 −55.226 −73.529 −61.26 
Corilagin −10.325 −0.229 −31.526 −16.372 −47.897 −63.724 −29.57 

Amoradicin −8.149 −0.255 −35.262 −6.188 −41.45 −55.702 −58.69 
Paeoniflorin −7.696 −0.226 −31.778 −8.588 −40.366 −51.405 −40.42 

Quercetin −7.591 −0.345 −29.553 −7.52 −37.073 −42.579 −41.9 
Myricetin −7.52 −0.327 −20.062 −8.104 −28.166 −38.118 −26.69 

Eriodictyol −7.42 −0.353 −16.679 −15.465 −32.145 −36.398 −36.53 
Luteolin −7.241 −0.345 −28.16 −6.815 −34.976 −44.758 −37.48 

Curcumin −6.515 −0.241 −27.64 −8.604 −36.244 −48.232 −40.98 

Table 2. IFD results of selected compounds with TNF-α. 

Compound Name IFD Score (kcal/mol) Prime Energy Glide Score Glide Ecoul 
Paeoniflorin −554.98 −10699.63 −11.327 −9.291 
Amoradicin −546.31 −10883.87 −10.790 −7.678 

 
Figure 1. Pose view and ligand interactions diagram of selected compounds with tumor necrosis 
factor-alpha (TNF-α). The upper left and right panel of the figure indicate the binding pose and 
interactions of Paeoniflorin with TNF-α, whilst the bottom left and right panel indicate the binding 
pose and interactions of Amoradicin with TNF-α respectively. The colors; sky, blue, yellow, solid 
blue line, silver colored dash line, olive colored dash line indicates ribbon view of protein, interact-
ing amino acids, ligand, H bond interactions, hydrophobic interactions, and π stacking interactions 
respectively. 
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3.2. ADME/T Analysis 
Physiochemical characteristics by the compound can be a valid alternative to the ex-

perimental method. To propose a compound to be a drug, it has to maintain certain crite-
ria. Here, we have predicted the pharmacological and pharmacokinetic properties of two 
chemical compounds obtained from the docking simulation study. Thereafter, the AD-
METsar, SwissAdme, and PkCSM webserver was used to determine whether the ligands 
had any toxic profile by evaluating the physiological profile (Table 3). 

Table 3. Physiochemical and pharmaceutically relevant descriptors of selected compounds and con-
trol drug. 

Parameters Paeoniflorin Amoradicin Control Drug 
CNS permeability −3.914 −2.769 −0.686 
Blood Brain Barrier permeability −1.352 −1.294 0.147 
Total clearance 0.645 0.32 0.79 
Renal OCT2 substrate No No No 
hERG inhibitor No No Yes 
Hepatotoxicity No No Yes 
% of Human Oral absorption 48.350 100 84.485 
% of Human Intestinal absorption 67.873 88.712 93.083 
QPlogPo/W  0.256 4.998 6.700 
QPlogS  −2.365 −6.934 −6.985 
Solvent Accessible Surface Area (SASA) 654.688 761.367 684.054 
AMES toxicity No No Yes 
Hydrogen bond donors 5 3 0 
Hydrogen bond acceptors 11 6 5 
Lipinski Yes Yes No 
Bioavailability 0.55 0.55 0.55 
Molecular Weight 480.46 g/mol 438.51 g/mol 547.621 g/mol 
CYP2D6 substrate No No Yes 
CYP3A4 substrate No Yes Yes 
CYP1A2 inhibitor No No Yes 
CYP2C9 inhibitor No Yes No 
CYP2D6 inhibitor No No Yes 
CYP3A4 inhibitor No Yes Yes 

3.3.1. Molecular Dynamics Simulation Analysis 
Molecular dynamics has become an essential approach in understanding stability, 

compactness, and expansion of the protein-ligand complex. Herein, three protein-ligand 
complexes including Apo protein were simulated (Figure 2). The co-crystalized protein-
ligand complex was also simulated to get better contrast with other complexes. Therefore, 
it can be seen from Figure 2a that Paeoniflorin-TNFα complex exhibited higher root-mean-
square deviation (RMSD) than other complexes throughout the simulation, and Amora-
dicin-TNFα showed the lowest RMSD over the time scale. However, the RMSD of control 
drug-TNFα complex was less than Paeoniflorin-TNFα complex and Apo protein. 
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Figure 2. (a) RMSD (Root Mean Square Fluctuation) (b) Rg (Radius of gyration), (c) SASA (Solvent Accessible Surface 
Area), (d) Root mean square fluctuation (RMSF) of A chain for Apo, and protein-ligand complexes, (e) RMSF of B chain 
for Apo, and protein-ligand complexes. Analysis from simulated trajectories of all systems. 

Besides, from Figure 2b, it can be observed that Apo protein showed increased Ra-
dius of Gyration (Rg) value until 75 ns, and it decreased afterward. The Rg value of all 
complexes inclosing Apo was increased from the beginning to 12 ns of simulation, after 
which small random fluctuations were noticed. The Rg of control drug-TNFα complex 
seemed to be comparatively much lower from 0–50 ns, but showed random increased and 
decreased Rg in the next 50 ns time scale. Conversely, the Rg of Paeoniflorin-TNFα com-
plex seemed to be quite lower after 50 ns to 100 ns of simulation, even though this complex 
showed increased Rg from 0–50 ns. Furthermore, the Rg of Amoradicin-TNFα complex 
seemed to be lower at 30 ns and highest at 48 ns. This complex also showed the largest 
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decreased Rg value near to 61 ns and 66 ns. However, the noticeable increasing and de-
creasing trends of Rg was found frequently after 66 ns. On the other hand, the Rg of Apo 
protein was increased from 0–14 ns, 15–30 ns, 45–60 ns, and 65–78 ns. Thus, the interval 
of increased Rg range denotes the time of decreased Rg. 

On the other hand, the Solvent Accessible Surface Area (SASA) analysis (Figure 2c) 
showed Paeoniflorin- TNFα complex had an increased but mostly stable SASA value com-
pared to the other protein-complexes. The noticeable decreased SASA was found at 48–51 
ns. The lowest SASA value was observed for the control drug-TNFα at 0–65 ns. Thereafter, 
this complex showed slightly increased Rg till 88 ns, after which it was found to be de-
creased. For Amoradicin-TNFα complex, the SASA value randomly fluctuated at different 
frequencies. The timescale of fluctuations is at 10–15 ns (lower peak), 42–58 ns (higher 
peak), 62–72 ns (lower peak), 80–84 ns (lower peak), and 85–100 ns (random higher peak), 
respectively. The SASA value of Apo protein was almost the same as the other protein-
ligand complexes until 40 ns. The higher fluctuation of Apo was observed at 55–70 ns and 
the sharply decreasing Rg value was noticed at 82–100 ns. 

Overall, from the analysis of RMSD, Radius of gyration, and SASA value of all sim-
ulated systems, it can be observed that Amoradicin-TNFα complex showed better stability 
compared to other protein-ligand complexes, even when compared with the Apo protein. 
The RMSD of Amoradicin-TNFα and its time series analysis showed less RMSD value 
(average:1.36 Å), which indicates its better stability. The average RMSD of Amoradicin-
TNFα was almost near to the control drug—TNFα complex (1.45 Å), whereas the average 
RMSD of Paeoniflorin- TNFα complex and Apo was 1.47 Å and 1.54 Å, respectively. Be-
sides this, the Amoradicin-TNFα complex showed a lower degree of fluctuation in Rg 
analysis (average Rg value 19.35 Å), compared to Apo protein (average Rg 19.45 Å), and 
Paeoniflorin- TNFα complex (average Rg value 19.36 Å). The average Rg of the control 
drug-TNFα complex was 19.34 Å, indicating that the average compactness and rigidity of 
the control drug-TNFα complex is almost the same, whilst compared to the respective Rg 
properties of Amoradicin-TNFα complex. 

The average SASA value of all systems were 12749.23 Å2 (Apo), 13108.08 Å2 (Paeoni-
florin- TNFα complex), 12712.89 Å2 (Amoradicin-TNFα complex), and 12709.78 Å2 (control 
drug-TNFα complex); this indicates that the binding of Paeoniflorin increases SASA, and 
binding of Amoradicin, control drug reduces SASA, while compared to the Apo structure. 

For a better understanding of the region of all the respective proteins and their com-
plexes that have been fluctuated during the simulation, we have separated and reported 
(Figure 2) RMSF analysis of A and B chain. From Figure 2d, it can be observed that Pae-
oniflorin and protein complex exhibit slightly higher RMSF profile than other complexes 
in A chain. The Figure also revealed that the beta-hairpin region (Ala22, Glu23, Gly24, 
Gln25), helix zone (Ser71, Thr72), beta-turn (Ala145, Glu146) unveil greater RMSF value 
for all protein complexes whereas Paeoniflorin showed higher flexibility. On the other 
hand, Amoradicin showed higher fluctuation than other complexes in 10–60 amino acids, 
after which the control drug and Apo protein had taken the place of Amoradicin complex 
in terms of higher instability. Interestingly, the Paeoniflorin complex showed more flexi-
bility from 120–160 amino acid residues from the B chain (Figure 2e). Beta hairpin (Gln21, 
Ala22, Glu23), and helix strand (Lys 90, Val91, Asn92, Leu93, Ile118, Tyr119) regions of B 
chain had more flexibility compared to other amino acids. 

3.3.2. Residue Flexibility and Motion Analysis 
After analyzing the root mean square fluctuation (RMSF) of Cα atoms, the correlative 

motions were analyzed, which is known to play an important role in the identification 
and interrelation of the bio-macromolecular system, which can be achieved from the anal-
ysis of the dynamic cross-correlation matrix (DCCM). Figure 3 represents time correlated 
information among protein residues, where the intensity of the red and blue color indi-
cates the degree of positive and negative correlation. 
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Figure 3. Residue cross correlation maps of (a) Apo, (b) Paeoniflorin-TNFα complex (c) Amoradicin-TNFα complex, and 
(d) control drug-TNFα complex. 

The Apo structure was found to be positively correlated with having very little neg-
ative correlation. In the case of Paeoniflorin-TNFα complex, the positive correlation and 
negative correlation was a bit higher than the Apo one, indicating that the binding of Pae-
oniflorin alters residual movement. The major anti cross-correlation was found within 
binding site residues indicating that binding of Paeoniflorin could prevent the trimeric 
association of TNFα by interfering with their motions and associations. 

Besides this, the Amoradicin-TNFα complex seemed to be quite weakly negatively 
correlated, especially within disulfides and active sites residues, indicating that Amora-
dicin could induce little structural conformation and might have a slight effect on subunit 
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attachment of TNFα. However, while comparing the motions of proposed compounds 
and its complex to control drug-TNFα complex, the negative correlation for the control 
one was observed mostly within binding sites and disulfides. Additionally, Principle 
Component Analysis (PCA) was performed. 

The PCA analysis can convert the high-dimensional data of protein dynamics into 
the low-dimensional space to obtain a series of eigenvectors and eigenvalues that reflect 
overall motions in the protein [45,46]. The PCA can be applied to any system and permits 
to study the influence of any varying parameters by reducing the complexity of the col-
lective motion [47–49], which is associated with the phase space behavior related to pro-
tein functions and stability. Therefore, it is often used to characterize different conforma-
tional variances which are involved in protein folding, open-close mechanism of ion chan-
nels, and conformational dynamics [50–53]. 

The first 34 PCs of the Apo, Paeoniflorin-TNFα complex, Amoradicin-TNFα com-
plex, and control drug-TNFα accounted for 21.1%, 30.65%, 17.33%, and 18.82% of the total 
variations, respectively (Figure 4). The highest PC1 (30.65%) was noticed for Paeoniflorin- 
TNFα complex, which indicates that the complex had undergone higher conformational 
changes. Conversely, the lowest PC1 (17.33%) was observed for Amoradicin- TNFα com-
plex, indicating that the complex had undergone very little conformational changes. How-
ever, the PC1 of the control drug-TNFα complex was slightly higher than the Paeoniflorin-
TNFα complex, which was calculated as 18.82% of total variations. 

 
Figure 4. Principle component analysis of (a) Apo, (b) Paeoniflorin-TNFα complex, (c) Amoradicin-TNFα complex, and 
(d) control drug-TNFα complex. Each dot denotes its conformation of the protein throughout the X and Y axis. The spread 
of blue and red color dots described the degree of conformational changes in the simulation, where the color spectrum 
from blue to white to red is equivalent to simulation time. The blue specifies the initial timestep, white specifies interme-
diate, and the final timestep is represented by red color. 

Moreover, the PC1 of Apo structure was 21.1%, which is greater than Amoradicin-
TNFα complex, and control drug-TNFα complex, indicating that binding of Amoradicin 
and the control drug stabilizes the Apo’s conformational changes. Figure 5 shows the pos-
sible conformational changes of complexes which are responsible for the variations into 
their PC scores. 
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Figure 5. The PC1 of all systems are represented as the tube structures of three-dimensional struc-
tures of (a) Apo, (b) Paeoniflorin-TNFα complex (c) Amoradicin-TNFα complex, and (d) control 
drug-TNFα complex. The circular black colour indicates the regions of higher flexibility. 

Figure 6 displays the contribution of residues to the corresponding PC1 of all sys-
tems. It can be seen from Figure 6a,b that the residues in A chain positioning at 18–24, 65–
72, 82–94, and 142–154 was mostly mobile. The major contributions of these residues to 
PC1 of Amoradicin-TNFα complex was notably higher, which indicates that the binding 
of Amoradicin with TNFα mostly induces its residues mobility. 

The second major residual contribution to PC1 of Paeoniflorin-TNFα complex was 
observed mostly at the same positions as aforementioned, except for the position ranging 
from 82–94, that was exhibited by the contribution from control drug-TNFα complex. 
However, in the case of the residual contribution positioning from 142–154, their influ-
ences on PC1 were ordered as Amoradicin-TNFα complex > control drug-TNFα complex 
> Paeoniflorin-TNFα complex > Apo. On the other hand, the residual contribution of B 
chain, positioned at the same orientation as described earlier for A chain was observed. It 
showed that the local mobility of these residues was found to be different for apo protein 
and all the other protein-ligand complexes, which facilitates to a deeper understanding of 
the ligand-induced behavior of protein mobilities. It can be understood from Figure 6b 
that the control drug and paeoniflorin reduce residual flexibility positioning from 18–24, 
indicating that they might better influence the flexibility of A chain at the same positions 
than that of B chain. 

Furthermore, another major fluctuation and its contribution was noticed for paeoni-
florin-TNFα complex at the residue 65–72. However, the major exceptionalities were 
found for the residues, positioning from 82–94, where the binding of control drug and 
Amoradicin significantly alters its flexibility when compared to PC1 of its respective com-
plexes of A chain. So, these ligands might induce residue flexibilities mostly in the same 
region. Interestingly, another major change in fluctuations was noticed for all the protein-
ligand complex, where the residual flexibilities at 142–154 were found to be reduced. 
Overall, the PCA analysis supports our earlier RMSF analysis. 
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Figure 6. The residual contribution to PC1 of all systems is represented in (a) PC1 of A chain, (b) 
PC1 of B chain. 

3.3.3. Hydrogen Bond Analysis 
The total number of intermolecular and intramolecular hydrogen bonds were 

counted (Figure 7). As depicted in Figure 7a, it can be seen that the Paeoniflorin-TNFα 
complex showed the maximum number of intermolecular hydrogen bonds, whereas the 
lowest total H-bonds count were observed for Apo structure. 

However, the proposed compounds and their complex exhibited a higher number of 
intermolecular hydrogen bonds than control-drug TNFα complex, indicating their higher 
stability. On the other hand, the intramolecular hydrogen bonds (Figure 7b), which were 
calculated from simulated trajectories, showed significant differences when comparing 
among the complexes with the function of time. 

The average hydrogen bond count of the control-drug TNFα complex was lowest, 
whereas the average hydrogen bond count of the Amoradicin-TNFα complex was calcu-
lated to be highest. It can also be observed that compound and their respective complexes 
exhibited a greater number of intramolecular hydrogen bonds compared to the control. 
Moreover, the intramolecular hydrogen bonds of the Paeoniflorin-TNFα complex seemed 
to be higher during 0–20 ns and 90–100 ns. The Amoradicin-TNFα complex showed no 
intramolecular hydrogen bonds after 91 ns. 
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Figure 7. Hydrogen bond analysis of during Molecular Dynamics (MD) simulation; (a) total inter-
molecular hydrogen bonds count, and (b) number of intramolecular hydrogen bond. 

3.3.4. Binding Free Energy Analysis 
The binding free energy analysis (Figure 8) revealed that the control drug exhibited 

the highest energy compared to others for each of its snapshots during the simulation. 
However, strong binding energy was also observed for Amoradicin. Besides this, poor 
binding energy was observed for paeoniflorin. The compound paeoniflorin seemed to 
show downward fluctuations for most of the time. 

 
Figure 8. Time series analysis of binding free energy of all protein-ligand complexes. The color codes 
black, red, and green indicates control drug, paeoniflorin, and Amoradicin with their respective complex. 
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4. Discussion 
The root bark of the Mountain cortex or Paeonia suffruticosa Andrews has been used 

widely as traditional Chinese medicine. Antioxidant, sedative, and pharmacological ac-
tivities of the bark extract of Paeonia suffruticosa Andrews were explored along with the 
anti-inflammatory activity. Different concentrations (6.1 to 200 mM) were assessed in a 
cell model system where untreated synoviocytes and IL-1 treated synoviocytes used as a 
negative and positive control respectively. Compared to the control groups, paeoniflorin 
had inhibitory activity against TNF-α [54]. 

TNF-alpha (pleiotropic cytokine) has numerous activities in a biological system like 
cytotoxicity and inflammation processes [55]. On the other hand, Amoradicin, which is a 
prenylfavanone type of flavonoid extracted from Amorpha fruticose, showed inhibitory ac-
tivity against TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. It was sug-
gested that the bond between C2 and C3 and a ketone group at 4 position might be re-
quired for inhibition activity. Genistein and Amoradicin had a similar kind of activity 
which suggests that C2 and C3 may not have a principal effect on inhibitory activity due 
to antioxidant effect or non-enzymatic reaction. 

Literature also suggests that Amoradicin activity was six times higher than Silybin 
due to the presence of phenyl ring [56–58]. Although the selected compounds showed 
inhibitory activity against TNF-α, their binding modes and interaction patterns are not 
yet revealed. Therefore, we employed a molecular docking approach to explore potential 
interaction sites, which are most likely to be responsible for causing inhibitory activity of 
TNF-α. 

The active form of TNF-α is a homotrimer where the monomer consists of an anti-
parallel beta-sheet [59,60]. However, the success rate of ligand design is very low due to 
uncharacterized inhibition [61,62]. To inhibit TNF-α, two possible mechanisms can ex-
plain TNF-α dimer formation: (1) predissociation dependent mode, (2) predissociation in-
dependent mode. Research suggests that in order to inactivate TNF-α trimer, the complex 
may form an intermediate form that can undergo subunit dissociation. Herein, we have 
targeted TNF-α dimer to prevent its trimeric association, thereby inhibiting its function 
[63–66]. 

The dimethyl chromone moieties and trifluoromethyl phenyl indole binds with TNF-
α dimer and creates 16 contacts including Leu120, Ser60, Gly121, Tyr59, and Leu57 [67]. 
In our study, Paeoniflorin interacts with TNF-α by establishing hydrophobic interactions 
at Leu57 of A chain, Tyr 59 of A, B chains, and Tyr 119 of A, B chains. This compound also 
formed strong hydrogen bonding interactions at Ser60 of A chain, Leu120 of A, B chains, 
and Tyr 151 of A chain of TNF-α. 

On the other hand, Amoradicin formed hydrogen bonding interactions at several po-
sitions; Ile 58 of A chain, Ser 60 of A, B chains, Tyr 119 of A chain, Leu 120 of B chain, and 
Gly 122 of A chain, which align with the literature study where TNF-α inhibition was 
initiated by trifluoromethyl phenyl indole and dimethyl chromene moieties. However, 
Amoradicin seemed to form several strong hydrophobic interactions at Leu 57 of A chain, 
Tyr 59 of B chain, Tyr 119 of A, B chains, and Val 123 of B chain. Moreover, Tyr 59 of B 
chain and Tyr 119 of A chain formed π-Stacking interactions with Amoradicin. The modes 
of binding of Amoradicin are mostly the same as an aggregating small molecule inhibitor 
of TNF-α [68]. So, Amoradicin may employ similar mechanisms of inhibition. 

However, most of the interacted residues by paeoniflorin and amoradicin were 
found to reside in Tumor necrosis factor receptor 1 (TNFR1) binding site of the TNFα; 
thereby, these compounds could possibly inhibit TNF/TNFR1 signaling pathways as well 
as deactivating downstream signaling and inflammations [69–72]. 

Besides this, we have also predicted both physiochemical and pharmacologically rel-
evant descriptors. The selected compounds showed positive results towards the proper-
ties including octanol/water partition coefficient (QPlogPo/w), SASA [73], QPlogS (aqueous 
solubility), molecular weight, H bond acceptor/donor [74], and Lipinski’s rules of five [75]. 
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All of the selected compounds also showed positive results towards total clearance, 
renal OCT2 substrate, hepatotoxicity, AMES toxicity, bioavailability (Martin, 2005), and 
percent of human oral and intestinal absorption [33,76]. Paeoniflorin and Amoradicin 
showed no hERG inhibition, whereas the control drug showed hERG inhibition. So, the 
control drug has inhibitory activity towards the human ether-a-go-go related gene and 
may cause Long QT syndrome [77]. The selected compounds showed no AMES toxicity, 
whilst the control drug showed AMES toxicity, which may act as potential chemical mu-
tagen [78]. 

However, the Paeoniflorin were found to be poorly distributed to the brain and un-
able to penetrate CNS (molecules with BB < −1 are poorly distributed, and molecules with 
logPS < −3 are considered as unable to penetrate CNS) [33], whereas Amoradicin was pre-
dicted to be able to penetrate CNS and poorly permeable to the blood-brain barrier. 

Furthermore, Paeoniflorin showed positive properties towards CYP substrates and 
possible metabolism through the CYP family [79,80], whilst Amoradicin was found to 
have inhibitory activity on CYP2C9 and CYP3A4. The Amoradicin also showed interac-
tion on the CYP3A4 substrate. Contrarily, the control drug was predicted to be metabo-
lized only through CYP2C9. This drug also showed to have substrate interaction with 
CYP2D6 and CYP3A4. So, compared to known control drugs, Paeoniflorin may have a 
higher probability to be metabolized through CYP2C9, whereas Amoradicin may have a 
higher probability to have CYP3A4 substrate-based interaction. However, all these find-
ings indicate that the compounds identified showing ideal behavior of 95% of known drug 
molecules. 

Figure 1 illustrates the different types of interactions. The IFD score for Paeoniflorin 
was found to be best, which was calculated to be −554.98 Kcal/mol, which could be ex-
plained by the formation of relatively strong hydrogen and hydrophobic bonds than any 
of the other respective complexes (Supplementary File 2). Paeoniflorin formed four hy-
drogen bonds, which were present in Ser60, Leu120, and Tyr151, and multiple hydropho-
bic interactions were seen at Leu57, Tyr 59, and Tyr 119 positions. The IFD score of the 
Amoradicin compound was found to be lower than Paeoniflorin, which was estimated to 
be −546.31 Kcal/mol. The Amoradicin made hydrogen bonding interactions with Ile 58, 
Ser60, Tyr119, Leu120, and Gly122 residues. This complex also formed several hydropho-
bic interactions at Leu57, Tyr59, Tyr119, Val123 positions, and two π stacking with Tyr 59 
and Tyr 119. 

The apo protein and protein-ligand complexes were simulated to gain deeper insight 
into how binding of a ligand changes the structure of TNF-α. The molecular dynamics 
simulation analysis (Figure 2) showed that the behavior of Amoradicin-TNFα is almost 
the same as control drug-TNFα. Thus, binding of Amoradicin with TNFα reduces its Rg 
and SASA, which indicates the highest rigidity [81], tightest packing [82,83], and reduced 
protein expansion during the simulation [84,85], while compared to other respective pro-
tein-ligand complexes and Apo structure. Besides this, the binding of Paeoniflorin also 
seemed to stabilize its complex. Upon binding of Paeoniflorin with TNFα, it also reduces 
Rg but increases SASA, indicating that Amoradicin-TNFα had undergone the tightest 
packing and formed rigid conformation during the simulation but was also expanding the 
protein structure. However, binding of Paeoniflorin with TNFα didn’t show the most sim-
ilar behavior as control drug-protein complex in respect to RMSD, Rg, and SASA. 

In order to gather more insight into the residual flexibility, movement, and confor-
mational analysis, we performed RMSF, DCCM, and PCA analysis (Figures 2–4). By per-
forming these analyses, we found that Paeoniflorin-TNFα complex induces major residual 
flexibility, residual movement, and conformational variations, which is most likely to be 
accounted for preventing the trimeric association of TNFα, and thereby inhibiting its func-
tion. However, we included control drug-TNFα complex into these analyses for better 
comprehension of the results. The control drug-TNFα complex showed negatively corre-
lated motions, whilst compared to the Apo (control) one. Interestingly, the most negative 
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correlation was observed for Paeoniflorin-TNFα complex, especially within the loop, as 
being the most favored to be exhibited by the control drug and its complex. 

5. Conclusions 
Plant derived small molecules, such as our two natural lead compounds, paeoniflorin 

and amoradicin, is a testament that natural compounds have the efficacy to potentially 
produce strong therapeutic effects against inflammation-mediated diseases and carcino-
genesis. Not only is it widely available and relatively affordable to manufacture and dis-
tribute even in poor developing countries, but its greatest significance is that it would also 
minimize the need for developing countries to import expensive commercial alternatives 
that may potentially be less effective with more side effects, compared to natural com-
pounds that are generally well-tolerated, safe, and non-toxic (i.e., fewer side effects). Our 
study attempts to rationalize the interaction insight, binding mechanisms, and dynamic 
behavior of two natural compounds as potential inhibitors of TNF-α. The goal of this re-
search is to suggest a way for the possible utilization of experimental compounds. The 
two compounds which have promising potential have been studied in-depth by utilizing 
advanced computational processing and cutting-edge algorithms, specifically their target 
binding site residues, the binding mechanisms, and the conformational analysis of the 
bound complexes. Furthermore, the MD simulation was utilized for both apo and bound 
structures to understand the complexity of TNF-α protein. Not only will this streamline 
the research and development (R&D) pipeline, but it will also provide invaluable insights 
and information for fellow scientists and researchers to develop potential drugs, espe-
cially in developing countries where they may not have access to such advanced compu-
tational power. This will help improve the confidence of our fellow scientists to invest in 
further research and experimentation to develop the potential drug compounds. We hope 
that this would prove to be invaluable research for therapeutics against cancers and in-
flammation-mediated diseases, especially in developing countries. 

Supplementary Materials: The following are available online at www.mdpi.com/2504-
3900/79/1/13/s1, Supplementary File 1: List of chemical compounds retrieved from different litera-
tures. Supplementary File 2: Table S1: Results of Hydrophobic interactions of Paeoniflorin with the 
active site residues of TNF-α. Table S2: Hydrogen bonding interactions of Paeoniflorin with the 
active site residues of TNF-α. Table S3: Hydrophobic interactions patterns of Amoradicin with the 
active site residues of TNF-α. Table S4: Hydrogen bonding interactions of Amoradicin with the ac-
tive site residues of TNF-α. Table S5: π-Stacking interactions of Amoradicin with the active site res-
idues of TNF-α. 
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